JPH11242987A - Carbonic heating element - Google Patents

Carbonic heating element

Info

Publication number
JPH11242987A
JPH11242987A JP28002898A JP28002898A JPH11242987A JP H11242987 A JPH11242987 A JP H11242987A JP 28002898 A JP28002898 A JP 28002898A JP 28002898 A JP28002898 A JP 28002898A JP H11242987 A JPH11242987 A JP H11242987A
Authority
JP
Japan
Prior art keywords
carbon
metal
heating element
hardly
based heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28002898A
Other languages
Japanese (ja)
Inventor
Yoshihisa Suda
吉久 須田
Osamu Shimizu
修 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP28002898A priority Critical patent/JPH11242987A/en
Publication of JPH11242987A publication Critical patent/JPH11242987A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve an aging deterioration characteristic or thermal stability by including hardly graphitinized carbon and one ore more than two kinds of metal or half-metal compounds and keeping the average distance between the facets of the hardly graphitized carbon not less than a specific length even after processing it at a certain temperature. SOLUTION: A composition that is transformed into hardly graphitized carbon after baking and a metal or half-metal compound are thoroughly mixed by using a kneading machine, the obtained mixture is formed into a designed shape by a forming technique such as a vacuum forming machine. Next, the formed body is heated to raise its temperature in the atmosphere of inert gas such as nitrogen or under vacuum and is thus carbonized. In this case, the hardly graphitized carbon keeps the average distance between its facets not more than 3.42 Åeven after processed at 3000 deg.C. By performing a process to change the formed body into a carbon precursor by heating it under the presence of oxygen before baking it and thereby causing a crosslinking reaction, the hardly graphtized carbon can be provided by using, as the starting substance, a resin that is changed into easily graphitized carbon after baking, and thus, the heating value can easily be controlled by the application of set current and potential.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発熱体として必要
な任意の固有抵抗値と形状を有する炭素系発熱体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon-based heating element having an arbitrary specific resistance value and shape required for a heating element.

【0002】[0002]

【従来の技術】従来、抵抗用発熱体としては主としてタ
ングステン線やニクロム線などの金属線加工品と等方性
炭素材料やガラス状炭素などの炭素の切削加工品、炭化
珪素などの金属化合物が使用されてきた。その中でも金
属線の加工品は主として小型の民生機器のヒーター用発
熱体として、炭素や金属化合物は産業用炉などに使用さ
れている。
2. Description of the Related Art Conventionally, as a heating element for resistance, a metal wire product such as a tungsten wire or a nichrome wire, a carbon cut product such as an isotropic carbon material or glassy carbon, and a metal compound such as silicon carbide are mainly used. Have been used. Of these, processed metal wires are mainly used as heating elements for heaters of small consumer appliances, and carbon and metal compounds are used in industrial furnaces and the like.

【0003】従来の発熱体用素材の中でも炭素は、金属
線などと異なり、発熱速度、発熱効率、遠赤外線の発生
効率が良いなど優れた特徴を有している。しかし従来の
炭素発熱体は、大きな板形状体やブロック形状体より切
削加工により作製するため製造工程が煩雑で高価なうえ
細い物や薄い物など作製することが困難である。また、
ある規格範囲の固有抵抗値を有するブロック体などから
切削するため発熱量の制御は形状を変えるしか方策がな
いなどの問題点を有している。
[0003] Among the conventional heating element materials, carbon has excellent characteristics such as good heat generation speed, heat generation efficiency, and far infrared ray generation efficiency, unlike metal wires and the like. However, since the conventional carbon heating element is manufactured by cutting a large plate-shaped body or block-shaped body, the manufacturing process is complicated, expensive, and it is difficult to manufacture a thin or thin object. Also,
In order to cut from a block or the like having a specific resistance value within a certain standard range, there is a problem that the control of the heat generation amount has no alternative but to change the shape.

