JP4827616B2 - Diamond manufacturing method - Google Patents

Diamond manufacturing method

Info

Publication number
JP4827616B2
JP4827616B2 JP2006148835A JP2006148835A JP4827616B2 JP 4827616 B2 JP4827616 B2 JP 4827616B2 JP 2006148835 A JP2006148835 A JP 2006148835A JP 2006148835 A JP2006148835 A JP 2006148835A JP 4827616 B2 JP4827616 B2 JP 4827616B2
Authority
JP
Japan
Prior art keywords
filament
carbon
diamond
substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006148835A
Other languages
Japanese (ja)
Other versions
JP2007314401A (en
Inventor
喜樹 高木
吉久 須田
修 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP2006148835A priority Critical patent/JP4827616B2/en
Publication of JP2007314401A publication Critical patent/JP2007314401A/en
Application granted granted Critical
Publication of JP4827616B2 publication Critical patent/JP4827616B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はダイヤモンドの製造方法、特に電子デバイスとしての利用が期待される、基板上に形成された薄膜状ダイヤモンドの製造に適したダイヤモンドの製造方法に関する。   The present invention relates to a method for producing diamond, and more particularly, to a method for producing diamond suitable for producing a thin film diamond formed on a substrate, which is expected to be used as an electronic device.

基板上に薄膜状のダイヤモンドを形成する有効な手法の一つとして、基板の近傍に熱フィラメントを配置し、炭化水素などの炭素および水素源ガス雰囲気中で熱フィラメントに通電して加熱し、基板上にダイヤモンドの薄膜を成長させる、熱フィラメントCVD(Chemical Vapor Deposition)法がある。下記特許文献1には、この熱フィラメントの材料として炭素を使用することが記載されている。   As an effective method for forming a thin diamond film on a substrate, a hot filament is arranged in the vicinity of the substrate, and the hot filament is heated by energizing the hot filament in a carbon or hydrogen source gas atmosphere such as hydrocarbon. There is a hot filament CVD (Chemical Vapor Deposition) method in which a diamond thin film is grown. Patent Document 1 listed below uses carbon as a material for the hot filament.

特開2003−206196号公報JP 2003-206196 A 特開2005−231940号公報JP-A-2005-231940

本発明の目的は、炭化水素や水素などの可燃性気体を使用しないで熱フィラメントCVD法により安全にダイヤモンドを生成することのできる方法を提供することにある。   An object of the present invention is to provide a method capable of safely producing diamond by a hot filament CVD method without using a combustible gas such as hydrocarbon or hydrogen.

本発明によれば、基板の近傍に炭素系熱フィラメントを配置し、不活性ガス雰囲気中で該炭素系熱フィラメントの表面温度が2000℃以上になるように該炭素系熱フィラメントに通電することによって、基板上にダイヤモンドを堆積させるダイヤモンドの製造方法が提供される。   According to the present invention, by placing a carbon-based hot filament in the vicinity of the substrate and energizing the carbon-based hot filament so that the surface temperature of the carbon-based hot filament is 2000 ° C. or higher in an inert gas atmosphere. A method for producing diamond is provided that deposits diamond on a substrate.

熱フィラメントとして炭素系熱フィラメントを用い、その表面温度が2000℃以上になるように通電することによって、熱フィラメント自身が炭素源となって不活性ガス雰囲気中においてもダイヤモンドを生成することができた。   By using a carbon-based hot filament as the hot filament and energizing it so that its surface temperature is 2000 ° C. or higher, diamond can be generated even in an inert gas atmosphere with the hot filament itself as a carbon source. .

炭素系フィラメントの表面温度は特に、2200℃以上2500℃以下の温度とすることが好ましい。   The surface temperature of the carbon-based filament is particularly preferably 2200 ° C. or higher and 2500 ° C. or lower.

前記炭素系熱フィラメントは、2000℃以上の温度で黒鉛化が進行しない難黒鉛化性炭素と該難黒鉛化性炭素中に均一に分散した黒鉛粉末を含むことが好ましい。   The carbon-based hot filament preferably includes non-graphitizable carbon that does not progress graphitization at a temperature of 2000 ° C. or higher and graphite powder uniformly dispersed in the non-graphitizable carbon.

