JPH11242986A - Carbonic heating element - Google Patents

Carbonic heating element

Info

Publication number
JPH11242986A
JPH11242986A JP28004698A JP28004698A JPH11242986A JP H11242986 A JPH11242986 A JP H11242986A JP 28004698 A JP28004698 A JP 28004698A JP 28004698 A JP28004698 A JP 28004698A JP H11242986 A JPH11242986 A JP H11242986A
Authority
JP
Japan
Prior art keywords
carbon
heating element
metal
composition
baking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28004698A
Other languages
Japanese (ja)
Inventor
Yoshihisa Suda
吉久 須田
Osamu Shimizu
修 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP28004698A priority Critical patent/JPH11242986A/en
Publication of JPH11242986A publication Critical patent/JPH11242986A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the mechanical strength of a heating element and cope with high power consumption by mixing and baking a composition having a formable property and showing a carbon residue yield that is substantially nonzero, and one or more than two kinds of metals or half-metal compounds and setting a resistivity value to a certain value. SOLUTION: After a composition and a metal compound are mixed and the obtained mixture is formed into a designed shape, and is processed into a carbon precursor and the obtained carbon precursor is heated to raise its temperature in the atmosphere of inert gas and is thus carbonized. In this case, its resistivity value is set to 20-200×10<3> Ωcm and an organic substance showing a carbonization yield not less than 5% by baking in the atmosphere of inert gas is used as the composition. A carbon material and carbon powder produced by baking act as an electrical good conductor, and a metal or half-metal compound also produced by baking acts as a conduction blocking substance, so that the current flows using the carbon material and carbon powder as media, and a desired resistivity value can be provided by uniformly mixing, dispersing and baking ingredients.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発熱体として必要
な任意の固有抵抗値と形状を有する炭素系発熱体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon-based heating element having an arbitrary specific resistance value and shape required for a heating element.

【0002】[0002]

【従来の技術】従来、抵抗用発熱体としては主としてタ
ングステン線やニクロム線などの金属線加工品と等方性
炭素材料やガラス状炭素などの炭素の切削加工品、炭化
珪素などの金属化合物が使用されてきた。その中でも金
属線の加工品は主として小型の民生機器のヒーター用発
熱体として、炭素や金属化合物は産業用炉などに使用さ
れている。
2. Description of the Related Art Conventionally, as a heating element for resistance, a metal wire product such as a tungsten wire or a nichrome wire, a carbon cut product such as an isotropic carbon material or glassy carbon, and a metal compound such as silicon carbide are mainly used. Have been used. Of these, processed metal wires are mainly used as heating elements for heaters of small consumer appliances, and carbon and metal compounds are used in industrial furnaces and the like.

【0003】従来の発熱体用素材の中でも炭素は、金属
線などと異なり、発熱速度、発熱効率、遠赤外線の発生
効率が良いなど優れた特徴を有している。しかし従来の
炭素発熱体は、大きな板形状体やブロック形状体より切
削加工により作製するため製造工程が煩雑で高価なうえ
細い物や薄い物など作製することが困難である。また、
ある規格範囲の固有抵抗値を有するブロック体などから
切削するため発熱量の制御は形状を変えるしか方策がな
いなどの問題点を有している。
[0003] Among the conventional heating element materials, carbon has excellent characteristics such as good heat generation speed, heat generation efficiency, and far infrared ray generation efficiency, unlike metal wires and the like. However, since the conventional carbon heating element is manufactured by cutting a large plate-shaped body or block-shaped body, the manufacturing process is complicated, expensive, and it is difficult to manufacture a thin or thin object. Also,
In order to cut from a block or the like having a specific resistance value within a certain standard range, there is a problem that the control of the heat generation amount has no alternative but to change the shape.