【0004】そこで本発明者らは特願平9−25889
3号において薄板形状だけでなく細い棒形状体、細い円
柱形状体など従来の炭素材料では得ることのできない形
状を得ることが可能なうえ任意の固有抵抗値を有するこ
とで広範な設定電流・電位の印加による発熱制御が可能
で、発熱体としての炭素材料が持つ発熱速度、発熱効
率、遠赤外線の発生効率に優れた炭素系発熱体として、
賦形性を有し焼成後実質的に零でない炭素残査収率を示
す組成物と、金属或いは半金属化合物の一種または二種
以上を混合し、焼成することによって、製造される炭素
系発熱体を提案した。
Accordingly, the present inventors have filed Japanese Patent Application No. 9-25889.
In No. 3, it is possible to obtain shapes that cannot be obtained with conventional carbon materials, such as thin rods, thin rods, and thin cylinders, as well as a thin plate shape. It is possible to control the heat generation by applying heat, and as a carbon-based heating element with excellent heat generation rate, heat generation efficiency and far infrared ray generation efficiency of the carbon material as the heating element,
A carbon-based heating element manufactured by mixing a composition having a shapeability and exhibiting a carbon residue yield that is not substantially zero after firing with one or more of a metal or metalloid compound and firing the mixture. Suggested.

【0005】ところで、炭素には3000℃程度の熱処
理を行なうとその構造が容易に黒鉛構造に変化するもの
とそうでないものとがあるのが知られている。この相違
が生ずる原因は炭素に存在する構造欠陥が加熱により除
去され易いか否かによるものであり、前者は易黒鉛化性
炭素、後者は難黒鉛化性炭素と呼ばれている。
[0005] By the way, it is known that when carbon is subjected to a heat treatment at about 3000 ° C, its structure is easily changed to a graphite structure, and some carbon is not. The cause of this difference is whether or not structural defects existing in carbon are easily removed by heating. The former is called graphitizable carbon, and the latter is called non-graphitizable carbon.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記出願
では、組成物を焼成して得られる炭素が難黒鉛性である
か易黒鉛性であるかの言及はなく、そのことが通電の際
の経年変化或いは熱安定性といかなる関係にあるかが明
らかでない。したがって本発明の目的は、この関係を明
らかにして炭素系発熱体の経年変化特性または熱安定性
を改善することにある。
However, in the above-mentioned application, there is no mention of whether the carbon obtained by firing the composition is hardly graphitic or graphitic, and this does not mean that the carbon changes over time upon energization. Or it is not clear what the relationship is with the thermal stability. Therefore, an object of the present invention is to clarify this relationship and improve the aging characteristics or thermal stability of the carbon-based heating element.

【0007】[0007]

【課題を解決するための手段】本発明によれば、難黒鉛
化性炭素と金属或いは半金属化合物の一種または二種以
上とを含む炭素系発熱体が提供される。上記難黒鉛化性
炭素は、3000℃処理後でも平均面間隔が3.42オ
ングストローム以上にとどまるものであることが好まし
い。
According to the present invention, there is provided a carbon-based heating element containing non-graphitizable carbon and one or more metal or metalloid compounds. Preferably, the non-graphitizable carbon has an average interplanar spacing of 3.42 Å or more even after treatment at 3000 ° C.

【0008】3000℃処理後に平均面間隔が3.42
オングストローム未満に低下するような易黒鉛化性炭素
と金属或いは半金属の化合物とを含む炭素系発熱体で
は、通電中に黒鉛化が進行して許されるレベル以上に抵
抗値が変化しクラックが発生する。前述の金属或いは半
金属化合物とは一般に入手可能な金属炭化物、金属硼化
物、金属珪化物、金属窒化物、金属酸化物、半金属窒化
物、半金属酸化物、半金属炭化物等が挙げられる。使用
する金属或いは半金属化合物種と量は、目的とする発熱
体の抵抗値・形状により適宜選択され、単独でも二種以
上の混合体でも使用することができるが、抵抗値制御の
簡易さから、特に炭化硼素、炭化珪素、窒化硼素を使用
することが好ましい。
[0008] After the treatment at 3000 ° C, the average plane spacing is 3.42.
For carbon-based heating elements that contain graphitizable carbon and metal or metalloid compounds that fall below Angstroms, graphitization progresses during energization, causing the resistance to change beyond the allowable level and cracking. I do. The above-mentioned metal or metalloid compound includes generally available metal carbide, metal boride, metal silicide, metal nitride, metal oxide, metalloid nitride, metalloid oxide, metalloid carbide, and the like. The kind and amount of the metal or metalloid compound to be used are appropriately selected depending on the resistance value and shape of the target heating element, and a single or a mixture of two or more kinds can be used. It is particularly preferable to use boron carbide, silicon carbide, and boron nitride.