この均一に分散した黒鉛粉末はフィラメントに良好な導電性を与えて通電による2000℃以上の加熱を可能にする。また、難黒鉛化性(アモルファス)炭素は、ダイヤモンドへの相転移を容易にするものと考えられる。   This uniformly dispersed graphite powder gives good electrical conductivity to the filament and enables heating at 2000 ° C. or higher by energization. Further, non-graphitizable (amorphous) carbon is considered to facilitate the phase transition to diamond.

この難黒鉛化性炭素とその中に均一に分散した黒鉛粉末とを含む炭素系熱フィラメントは、炭素化後にアモルファス状炭素、特に、2000℃以上の高温下での使用時に黒鉛化が進行しない難黒鉛化性炭素となり得る高分子樹脂、例えば、フェノール樹脂、フラン樹脂などの熱硬化性樹脂や、塩素化塩化ビニル樹脂などの熱可塑性樹脂に、カーボンブラック、黒鉛粉末、コークス粉などの炭素粉末を混合し、所望の形状に賦形化後、不活性雰囲気中で焼成することで得られる。   The carbon-based hot filament containing the non-graphitizable carbon and the graphite powder uniformly dispersed therein is amorphous carbon after carbonization, in particular, it is difficult for graphitization to proceed when used at a high temperature of 2000 ° C. or higher. Carbon powders such as carbon black, graphite powder and coke powder are added to polymer resins that can become graphitizable carbon, for example, thermosetting resins such as phenol resins and furan resins, and thermoplastic resins such as chlorinated vinyl chloride resins. After mixing and shaping into a desired shape, it is obtained by firing in an inert atmosphere.

〔炭素系熱フィラメントの作成〕
(実施例1)
乾留ピッチ(呉羽化学工業製 KH−1P)15部、フラン樹脂(日立化成製 VF303)35部、天然黒鉛微粉末(日本黒鉛工業製 平均粒径4μm)50部を分散、混合、混練後に金型に投入し加圧圧縮成形した。次に窒素ガス雰囲気中1000℃で焼成し、図1の形状のフィラメント10を得た。樹脂と黒鉛粉末の混合物を平板に成形し、焼成後に図1に示す形状に切削加工することもできる。
[Creation of carbon-based hot filament]
Example 1
A die after dispersing, mixing, and kneading 15 parts of dry distillation pitch (KH-1P, Kureha Chemical Industry Co., Ltd.), 35 parts of furan resin (VF303, manufactured by Hitachi Chemical Co., Ltd.) and 50 parts of natural graphite fine powder (average particle size: 4 μm, manufactured by Nippon Graphite Industry Co., Ltd.) And then compression compression molding. Next, it baked at 1000 degreeC in nitrogen gas atmosphere, and obtained the filament 10 of the shape of FIG. A mixture of resin and graphite powder can be formed into a flat plate and cut into the shape shown in FIG. 1 after firing.

(実施例2)
乾留ピッチ(呉羽化学工業製 KH−1P)15部、フラン樹脂(日立化成製 VF303)35部、天然黒鉛微粉末(日本黒鉛工業製 平均粒径4μm)50部を分散、混合、混練後に金型に投入し加圧圧縮成形した。次に窒素ガス雰囲気中1000℃で焼成し、続いてアルゴンガス中1500℃で焼成し、図1の形状のフィラメントを得た。
(Example 2)
A die after dispersing, mixing, and kneading 15 parts of dry distillation pitch (KH-1P, Kureha Chemical Industry Co., Ltd.), 35 parts of furan resin (VF303, manufactured by Hitachi Chemical Co., Ltd.) and 50 parts of natural graphite fine powder (average particle size: 4 μm, manufactured by Nippon Graphite Industry Co., Ltd.) And then compression compression molding. Next, it was baked at 1000 ° C. in a nitrogen gas atmosphere, and then baked at 1500 ° C. in argon gas to obtain a filament having the shape shown in FIG.

(実施例3)
塩素化塩化ビニル樹脂(日本カーバイド製 T−741)40部、フラン樹脂(日立化成製 VF303)20部に、天然黒鉛微粉末(日本黒鉛製 平均粒度5μm)40部と、可塑材としてジアリルフタレートモノマーを20部を添加して、分散、混合し、押し出し成形で細線状に成形し、その後窒素ガス雰囲気中1000℃、さらにアルゴンガス雰囲気中2300℃で焼成し、円柱状炭素系フィラメントを得た。
(Example 3)
40 parts of chlorinated vinyl chloride resin (T-741 manufactured by Nippon Carbide), 20 parts of furan resin (VF303 manufactured by Hitachi Chemical Co., Ltd.), 40 parts of natural graphite fine powder (average particle size of 5 μm manufactured by Nippon Graphite), and diallyl phthalate monomer as a plasticizer Was added, dispersed, mixed, formed into a thin wire by extrusion, and then fired at 1000 ° C. in a nitrogen gas atmosphere and further at 2300 ° C. in an argon gas atmosphere to obtain a cylindrical carbon filament.