【0004】そこで本発明者らは特願平9−25889
3号において薄板形状だけでなく細い棒形状体、細い円
柱形状体など従来の炭素材料では得ることのできない形
状を得ることが可能なうえ任意の固有抵抗値を有するこ
とで広範な設定電流・電位の印加による発熱制御が可能
で、発熱体としての炭素材料が持つ発熱速度、発熱効
率、遠赤外線の発生効率に優れた炭素系発熱体として、
賦形性を有し焼成後実質的に零でない炭素残査収率を示
す組成物と、金属或いは半金属化合物の一種または二種
以上を混合し、焼成することによって、製造される炭素
系発熱体を提案した。
Accordingly, the present inventors have filed Japanese Patent Application No. 9-25889.
In No. 3, it is possible to obtain shapes that cannot be obtained with conventional carbon materials, such as thin rods, thin rods, and thin cylinders, as well as a thin plate shape. It is possible to control the heat generation by applying heat, and as a carbon-based heating element with excellent heat generation rate, heat generation efficiency and far infrared ray generation efficiency of the carbon material as the heating element,
A carbon-based heating element manufactured by mixing a composition having a shapeability and exhibiting a carbon residue yield that is not substantially zero after firing with one or more of a metal or metalloid compound and firing the mixture. Suggested.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記出願
に開示された実施例としての炭素系発熱体の固有抵抗値
はいずれも20×10-3Ω未満である。また、発熱体の
長さにはコスト面その他による現実的な上限がある。発
熱体の抵抗値はその材料の固有抵抗値及びその長さに比
例し、その断面積に反比例するから、固有抵抗値と長さ
に上限があれば、断面積には、所望の抵抗値を得るため
にはそれ以上広くすることができない或る上限が存在す
る。断面積に上限があるということは発熱体の機械的強
度と発熱体に許される消費電力値に上限があるというこ
とを意味し、逆に、固有抵抗値の上限を上げることがで
きれば発熱体の機械的強度と消費電力を大きくすること
ができる。
However, the specific resistance values of the carbon-based heating elements according to the embodiments disclosed in the above application are all less than 20 × 10 −3 Ω. Further, the length of the heating element has a practical upper limit due to cost and other factors. Since the resistance value of the heating element is proportional to the specific resistance value and its length of the material and inversely proportional to its cross-sectional area, if there is an upper limit on the specific resistance value and length, the cross-sectional area will have the desired resistance value. There are certain upper limits that cannot be broadened further to obtain. Having an upper limit on the cross-sectional area means that there is an upper limit on the mechanical strength of the heating element and the power consumption value allowed for the heating element. Conversely, if the upper limit of the specific resistance value can be increased, the Mechanical strength and power consumption can be increased.

【0006】したがって本発明の目的は、より高い固有
抵抗値を有する炭素系発熱体を提供して発熱体の機械的
強度を改善し、かつ高消費電力に対応することにある。
Accordingly, an object of the present invention is to provide a carbon-based heating element having a higher specific resistance value, improve the mechanical strength of the heating element, and cope with high power consumption.

【0007】[0007]

【課題を解決するための手段】本発明によれば、賦形性
を有し焼成後実質的に零でない炭素残査収率を示す組成
物と、金属或いは半金属化合物の一種または二種以上を
混合し、焼成して得られる炭素系発熱体であって、固有
抵抗値が20〜200×10-3Ωcmである炭素系発熱体
が提供される。
According to the present invention, there is provided a composition having a shape-forming property and a substantially non-zero carbon residue yield after firing, and one or more kinds of metal or metalloid compounds. There is provided a carbon-based heating element obtained by mixing and firing, wherein the carbon-based heating element has a specific resistance of 20 to 200 × 10 −3 Ωcm.