【0009】前述の炭素系発熱体には炭素粉末が含有さ
れていることが好ましい。炭素粉末としては、カーボン
ブラック、黒鉛、コークス粉等が挙げられるが、使用す
る炭素粉末種と量は、目的とする発熱体の抵抗値・形状
により適宜選択され、単独でも二種以上の混合体でも使
用することができるが、特に形状制御の簡易さから黒鉛
を使用することが好ましい。
It is preferable that the carbon-based heating element contains carbon powder. Examples of the carbon powder include carbon black, graphite, and coke powder. The type and amount of the carbon powder to be used are appropriately selected depending on the resistance and shape of the intended heating element, and a mixture of two or more kinds may be used alone. Although graphite can be used, it is particularly preferable to use graphite from the viewpoint of easy shape control.

【0010】本発明では、前述の難黒鉛化性炭素及び炭
素粉は電気良導体として、そして金属或いは半金属化合
物は導電阻害物質として作用しており、電流は導電阻害
物質である金属或いは半金属化合物を飛び越え、いわゆ
るホッピングしながら炭素材料またはそれと炭素粉末を
媒体として流れる。この為これら2つないし3つの成分
の種類やその比率等を変え、それらを均一に混合、分散
させ焼成することにより、所望の固有抵抗値を有する本
発明の炭素系発熱体を得ることができる。
In the present invention, the above-mentioned non-graphitizable carbon and carbon powder act as a good electric conductor, and the metal or metalloid compound acts as a conduction inhibitor. And flows while so-called hopping using the carbon material or the carbon powder and the carbon material as a medium. Therefore, by changing the types and ratios of these two or three components, uniformly mixing and dispersing them and firing, the carbon-based heating element of the present invention having a desired specific resistance value can be obtained. .

【0011】また本発明の炭素系発熱体は、発熱速度、
発熱効率、遠赤外線の発生効率など発熱体としての優れ
た特徴を具備し、設計どおりの抵抗値と形状を有するた
め、設定電流・電位の印加により発熱量を容易に制御す
ることが可能である。但し、発熱量を制御する際には、
場合によりかなりの高温になることから、アルゴンガス
等の不活性ガス雰囲気とした容器中で使用することで、
酸化を防止する必要がある。またこの時遠赤外線の発生
効率の妨げとならずに高温に耐える石英等の透明な容器
を用いることが望ましい。
The carbon-based heating element of the present invention has a heating rate,
It has excellent characteristics as a heating element, such as heat generation efficiency and far-infrared ray generation efficiency, and has the designed resistance value and shape. Therefore, it is possible to easily control the amount of heat generation by applying a set current and potential. . However, when controlling the calorific value,
In some cases, the temperature can be quite high, so by using it in a container with an inert gas atmosphere such as argon gas,
It is necessary to prevent oxidation. At this time, it is desirable to use a transparent container made of quartz or the like that can withstand high temperatures without hindering the generation efficiency of far infrared rays.

【0012】[0012]