(実施例4)
塩素化塩化ビニル樹脂(日本カーバイド製 T−741)50部に、天然黒鉛微粉末(日本黒鉛製 平均粒度5μm)50部に対し、可塑材としてジアリルフタレートモノマーを20部を添加して、分散、混合し、押し出し成形にてコイル状に成形し、その後窒素ガス雰囲気中1000℃、さらに真空中2100℃で焼成し、コイル状炭素系フィラメントを得た。
Example 4
To 50 parts of chlorinated vinyl chloride resin (N-Carbide T-741), 20 parts of diallyl phthalate monomer as a plasticizer is added to 50 parts of natural graphite fine powder (Nippon Graphite average particle size 5 μm), and dispersed. They were mixed and formed into a coil shape by extrusion, and then fired at 1000 ° C. in a nitrogen gas atmosphere and further at 2100 ° C. in a vacuum to obtain a coiled carbon filament.

〔ダイヤモンドの合成〕
用いたダイヤモンド合成装置の概略構成を図2に示す。チャンバー12内に電源16に接続された2本の電極棒14が配置され、それらの間にフィラメント10が接続される。フィラメント10の下方にフィラメント10に直交する方向に基板18が配置され、その裏面に設けられた熱電対20により基板18の温度が検出される。フィラメント10の温度はチャンバー12の観察窓を通してパイロメータ22により測定される。パイロメータ22で測定された温度は温度制御装置24へ入力され、温度制御装置24はフィラメント10の表面温度が所定の温度に維持されるように電源16を制御する。
[Synthesis of diamond]
A schematic configuration of the diamond synthesis apparatus used is shown in FIG. Two electrode rods 14 connected to a power source 16 are arranged in the chamber 12, and the filament 10 is connected between them. A substrate 18 is arranged below the filament 10 in a direction perpendicular to the filament 10, and the temperature of the substrate 18 is detected by a thermocouple 20 provided on the back surface thereof. The temperature of the filament 10 is measured by a pyrometer 22 through the observation window of the chamber 12. The temperature measured by the pyrometer 22 is input to the temperature control device 24, and the temperature control device 24 controls the power supply 16 so that the surface temperature of the filament 10 is maintained at a predetermined temperature.

フィラメント10としては実施例1で作成され、難黒鉛化性炭素とその中に均一に分散した黒鉛粉末とからなる複合炭素材料によるもののほか、黒鉛のみからなる市販の等方性炭素材料(新日本テクノカーボン製)を図1の形状に切削加工したものも用いた。   The filament 10 is a composite isotropic carbon material prepared in Example 1 and composed of non-graphitizable carbon and graphite powder uniformly dispersed therein, as well as a commercially available isotropic carbon material composed only of graphite (Shin Nihon). A product obtained by cutting a technocarbon product into the shape of FIG. 1 was also used.

(実施例5)
実施例1で得られたフィラメントをチャンバー12に設置し通電して、真空下2000℃で10分間仮焼した後、チャンバー12内にアルゴンガスを80torr導入し、フィラメント温度2450℃で40分間通電したところ、シリコン基板18上に図3および図4のSEM(走査型電子顕微鏡)写真に示すダイヤモンド粒子が形成された。基板18とフィラメント10との距離は4mmであり、基板18の温度は800℃であった。ラマンスペクトルをそれぞれ図5および図6に示す。ダイヤモンド特有の1333cm-1のピークがみられる。
(Example 5)
The filament obtained in Example 1 was placed in the chamber 12 and energized, calcined at 2000 ° C. for 10 minutes under vacuum, then introduced with 80 torr of argon gas in the chamber 12, and energized for 40 minutes at a filament temperature of 2450 ° C. The diamond particles shown in the SEM (scanning electron microscope) photographs of FIGS. 3 and 4 were formed on the silicon substrate 18. The distance between the substrate 18 and the filament 10 was 4 mm, and the temperature of the substrate 18 was 800 ° C. The Raman spectra are shown in FIGS. 5 and 6, respectively. A peak at 1333 cm −1 peculiar to diamond is observed.