【0008】前述の金属或いは半金属化合物とは一般に
入手可能な金属炭化物、金属硼化物、金属珪化物、金属
窒化物、金属酸化物、半金属窒化物、半金属酸化物、半
金属炭化物等が挙げられる。使用する金属或いは半金属
化合物種と量は、目的とする発熱体の抵抗値・形状によ
り適宜選択され、単独でも二種以上の混合体でも使用す
ることができるが、抵抗値制御の簡易さから、特に炭化
硼素、炭化珪素、窒化硼素を使用することが好ましい。
The above-mentioned metal or metalloid compounds include generally available metal carbides, metal borides, metal silicides, metal nitrides, metal oxides, metalloid nitrides, metalloid oxides, metalloid carbides and the like. No. The kind and amount of the metal or metalloid compound to be used are appropriately selected depending on the resistance value and shape of the target heating element, and a single or a mixture of two or more kinds can be used. It is particularly preferable to use boron carbide, silicon carbide, and boron nitride.

【0009】前述の組成物としては、不活性ガス雰囲気
中での焼成により5%以上の炭化収率を示す有機物質を
使用するものである。具体的には、ポリ塩化ビニル、ポ
リアクリロニトリル、ポリビニルアルコール、ポリ塩化
ビニル−ポリ酢酸ビニル共重合体、ポリアミド等の熱可
塑性樹脂、フェノール樹脂、フラン樹脂、エポキシ樹
脂、不飽和ポリエステル樹脂、ポリイミド等の熱硬化性
樹脂、リグニン、セルロース、トラガントガム、アラビ
アガム、糖類等の縮合多環芳香族を分子の基本構造内に
持つ天然高分子物質、及び前記には含有されない、ナフ
タレンスルホン酸のホルマリン縮合物、コプナ樹脂等の
縮合多環芳香族を分子の基本構造内に持つ合成高分子物
質が挙げられる。使用する組成物種と量は、目的とする
発熱体の形状により適宜選択され、単独でも二種以上の
混合体でも使用することができるが、特にポリ塩化ビニ
ル樹脂、フラン樹脂を使用することが好ましい。
As the above-mentioned composition, an organic substance showing a carbonization yield of 5% or more by firing in an inert gas atmosphere is used. Specifically, polyvinyl chloride, polyacrylonitrile, polyvinyl alcohol, polyvinyl chloride-polyvinyl acetate copolymer, thermoplastic resin such as polyamide, phenol resin, furan resin, epoxy resin, unsaturated polyester resin, polyimide and the like Thermosetting resin, lignin, cellulose, tragacanth gum, gum arabic, natural polymer having a condensed polycyclic aromatic such as saccharides in the basic structure of the molecule, and not contained in the above, formalin condensate of naphthalenesulfonic acid, Synthetic high-molecular substances having a condensed polycyclic aromatic compound such as a copna resin in the basic structure of the molecule are exemplified. The type and amount of the composition used are appropriately selected depending on the shape of the desired heating element, and can be used alone or in a mixture of two or more kinds. .

【0010】前述の組成物中には炭素粉末が含有されて
いることが好ましい。炭素粉末としては、カーボンブラ
ック、黒鉛、コークス粉等が挙げられるが、使用する炭
素粉末種と量は、目的とする発熱体の抵抗値・形状によ
り適宜選択され、単独でも二種以上の混合体でも使用す
ることができるが、特に形状制御の簡易さから黒鉛を使
用することが好ましい。
It is preferable that the above-mentioned composition contains a carbon powder. Examples of the carbon powder include carbon black, graphite, and coke powder. The type and amount of the carbon powder to be used are appropriately selected depending on the resistance and shape of the intended heating element, and a mixture of two or more kinds may be used alone. Although graphite can be used, it is particularly preferable to use graphite from the viewpoint of easy shape control.