【発明の実施の形態】以下に、本発明による炭素系発熱
体の製造方法を説明する。まず、焼成後に難黒鉛化性炭
素となる組成物と金属或いは半金属化合物とを混練機を
用いて良く混合させる。得られた混合体を、真空成型
機、射出成型機、押し出し成型機などの既存の成形手法
により設計形状に賦形する。次に賦形体を、窒素、アル
ゴン等の不活性ガス雰囲気中もしくは真空下で1000
℃程度、好ましくは2000℃程度まで加熱昇温し、炭
素化し炭素系発熱体を得る。昇温速度は、特に500℃
迄は3〜100℃/h、好ましくは5〜50℃/hとゆ
っくりと焼成するのが適当で、昇温速度が大きいと変形
したり微細なクラックが生じるなどの欠陥が生じる。し
たがって、500℃迄は100℃/h以上の昇温速度を
避けた方が良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for producing a carbon-based heating element according to the present invention will be described. First, a composition that becomes non-graphitizable carbon after firing and a metal or metalloid compound are mixed well using a kneader. The obtained mixture is shaped into a design shape by an existing molding technique such as a vacuum molding machine, an injection molding machine, and an extrusion molding machine. Next, the shaped body is placed in an atmosphere of an inert gas such as nitrogen or argon or under vacuum for 1000 times.
The temperature is raised to about ℃, preferably about 2,000 ℃, and carbonized to obtain a carbon-based heating element. The rate of temperature rise is especially 500 ° C
Until then, it is appropriate to bake slowly at a rate of 3 to 100 ° C./h, preferably 5 to 50 ° C./h, and if the rate of temperature rise is high, defects such as deformation and fine cracks may occur. Therefore, it is better to avoid a heating rate of 100 ° C./h or more up to 500 ° C.

【0013】前述の工程において、賦形体を焼成する前
に酸素の存在下で加熱することによる炭素前駆体化処理
を行なって架橋反応を起こさせることが好ましい。こう
することにより、焼成後に易黒鉛化性炭素となる樹脂を
出発物質として難黒鉛化性炭素を得ることもできる。本
発明の炭素系発熱体は、発熱速度、発熱効率、遠赤外線
の発生効率など発熱体としての優れた特徴を具備し、設
計どおりの抵抗値と形状を有するため、設定電流・電位
の印加により発熱量を容易に制御することが可能であ
る。
In the above-mentioned step, it is preferable to carry out a crosslinking reaction by performing a carbon precursor treatment by heating in the presence of oxygen before firing the shaped body. By doing so, a non-graphitizable carbon can be obtained using a resin that becomes graphitizable carbon after firing as a starting material. The carbon-based heating element of the present invention has excellent characteristics as a heating element such as a heating rate, a heating efficiency, and a far-infrared ray generation efficiency, and has a designed resistance value and shape. The amount of generated heat can be easily controlled.

【0014】[0014]

【実施例】以下に、実施例によって本発明を更に具体的
に説明するが、本願発明はこの実施例によって何等限定
されるものではない。 (実施例1)塩素化塩化ビニル樹脂(日本カーバイド社
製 T−741)40重量%に天然黒鉛微粉末(日本黒
鉛製 平均粒径5μm)5重量%を複合した組成物、窒
化硼素(信越化学工業製 平均粒径2μm)55重量%
に対して、可塑剤としてジアリルフタレートモノマー2
0重量%を添加して、ヘンシェルミキサーを用いて分散
した後、表面温度を120℃に保ったミキシング用二本
ロールを用いて十分に混練を繰り返して組成物を得、ペ
レタイザーによってペレット化し、成形用組成物を得
た。このペレットをスクリュー型押出機で直径1.6mm
φのダイスを用い脱気を行いつつ130℃で3m/秒の
速度で押し出し、これを200℃に加熱されたエアオー
ブン中で10時間処理してプレカーサー(炭素前駆体)
線材とした。次に、これを窒素ガス雰囲気中で1800
℃で焼成し、円柱状の炭素系発熱体を得た。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. (Example 1) A composition in which 40% by weight of a chlorinated vinyl chloride resin (T-741 manufactured by Nippon Carbide Co., Ltd.) is combined with 5% by weight of natural graphite fine powder (average particle size: 5 μm manufactured by Nippon Graphite), boron nitride (Shin-Etsu Chemical) Industrial average particle size 2 μm) 55% by weight
To diallyl phthalate monomer 2 as a plasticizer
After adding 0% by weight and dispersing using a Henschel mixer, kneading is repeated sufficiently using two mixing rolls whose surface temperature is kept at 120 ° C. to obtain a composition, which is pelletized by a pelletizer and molded. A composition for use was obtained. The pellets are 1.6 mm in diameter with a screw type extruder.
Extruding at 130 ° C. at a speed of 3 m / sec while degassing using a φ die, treating this in an air oven heated to 200 ° C. for 10 hours, a precursor (carbon precursor)
It was a wire. Next, this is subjected to 1800 in a nitrogen gas atmosphere.
Calcination was performed at ℃ to obtain a columnar carbon-based heating element.