(実施例6)
実施例1で得られたフィラメントをチャンバー12に設置し通電して、真空下2000℃で2時間仮焼した後、チャンバー12内にアルゴンガスを80torr導入し、フィラメント温度2450℃で40分間通電したところ、シリコン基板18上に図7および図8のSEM写真に示すダイヤモンド粒子が形成された。基板18とフィラメント10との距離は4mmであり、基板18の温度は750〜810℃であった。ラマンスペクトルをそれぞれ図9および図10に示す。ダイヤモンド特有の1333cm-1のピークがみられる。
(Example 6)
The filament obtained in Example 1 was placed in the chamber 12 and energized, calcined at 2000 ° C. for 2 hours under vacuum, then introduced with argon gas at 80 torr in the chamber 12, and energized for 40 minutes at a filament temperature of 2450 ° C. However, diamond particles shown in the SEM photographs of FIGS. 7 and 8 were formed on the silicon substrate 18. The distance between the substrate 18 and the filament 10 was 4 mm, and the temperature of the substrate 18 was 750 to 810 ° C. The Raman spectra are shown in FIGS. 9 and 10, respectively. A peak at 1333 cm −1 peculiar to diamond is observed.

(実施例7)
実施例1で得られたフィラメントをチャンバー12に設置し通電して、真空下2000℃で2時間仮焼した後、チャンバー12内にヘリウムガスを80torr導入し、フィラメント温度2450℃で40分間通電したところ、シリコン基板18上に図11および図12のSEM写真に示すダイヤモンド粒子が形成された。基板18とフィラメント10との距離は7mmであり、基板18の温度は760〜790℃であった。ラマンスペクトルをそれぞれ図13および図14に示す。ダイヤモンド特有の1333cm-1のピークがみられる。
(Example 7)
The filament obtained in Example 1 was placed in the chamber 12 and energized, calcined at 2000 ° C. for 2 hours under vacuum, then helium gas was introduced into the chamber 12 at 80 torr, and energized at a filament temperature of 2450 ° C. for 40 minutes. However, diamond particles shown in the SEM photographs of FIGS. 11 and 12 were formed on the silicon substrate 18. The distance between the substrate 18 and the filament 10 was 7 mm, and the temperature of the substrate 18 was 760 to 790 ° C. The Raman spectra are shown in FIGS. 13 and 14, respectively. A peak at 1333 cm −1 peculiar to diamond is observed.

(実施例8)
等方性炭素材料製フィラメントをチャンバー12に設置し、チャンバー12内を真空にした後、アルゴンガスを80torr導入し、フィラメント温度2250℃で40分間通電したところ、シリコン基板18上に図15および図16のSEM写真に示すダイヤモンド粒子が形成された。基板18とフィラメント10との距離は4mmであり、基板18の温度は730〜830℃であった。ラマンスペクトルをそれぞれ図17および図18に示す。ダイヤモンド特有の1333cm-1のピークがみられる。
(Example 8)
An isotropic carbon material filament was placed in the chamber 12 and the inside of the chamber 12 was evacuated. Then, argon gas was introduced at 80 torr and energized for 40 minutes at a filament temperature of 2250 ° C. As shown in FIGS. Diamond particles shown in 16 SEM photographs were formed. The distance between the substrate 18 and the filament 10 was 4 mm, and the temperature of the substrate 18 was 730 to 830 ° C. The Raman spectra are shown in FIGS. 17 and 18, respectively. A peak at 1333 cm −1 peculiar to diamond is observed.

(実施例9)
等方性炭素材料製フィラメントをチャンバー12に設置し、チャンバー12内を真空にした後、アルゴンガスを80torr導入し、フィラメント温度2350℃で40分間通電したところ、シリコン基板18上に図19および図20のSEM写真に示すダイヤモンド粒子が形成された。基板18とフィラメント10との距離は4mmであり、基板18の温度は800〜830℃であった。ラマンスペクトルをそれぞれ図21および図22に示す。ダイヤモンド特有の1333cm-1のピークがみられる。
Example 9
An isotropic carbon material filament was placed in the chamber 12 and the inside of the chamber 12 was evacuated, and then argon gas was introduced at 80 torr and energized for 40 minutes at a filament temperature of 2350 ° C. As shown in FIGS. Diamond particles shown in 20 SEM photographs were formed. The distance between the substrate 18 and the filament 10 was 4 mm, and the temperature of the substrate 18 was 800 to 830 ° C. The Raman spectra are shown in FIGS. 21 and 22, respectively. A peak at 1333 cm −1 peculiar to diamond is observed.