【0011】本発明では、前述の有機物質の焼成により
生じる炭素材料及び炭素粉は電気良導体として、そして
金属或いは半金属化合物は導電阻害物質として作用して
おり、電流は導電阻害物質である金属或いは半金属化合
物を飛び越え、いわゆるホッピングしながら炭素材料ま
たはそれと炭素粉末を媒体として流れる。この為これら
2つないし3つの成分の種類やその比率等を変え、それ
らを均一に混合、分散させ焼成することにより、所望の
固有抵抗値を有する本発明の炭素系発熱体を得ることが
できる。
In the present invention, the carbon material and the carbon powder generated by the above-mentioned firing of the organic substance act as an electric conductor, and the metal or metalloid compound acts as a conduction inhibitor. It jumps over the metalloid compound and flows using so-called hopping as a medium with the carbon material or the carbon powder. Therefore, by changing the types and ratios of these two or three components, uniformly mixing and dispersing them and firing, the carbon-based heating element of the present invention having a desired specific resistance value can be obtained. .

【0012】また本発明の炭素系発熱体は、発熱速度、
発熱効率、遠赤外線の発生効率など発熱体としての優れ
た特徴を具備し、設計どおりの抵抗値と形状を有するた
め、設定電流・電位の印加により発熱量を容易に制御す
ることが可能である。但し、発熱量を制御する際には、
場合によりかなりの高温になることから、アルゴンガス
等の不活性ガス雰囲気とした容器中で使用することで、
酸化を防止する必要がある。またこの時遠赤外線の発生
効率の妨げとならずに高温に耐える石英等の透明な容器
を用いることが望ましい。
Further, the carbon-based heating element of the present invention has a heating rate,
It has excellent characteristics as a heating element, such as heat generation efficiency and far-infrared ray generation efficiency, and has the designed resistance value and shape. Therefore, it is possible to easily control the amount of heat generation by applying a set current and potential. . However, when controlling the calorific value,
In some cases, the temperature can be quite high, so by using it in a container with an inert gas atmosphere such as argon gas,
It is necessary to prevent oxidation. At this time, it is desirable to use a transparent container made of quartz or the like that can withstand high temperatures without hindering the generation efficiency of far infrared rays.

【0013】[0013]

【発明の実施の形態】以下に、本発明による炭素系発熱
体の製造方法を説明する。まず、組成物と或いは金属化
合物とを混練機を用いて良く混合させる。得られた混合
体を、真空成型機、射出成型機、押し出し成型機などの
既存の成形手法により設計形状に賦形する。次に賦形体
を、炭素前駆体化処理し、得られた炭素前駆体を窒素、
アルゴン等の不活性ガス雰囲気中もしくは真空下で10
00℃程度、好ましくは2000℃程度まで加熱昇温
し、炭素化し炭素系発熱体を得る。昇温速度は、特に5
00℃迄は3〜100℃/h、好ましくは5〜50℃/
hとゆっくりと焼成するのが適当で、昇温速度が大きい
と変形したり微細なクラックが生じるなどの欠陥が生じ
る。したがって、500℃迄は100℃/h以上の昇温
速度を避けた方が良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for producing a carbon-based heating element according to the present invention will be described. First, the composition and the metal compound are mixed well using a kneader. The obtained mixture is shaped into a design shape by an existing molding technique such as a vacuum molding machine, an injection molding machine, and an extrusion molding machine. Next, the shaped body is subjected to a carbon precursor treatment, and the obtained carbon precursor is nitrogen,
10 in an atmosphere of inert gas such as argon or under vacuum
The temperature is raised to about 00 ° C., preferably about 2000 ° C., and carbonized to obtain a carbon-based heating element. The heating rate is particularly 5
Up to 00 ° C, 3 to 100 ° C / h, preferably 5 to 50 ° C / h
It is appropriate to bake slowly, and if the rate of temperature rise is high, defects such as deformation and generation of fine cracks will occur. Therefore, it is better to avoid a heating rate of 100 ° C./h or more up to 500 ° C.

【0014】本発明の炭素系発熱体は、発熱速度、発熱
効率、遠赤外線の発生効率など発熱体としての優れた特
徴を具備し、設計どおりの抵抗値と形状を有するため、
設定電流・電位の印加により発熱量を容易に制御するこ
とが可能である。
The carbon-based heating element of the present invention has excellent characteristics as a heating element such as a heating rate, a heating efficiency, and a far-infrared ray generation efficiency, and has a designed resistance value and shape.
The amount of heat generated can be easily controlled by applying the set current / potential.