【0015】得られた炭素系発熱体は断面の直径1.3
mmφ、曲げ強度が300MPa であった。ホイートストー
ンブリッジ法により固有抵抗を測定したところ、19.
2×10-3Ω・cmの値を有していた。この炭素系発熱体
を長さ300mmに切断し、端部にリードを接続し、アル
ゴンガス雰囲気の石英管中で通電したところ100Vで
瞬時1500℃に達するとともに、遠赤外線の放射が確
認できた。また使用中にクラックの発生もなく安定した
発熱量を得ることができた。
The obtained carbon-based heating element has a sectional diameter of 1.3.
mmφ and bending strength were 300 MPa. When the specific resistance was measured by the Wheatstone bridge method, 19.
It had a value of 2 × 10 −3 Ω · cm. This carbon-based heating element was cut into a length of 300 mm, a lead was connected to the end, and when electricity was supplied in a quartz tube in an argon gas atmosphere, the temperature reached instantaneously 1500 ° C. at 100 V and radiation of far infrared rays was confirmed. In addition, a stable calorific value could be obtained without generation of cracks during use.

【0016】また炭素構造については、該炭素系発熱体
を不活性雰囲気中にて3000℃処理を施した後の、X
線回折法での面間隔d(002) は3.45Åであった。 (実施例2)ポリ塩化ビニル樹脂35重量%、フラン樹
脂5重量%に天然黒鉛微粉末(日本黒鉛製 平均粒径5
μm)5重量%を複合した組成物、窒化硼素(信越化学
工業製 平均粒径2μm)55重量%に対して、可塑剤
としてジアリルフタレートモノマー20重量%を添加し
て、分散、混練後、押し出し成形を行い、これを300
℃に加熱されたエアオーブン中で30時間処理してプレ
カーサー(炭素前駆体)線材とした。次に、これを窒素
ガス雰囲気中で1800℃で焼成し、円柱状の炭素系発
熱体を得た。
Regarding the carbon structure, after the carbon-based heating element is subjected to a treatment at 3000 ° C. in an inert atmosphere, X
The plane distance d (002) by the line diffraction method was 3.45 °. Example 2 35% by weight of polyvinyl chloride resin and 5% by weight of furan resin were mixed with fine natural graphite powder (manufactured by Nippon Graphite, average particle size 5
20% by weight of a diallyl phthalate monomer as a plasticizer is added to 55% by weight of a composition obtained by compounding 5% by weight of boron nitride (average particle size: 2 μm manufactured by Shin-Etsu Chemical Co., Ltd.), dispersed, kneaded, and extruded. Forming, this is 300
It was treated in an air oven heated to 30 ° C. for 30 hours to obtain a precursor (carbon precursor) wire. Next, this was fired at 1800 ° C. in a nitrogen gas atmosphere to obtain a columnar carbon-based heating element.

【0017】得られた炭素系発熱体は断面の直径1.4
mmφ、曲げ強度が310MPa であった。ホイートストー
ンブリッジ法により固有抵抗を測定したところ、18.
3×10-aΩ・cmの値を有していた。この炭素系発熱体
を長さ300mmに切断し、端部にリードを接続し、アル
ゴンガス雰囲気の石英管中で通電したところ100Vで
瞬時1500℃に達するとともに、遠赤外線の放射が確
認できた。また使用中にクラックの発生もなく安定した
発熱量を得ることができた。
The obtained carbon-based heating element has a sectional diameter of 1.4.
mmφ and bending strength were 310 MPa. When the specific resistance was measured by the Wheatstone bridge method, 18.
It had a value of 3 × 10 −a Ω · cm. This carbon-based heating element was cut into a length of 300 mm, a lead was connected to the end, and when electricity was supplied in a quartz tube in an argon gas atmosphere, the temperature reached instantaneously 1500 ° C. at 100 V and radiation of far infrared rays was confirmed. In addition, a stable calorific value could be obtained without generation of cracks during use.

【0018】また炭素構造については、該炭素系発熱体
を不活性雰囲気中にて3000℃処理を施した後の、X
線回折法での面間隔d(002) は3.44Åであった。ポ
リ塩化ビニル樹脂は焼成後に易黒鉛化性炭素となる樹脂
であるが、前駆体処理により架橋構造をつくることによ
り焼成後に難黒鉛化性炭素が得られている。 (比較例1)ポリ塩化ビニル樹脂40重量%に天然黒鉛
微粉末(日本黒鉛製平均粒径5μm)5重量%を複合し
た組成物、窒化硼素(信越化学工業 平均粒径2μm)
55重量%に対して、可塑剤としてジアリルフタレート
モノマー20重量%を添加して、分散、混練後、押し出
し成形を行い、これをプレカーサー(炭素前駆体)線材
とすることなく窒素ガス雰囲気中で1800℃で焼成
し、円柱状の炭素系発熱体を得た。
Regarding the carbon structure, after the carbon-based heating element was subjected to a treatment at 3000 ° C. in an inert atmosphere, X
The plane distance d (002) by the line diffraction method was 3.44 °. Polyvinyl chloride resin is a resin that becomes easily graphitizable carbon after firing, but hardly graphitizable carbon is obtained after firing by forming a crosslinked structure by precursor treatment. (Comparative Example 1) A composition in which 5% by weight of natural graphite fine powder (Nippon Graphite's average particle size of 5 µm) is compounded with 40% by weight of polyvinyl chloride resin, boron nitride (Shin-Etsu Chemical's average particle size of 2 µm)
With respect to 55% by weight, 20% by weight of diallyl phthalate monomer as a plasticizer was added, dispersed and kneaded, and then extruded, and this was used as a precursor (carbon precursor) wire in a nitrogen gas atmosphere without a precursor for 1800%. Calcination was performed at ℃ to obtain a columnar carbon-based heating element.

【0019】得られた炭素系発熱体は断面の直径1.2
mmφ、曲げ強度が270MPa であった。ホイートストー
ンブリッジ法により固有抵抗を測定したところ、14.
1×10-3Ω・cmの値を有していた。この炭素系発熱体
を長さ300mmに切断し、端部にリードを接続し、アル
ゴンガス雰囲気の石英管中で通電したところ100Vで
瞬時1500℃に達するとともに、遠赤外線の放射が確
認できたが、連続使用中にクラックの発生、抵抗値の減
少が生じ、安定した発熱量を得ることができなかった。
The obtained carbon-based heating element has a sectional diameter of 1.2.
mmφ and bending strength were 270 MPa. 13. When the specific resistance was measured by the Wheatstone bridge method,
It had a value of 1 × 10 −3 Ω · cm. This carbon-based heating element was cut into a length of 300 mm, a lead was connected to the end, and when electricity was supplied in a quartz tube in an argon gas atmosphere, the temperature instantaneously reached 1500 ° C. at 100 V and radiation of far-infrared rays was confirmed. During the continuous use, cracks were generated and the resistance value was reduced, so that a stable calorific value could not be obtained.

【0020】また炭素構造については、該炭素系発熱体
を不活性雰囲気中にて3000℃処理を施した後の、X
線回折法での面間隔d(002) は3.38Åであった。
Regarding the carbon structure, after the carbon-based heating element was subjected to a treatment at 3000 ° C. in an inert atmosphere, X
The plane spacing d (002) by the line diffraction method was 3.38 °.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
経年変化特性または熱安定性に優れた炭素系発熱体が提
供される。
As described above, according to the present invention,
A carbon-based heating element excellent in aging characteristics or thermal stability is provided.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 難黒鉛化性炭素と、金属或いは半金属化
合物の一種または二種以上とを含む炭素系発熱体。
1. A carbon-based heating element comprising non-graphitizable carbon and one or more of a metal or metalloid compound.
【請求項2】 前記難黒鉛化性炭素は、3000℃処理
後でも平均面間隔が3.42オングストローム以上にと
どまる請求項1記載の炭素系発熱体。
2. The carbon-based heating element according to claim 1, wherein the non-graphitizable carbon has an average plane distance of 3.42 angstroms or more even after a treatment at 3000 ° C.
【請求項3】 前記金属或いは半金属化合物は、金属炭
化物、金属硼化物、金属珪化物、金属窒化物、金属酸化
物、半金属窒化物、半金属酸化物または半金属炭化物で
あることを特徴とする請求項1または2記載の炭素系発
熱体。
3. The metal or metalloid compound is a metal carbide, metal boride, metal silicide, metal nitride, metal oxide, metalloid nitride, metalloid oxide or metalloid carbide. The carbon-based heating element according to claim 1 or 2, wherein
【請求項4】 カーボンブラック、黒鉛及びコークス粉
からなる群から選ばれた1種または2種以上の炭素粉末
をさらに含む請求項1〜3のいずれか1項記載の炭素系
発熱体。
4. The carbon-based heating element according to claim 1, further comprising one or more carbon powders selected from the group consisting of carbon black, graphite and coke powder.
JP28002898A 1997-12-26 1998-10-01 Carbonic heating element Withdrawn JPH11242987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28002898A JPH11242987A (en) 1997-12-26 1998-10-01 Carbonic heating element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-361188 1997-12-26
JP36118897 1997-12-26
JP28002898A JPH11242987A (en) 1997-12-26 1998-10-01 Carbonic heating element

Publications (1)

Publication Number Publication Date
JPH11242987A true JPH11242987A (en) 1999-09-07

Family

ID=26553588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28002898A Withdrawn JPH11242987A (en) 1997-12-26 1998-10-01 Carbonic heating element

Country Status (1)

Country Link
JP (1) JPH11242987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501056B1 (en) 1998-04-28 2002-12-31 E. Tec Corporation Carbon heating element and method of manufacturing the same
KR100434934B1 (en) * 2000-05-25 2004-06-09 동경 엘렉트론 주식회사 Heater sealed with carbon wire heating element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501056B1 (en) 1998-04-28 2002-12-31 E. Tec Corporation Carbon heating element and method of manufacturing the same
KR100434934B1 (en) * 2000-05-25 2004-06-09 동경 엘렉트론 주식회사 Heater sealed with carbon wire heating element

Similar Documents

Publication Publication Date Title
JP3173800B2 (en) Manufacturing method of carbon heating element
EP1407192B1 (en) Fabrication of an electrically conductive silicon carbide article
JP2000223245A (en) Carbon heating unit and manufacture thereof
JPH08288103A (en) Electric resistance element
JPH11242987A (en) Carbonic heating element
JPH0826709A (en) Production of carbon material
JP2007320787A (en) Silicon carbide sintered compact and its manufacturing method
JPH11242984A (en) Carbonic heating element
JP4623778B2 (en) Method for producing carbon-based heating element
JPH11242988A (en) Carbonic heating element
JP4766742B2 (en) Method for producing carbon-based heating element
JPH11242986A (en) Carbonic heating element
JPH0753265A (en) Electrically conductive silicon carbide-based ceramic material
JP2001261441A (en) Production process of electrically conductive silicon carbide sintered body
JPS60112619A (en) Manufacture of modified alkali titanate
JPH0259468A (en) Production of isotropic graphite material modified to have high specific resistance
JP2996539B2 (en) Acetylene black and its production method and use
JPH0465361A (en) Silicon carbide heater and manufacture thereof
JPH0367316B2 (en)
JP2766753B2 (en) Manufacturing method of low sputter graphite material
JP5130099B2 (en) Method for producing sintered silicon carbide
JPH0812435A (en) Ceramic and its use
JPH0826827A (en) Electrically conductive reactional silicon carbide sintered compact, its production and use
JP2000281444A (en) Cylindrical graphite material and its production
JP2003206196A (en) Hot-filament cvd apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110