(実施例10)
等方性炭素材料製フィラメントをチャンバー12に設置し、チャンバー12内を真空にした後、ヘリウムガスを80torr導入し、フィラメント温度2350℃で40分間通電したところ、シリコン基板18上に図23および図24のSEM写真に示すダイヤモンド粒子が形成された。基板18とフィラメント10との距離は7mmであり、基板18の温度は780〜820℃であった。ラマンスペクトルをそれぞれ図25および図26に示す。ダイヤモンド特有の1333cm-1のピークがみられる。
(Example 10)
An isotropic carbon material filament was placed in the chamber 12 and the inside of the chamber 12 was evacuated, and then helium gas was introduced at 80 torr and energized for 40 minutes at a filament temperature of 2350 ° C. As shown in FIGS. Diamond particles shown in 24 SEM photographs were formed. The distance between the substrate 18 and the filament 10 was 7 mm, and the temperature of the substrate 18 was 780 to 820 ° C. The Raman spectra are shown in FIGS. 25 and 26, respectively. A peak at 1333 cm −1 peculiar to diamond is observed.

熱フィラメントの形状の一例を示す図である。It is a figure which shows an example of the shape of a hot filament. ダイヤモンド合成装置の概略構成を示す図である。It is a figure which shows schematic structure of a diamond synthesizer. 実施例5において得られたもののSEM写真である。6 is a SEM photograph of what was obtained in Example 5. 実施例5において得られたもののSEM写真である。6 is a SEM photograph of what was obtained in Example 5. 実施例5において得られたもののラマンスペクトルである。It is a Raman spectrum of what was obtained in Example 5. 実施例5において得られたもののラマンスペクトルである。It is a Raman spectrum of what was obtained in Example 5. 実施例6において得られたもののSEM写真である。6 is a SEM photograph of what was obtained in Example 6. 実施例6において得られたもののSEM写真である。6 is a SEM photograph of what was obtained in Example 6. 実施例6において得られたもののラマンスペクトルである。It is a Raman spectrum of what was obtained in Example 6. 実施例6において得られたもののラマンスペクトルである。It is a Raman spectrum of what was obtained in Example 6. 実施例7において得られたもののSEM写真である。6 is a SEM photograph of what was obtained in Example 7. 実施例7において得られたもののSEM写真である。6 is a SEM photograph of what was obtained in Example 7. 実施例7において得られたもののラマンスペクトルである。It is a Raman spectrum of what was obtained in Example 7. 実施例7において得られたもののラマンスペクトルである。It is a Raman spectrum of what was obtained in Example 7. 実施例8において得られたもののSEM写真である。6 is a SEM photograph of what was obtained in Example 8. 実施例8において得られたもののSEM写真である。6 is a SEM photograph of what was obtained in Example 8. 実施例8において得られたもののラマンスペクトルである。It is a Raman spectrum of what was obtained in Example 8. 実施例8において得られたもののラマンスペクトルである。It is a Raman spectrum of what was obtained in Example 8. 実施例9において得られたもののSEM写真である。10 is a SEM photograph of what was obtained in Example 9. 実施例9において得られたもののSEM写真である。10 is a SEM photograph of what was obtained in Example 9. 実施例9において得られたもののラマンスペクトルである。It is a Raman spectrum of what was obtained in Example 9. 実施例9において得られたもののラマンスペクトルである。It is a Raman spectrum of what was obtained in Example 9. 実施例10において得られたもののSEM写真である。2 is a SEM photograph of what was obtained in Example 10. 実施例10において得られたもののSEM写真である。2 is a SEM photograph of what was obtained in Example 10. 実施例10において得られたもののラマンスペクトルである。It is a Raman spectrum of what was obtained in Example 10. 実施例10において得られたもののラマンスペクトルである。It is a Raman spectrum of what was obtained in Example 10.