【0015】[0015]

【実施例】以下に、実施例によって本発明を更に具体的
に説明するが、本願発明はこの実施例によって何等限定
されるものではない。 (実施例1)塩素化塩化ビニル樹脂(日本カーパイド社
製 T−741)40重量%に天然黒鉛微粉末(日本黒
鉛製 平均粒径5μm)5重量%を複合した組成物、窒
化硼素(信越化学工業製 平均粒径2μm)40重量
%、炭化珪素(昭和電工製 平均粒径0.5μm)15
重量%に、可塑剤としてジアリルフタレートモノマー2
0重量%を添加して、ヘンシェルミキサーを用いて分散
した後、表面温度を120℃に保ったミキシング用二本
ロールを用いて十分に混練を繰り返して組成物を得、ペ
レタイザーによってペレット化し、成形用組成物を得
た。このペレットをスクリュー型押出機で直径4mmφの
ダイスを用い脱気を行いつつ130℃で3m/秒の速度
で押し出し、これを200℃に加熱されたエアオーブン
中で10時間処理してブレカーサー(炭素前駆体)線材
とした。次に、これを窒素ガス雰囲気中で1800℃で
焼成し、円柱状の炭素系発熱体を得た。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. Example 1 A composition in which 40% by weight of chlorinated vinyl chloride resin (T-741 manufactured by Nippon Carpide Co., Ltd.) is combined with 5% by weight of natural graphite fine powder (average particle size: 5 μm manufactured by Nippon Graphite), boron nitride (Shin-Etsu Chemical Co., Ltd.) Industrial weight: 2 μm) 40% by weight, silicon carbide (Showa Denko; average diameter: 0.5 μm) 15
% By weight of diallyl phthalate monomer 2 as a plasticizer
After adding 0% by weight and dispersing using a Henschel mixer, kneading is repeated sufficiently using two mixing rolls whose surface temperature is kept at 120 ° C. to obtain a composition, which is pelletized by a pelletizer and molded. A composition for use was obtained. The pellets were extruded with a screw extruder at a speed of 3 m / sec at 130 ° C. while deaeration using a 4 mm diameter die, and the pellets were treated in an air oven heated to 200 ° C. for 10 hours to form a breaker (carbon (Precursor) wire. Next, this was fired at 1800 ° C. in a nitrogen gas atmosphere to obtain a columnar carbon-based heating element.

【0016】得られた炭素系発熱体は断面の直径3.2
mmφ、曲げ強度が270MPa であった。ホイートストー
ンブリッジ法により固有抵抗を測定したところ、98×
10 -3Ω・cmの値を有していた。この炭素系発熱体を長
さ300mmに切断し、端部にリードを接続し、アルゴン
ガス雰囲気の石英管中で通電したところ100Vで瞬時
1500℃に達するとともに、遠赤外線の放射が確認で
きた。また使用中にクラックの発生もなく安定した発熱
量を得ることができた。
The obtained carbon-based heating element has a sectional diameter of 3.2.
mmφ and bending strength were 270 MPa. Wheat Storm
When the specific resistance was measured by the bridge method, 98 ×
10 -3It had a value of Ω · cm. This carbon-based heating element
Cut to 300mm, connect the lead to the end, argon
Immediately at 100 V when energized in a quartz tube in a gas atmosphere
When the temperature reaches 1500 ℃, far-infrared radiation is confirmed
Came. Stable heat generation without cracks during use
The amount could be obtained.

【0017】(実施例2)塩素化塩化ビニル樹脂(日本
カーパイド社製 T−741)30重量%、フラン樹脂
5%に天然黒鉛微粉末(日本黒鉛製 平均粒径5μm)
5重量%を複合した組成物、窒化硼素(信越化学工業製
平均粒径2μm)40重量%、炭化硼素(電気化学工
業製)20重量%に、可塑剤としてジアリルフタレート
モノマー20重量%を添加して、分散、混練後、押し出
し成形し、これを200℃に加熱されたエアオーブン中
で10時間処理してプレカーサー(炭素前駆体)線材と
した。次に、これを窒素ガス雰囲気中で1800℃で焼
成し、円柱状の炭素系発熱体を得た。
Example 2 30% by weight of chlorinated vinyl chloride resin (T-741, manufactured by Nippon Carpide Co., Ltd.) and 5% of furan resin were mixed with natural graphite fine powder (average particle size of 5% by Nippon Graphite)
20% by weight of diallyl phthalate monomer as a plasticizer was added to 40% by weight of a composition obtained by combining 5% by weight of boron nitride (average particle size: 2 μm, manufactured by Shin-Etsu Chemical Co., Ltd.) and 20% by weight of boron carbide (manufactured by Denki Kagaku). After dispersion and kneading, the mixture was extruded and treated in an air oven heated to 200 ° C. for 10 hours to obtain a precursor (carbon precursor) wire. Next, this was fired at 1800 ° C. in a nitrogen gas atmosphere to obtain a columnar carbon-based heating element.

【0018】得られた炭素系発熱体は断面の直径4.8
mmφ、曲げ強度が240MPa であった。ホイートストー
ンブリッジ法で固有抵抗を測定したところ、193×1
-3Ω・cmの値を有していた。この炭素系発熱体を長さ
300mmに切断し、端部にリードを接続し、アルゴンガ
ス雰囲気の石英管中で通電したところ100Vで瞬時1
500℃に達するとともに、遠赤外線の放射が確認でき
た。また使用中にクラックの発生もなく安定した発熱量
を得ることができた。
The resulting carbon-based heating element had a cross-sectional diameter of 4.8.
mmφ, and the bending strength was 240 MPa. When the specific resistance was measured by the Wheatstone bridge method, 193 × 1
It had a value of 0 −3 Ω · cm. This carbon-based heating element was cut into a length of 300 mm, and a lead was connected to the end.
Upon reaching 500 ° C., emission of far-infrared rays was confirmed. In addition, a stable calorific value could be obtained without generation of cracks during use.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
高い固有抵抗値を有し、機械的強度及び耐電力値の高い
炭素系発熱体が提供される。
As described above, according to the present invention,
A carbon-based heating element having a high specific resistance, a high mechanical strength and a high withstand power value is provided.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 賦形性を有し焼成後実質的に零でない炭
素残査収率を示す組成物と、金属或いは半金属化合物の
一種または二種以上を混合し、焼成して得られる炭素系
発熱体であって、固有抵抗値が20〜200×10-3Ω
cmである炭素系発熱体。
1. A carbon-based composition obtained by mixing a composition having a shape-forming property and exhibiting a substantially non-zero carbon residue yield after firing with one or more kinds of metal or metalloid compounds and firing the mixture. A heating element having a specific resistance of 20 to 200 × 10 −3 Ω
Carbon-based heating element in cm.
【請求項2】 断面積が0.01〜100mm2の、円柱
形状である請求項1記載の炭素系発熱体。
2. The carbon-based heating element according to claim 1, wherein the heating element has a columnar shape with a cross-sectional area of 0.01 to 100 mm 2 .
【請求項3】 前記金属或いは半金属化合物は、金属炭
化物、金属硼化物、金属珪化物、金属窒化物、金属酸化
物、半金属窒化物、半金属酸化物または半金属炭化物で
あることを特徴とする請求項1または2記載の炭素系発
熱体。
3. The metal or metalloid compound is a metal carbide, metal boride, metal silicide, metal nitride, metal oxide, metalloid nitride, metalloid oxide or metalloid carbide. The carbon-based heating element according to claim 1 or 2, wherein
【請求項4】 前記組成物は、樹脂を含むことを特徴と
する請求項1〜3のいずれか1項記載の炭素系発熱体。
4. The carbon-based heating element according to claim 1, wherein the composition contains a resin.
【請求項5】 前記組成物中には、カーボンブラック、
黒鉛及びコークス粉からなる群から選ばれた一種または
二種以上の炭素粉末が含有されていることを特徴とする
請求項1〜4のいずれか1項記載の炭素系発熱体。
5. The composition according to claim 1, wherein the composition comprises carbon black,
The carbon-based heating element according to any one of claims 1 to 4, further comprising one or more carbon powders selected from the group consisting of graphite and coke powder.
JP28004698A 1997-12-26 1998-10-01 Carbonic heating element Withdrawn JPH11242986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28004698A JPH11242986A (en) 1997-12-26 1998-10-01 Carbonic heating element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-361202 1997-12-26
JP36120297 1997-12-26
JP28004698A JPH11242986A (en) 1997-12-26 1998-10-01 Carbonic heating element

Publications (1)

Publication Number Publication Date
JPH11242986A true JPH11242986A (en) 1999-09-07

Family

ID=26553600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28004698A Withdrawn JPH11242986A (en) 1997-12-26 1998-10-01 Carbonic heating element

Country Status (1)

Country Link
JP (1) JPH11242986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051207A1 (en) * 2000-12-18 2002-06-27 Mitsubishi Pencil Co., Ltd. Process for producing carbon-containing heating element
US6501056B1 (en) 1998-04-28 2002-12-31 E. Tec Corporation Carbon heating element and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501056B1 (en) 1998-04-28 2002-12-31 E. Tec Corporation Carbon heating element and method of manufacturing the same
WO2002051207A1 (en) * 2000-12-18 2002-06-27 Mitsubishi Pencil Co., Ltd. Process for producing carbon-containing heating element
JP2002184559A (en) * 2000-12-18 2002-06-28 Mitsubishi Pencil Co Ltd Manufacturing method of carbon system heating element

Similar Documents

Publication Publication Date Title
KR100617342B1 (en) Aluminum nitride sintered body containing carbon fibers and method of manufacturing the same
JP3173800B2 (en) Manufacturing method of carbon heating element
JP4738537B2 (en) Fixing heater and manufacturing method thereof
CN1129348C (en) Ceramic heater device and method of making same and glow plug into which ceramic heater device is incorporated
JP2000223245A (en) Carbon heating unit and manufacture thereof
US20080108494A1 (en) Composition of molybdenum disilicide and the application of the same
JPH11242986A (en) Carbonic heating element
JP4623778B2 (en) Method for producing carbon-based heating element
JPH11242988A (en) Carbonic heating element
JP4766742B2 (en) Method for producing carbon-based heating element
CN1055368C (en) Electrothermal lanthanum chromate body and its mfg. method
JPH11242984A (en) Carbonic heating element
JP2002158080A (en) Carbon system heating element
JPS632916B2 (en)
JP2001261441A (en) Production process of electrically conductive silicon carbide sintered body
JPH11242987A (en) Carbonic heating element
JP4753456B2 (en) Carbon-based heating element
JP2006240909A (en) Silicon carbide powder composition, method for producing silicon carbide sintered compact using the same, and silicon carbide sintered compact
JP2003317606A (en) Electrode for electron gun and electron gun
JPH0826827A (en) Electrically conductive reactional silicon carbide sintered compact, its production and use
US20070295933A1 (en) Fixing Heater and Manufacturing Method Thereof
JP2003206196A (en) Hot-filament cvd apparatus
JP2019172495A (en) Manufacturing method of conductive carbonized silicon sintered body and conductive carbonized silicon sintered body
JP2001106574A (en) Carbon-based spring member and its manufacturing process
JPH11106256A (en) Production of barium titanate-based semiconductor material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110