Claims (3)

基板の近傍に炭素系熱フィラメントを配置し、
不活性ガス雰囲気中で該炭素系熱フィラメントの表面温度が2000℃以上になるように該炭素系熱フィラメントに通電することによって、基板上にダイヤモンドを堆積させるダイヤモンドの製造方法。
Place a carbon-based hot filament near the substrate,
A method for producing diamond in which diamond is deposited on a substrate by energizing the carbon-based hot filament so that the surface temperature of the carbon-based hot filament is 2000 ° C. or higher in an inert gas atmosphere.
前記炭素系フィラメントはその表面温度が2200℃以上2500℃以下の温度になるように通電される請求項1記載の方法。   The method according to claim 1, wherein the carbon-based filament is energized so that a surface temperature thereof is 2200 ° C. or higher and 2500 ° C. or lower. 前記炭素系熱フィラメントは、2000℃以上の温度で黒鉛化が進行しない難黒鉛化性炭素と該難黒鉛化性炭素中に均一に分散した黒鉛粉末を含む請求項1または2記載の方法。   The method according to claim 1 or 2, wherein the carbon-based hot filament includes non-graphitizable carbon in which graphitization does not proceed at a temperature of 2000 ° C or higher and graphite powder uniformly dispersed in the non-graphitizable carbon.
JP2006148835A 2006-05-29 2006-05-29 Diamond manufacturing method Expired - Fee Related JP4827616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148835A JP4827616B2 (en) 2006-05-29 2006-05-29 Diamond manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148835A JP4827616B2 (en) 2006-05-29 2006-05-29 Diamond manufacturing method

Publications (2)

Publication Number Publication Date
JP2007314401A JP2007314401A (en) 2007-12-06
JP4827616B2 true JP4827616B2 (en) 2011-11-30

Family

ID=38848614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148835A Expired - Fee Related JP4827616B2 (en) 2006-05-29 2006-05-29 Diamond manufacturing method

Country Status (1)

Country Link
JP (1) JP4827616B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108505018B (en) * 2018-05-14 2019-11-05 哈尔滨工业大学 A method of growth excellent diamonds particle and diamond thin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040466A (en) * 1999-07-29 2001-02-13 Komatsu Ltd Film forming device and film forming method
WO2001081660A1 (en) * 2000-04-21 2001-11-01 Nippon Sheet Glass Co.,Ltd. Diamond synthesizing method and device
JP2003206196A (en) * 2002-01-09 2003-07-22 Mitsubishi Pencil Co Ltd Hot-filament cvd apparatus

Also Published As

Publication number Publication date
JP2007314401A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
EP2537801B1 (en) Method for producing a carbon material
KR101456904B1 (en) Carbon material and method for producing the same
JP6714616B2 (en) Carbon nanotube bonding sheet and method for manufacturing carbon nanotube bonding sheet
US20050186344A1 (en) Method and apparatus for synthesizing diamond, electrode for diamond synthesis, and method for manufacturing the electrode
US20050206293A1 (en) Electron-emmiting material and manufacturing method therefor
KR20170087380A (en) Microwave heating element using silicon carbide fibers and heating device thereof
JP2010156993A (en) Heater for fixing and method of manufacturing the same
JP4827616B2 (en) Diamond manufacturing method
JP4920135B2 (en) Electrical insulator-coated vapor-phase carbon fiber, method for producing the same, and use thereof
KR102287921B1 (en) Graphite sheet and method for preparing same
JP2000323633A (en) Carbon heat dissipating body and its manufacture
KR102346246B1 (en) Silicon carbide powder synthetic material
CN109573999A (en) The manufacturing method of graphite film
JP2020200195A (en) Method of producing graphite material
CN102976311A (en) Two-dimensional lamellae carbon nano fluorescent material
JP3848584B2 (en) Method for producing carbon nanotube
JP2002100278A (en) Carbonaceous emitter and manufacturing method thereof
KR101734472B1 (en) Microwave heating element using silicon carbide fibers and heating device thereof
JP3922572B2 (en) Arc discharge carbon material and method for producing carbon nanotube
US20030197458A1 (en) Electrode for electron gun and electron gun using same
JP2003206196A (en) Hot-filament cvd apparatus
JP2008285346A (en) Method for producing nano-carbon
KR101798490B1 (en) Method for preparing bulk phosphorene using spark plasma sintering and bulk phosphorene prepared thereby
JP2004099674A (en) Minute carbonaceous structure having highly graphitized carbon on surface
JPH11242988A (en) Carbonic heating element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees