JPH1121603A - Production of metal powder and alloy powder - Google Patents

Production of metal powder and alloy powder

Info

Publication number
JPH1121603A
JPH1121603A JP18922497A JP18922497A JPH1121603A JP H1121603 A JPH1121603 A JP H1121603A JP 18922497 A JP18922497 A JP 18922497A JP 18922497 A JP18922497 A JP 18922497A JP H1121603 A JPH1121603 A JP H1121603A
Authority
JP
Japan
Prior art keywords
powder
metal
earth metal
halide
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18922497A
Other languages
Japanese (ja)
Inventor
Kaname Takeya
要 武谷
Isao Abe
功 阿部
Noriyuki Nagase
範幸 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP18922497A priority Critical patent/JPH1121603A/en
Publication of JPH1121603A publication Critical patent/JPH1121603A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the method for producing metal powder with high controllability of the micronization of a grain diameter, spherodization, monodisperse system formability and further grain size distribution without impairing the high productivity by solving the problems in a high-productivity gas reducing process. SOLUTION: At least one kind of hydrogen-reducible metallic salt powder and at least one kind among the alkali metal halide, alkaline-earth metal halide and rare-earth halide having a higher m.p. than the hydrogen reduction temp. are mixed. The mixture is reduced with hydrogen, heated above the m.p. of the halides and then cooled, the reaction product thus obtained is treated by a wet process to remove the halides, and a metal powder is produced. Further, at least one kind among the alkali metal oxide, alkali metal hydroxide, alkali metal carbonate, alkaline-earth metal oxide, alkaline-earth metal hydroxide, alkaline-earth metal carbonate, rare-earth metal oxide, rare-earth metal hydroxide and rare-earth metal carbonate is added and mixed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は各種の金属粉および
合金粉の製造法に関するもので、特にガス還元法によっ
て金属粉および合金粉を製造する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing various metal powders and alloy powders, and more particularly to a method for producing metal powders and alloy powders by a gas reduction method.

【0002】[0002]

【従来の技術】従来、金属粉および合金粉の用途は、粉
末冶金分野を主流に発展してきたが、近年のコンピュー
ター、通信、宇宙分野における電子産業の目覚しい発達
の中で、電子機器の小型化、軽量化、高密度化、高信頼
性などの急速な発展に伴い、金属粉の用途も厚膜導体材
料、導電性フィラー、化学センサーなど多種多様化し、
用途に応じて高純度化、微粒子化、形状制御、粒度分布
制御、表面改質による反応性制御などの高機能化と同時
に、経済的な製造方法が要求されている。金属粉に対す
る品質要求はその目的の用途に応じて様々であるが、電
子材料用、例えば導体材料として用いられる際の金属粉
への粉体特性の要求事項は、平均粒子径0.1〜5.0
μmの範囲内で、形状は球状かつ単分散であることなど
である。
2. Description of the Related Art Conventionally, applications of metal powders and alloy powders have been mainly developed in the field of powder metallurgy. With the rapid development of light weight, high density, high reliability, etc., the use of metal powder is also diversifying, such as thick film conductor material, conductive filler, chemical sensor,
Depending on the application, high-purity, fine-graining, shape control, particle size distribution control, reactivity control by surface modification, and the like, as well as economical production methods are required. The quality requirements for metal powders vary depending on the intended use, but the requirements for powder properties for metal powders for electronic materials, for example, when used as conductor materials, are average particle sizes of 0.1 to 5 .0
Within the range of μm, the shape is spherical and monodisperse.

【0003】さて、このような金属粉の製造方法として
は、粉砕法、アトマイズ法、蒸発凝縮法などの物理的製
造方法と、熱分解法、気相反応法、ガス還元法、沈殿
法、電析法などの化学的製造方法とが知られている。
[0003] As a method for producing such a metal powder, there are physical production methods such as a pulverizing method, an atomizing method and an evaporative condensation method, as well as a thermal decomposition method, a gas phase reaction method, a gas reduction method, a precipitation method, A chemical production method such as a precipitation method is known.

【0004】そして前記した物理的製造方法のうち粉砕
法では、らい解機、スタンプミル、ディスクミル、ボー
ルミル、ジェットミルなどを用いて粉砕するものである
が、粒子径1μm以下の金属粉を効率よく製造するのは
困難である。また、この機械的粉砕によって得られる金
属粉の形状は、当該金属の硬さなどによって異なり、角
がとれて球状化することもあるが、一般には硬い金属は
角状になり易く、軟らかい金属は片状になり易い。さら
に得られた金属粉の粒度分布が幅広いために分級機を併
用することで粒度調整している場合が多い。
In the pulverization method among the physical production methods described above, a pulverizer, a stamp mill, a disk mill, a ball mill, a jet mill, or the like is used for pulverization. It is difficult to manufacture well. Further, the shape of the metal powder obtained by the mechanical pulverization differs depending on the hardness of the metal and the like, and may be rounded with corners, but generally, a hard metal is easily formed into a square shape, and a soft metal is It is easy to become flaky. Further, since the obtained metal powder has a wide particle size distribution, the particle size is often adjusted by using a classifier in combination.

【0005】またアトマイズ法は、溶融金属を気体や液
体で作られた流体で飛散させて金属粉を得る方法であ
り、数μm以上の金属粉が得られ、比較的生産性は高
い。特に流体に気体を用いたガスアトマイズ法では球状
粒子が得やすいが、粒子径制御が難しい。
[0005] The atomizing method is a method in which a molten metal is scattered with a fluid made of gas or liquid to obtain metal powder, and a metal powder of several μm or more is obtained, and the productivity is relatively high. In particular, in the gas atomization method using gas as a fluid, spherical particles are easily obtained, but particle diameter control is difficult.

【0006】そして蒸発凝縮法として、具体的には揮発
法、ガス中蒸発法、プラズマ蒸発法、アークプラズマ蒸
発法などが挙げられ、これらの各種蒸発法は、金属を蒸
発させて凝縮することにより金属粉を得る方法であり、
数十nmのきわめて小さい粒子径の金属粉を得ることが
でき、さらに処理できる対象金属も多いが、高価な設備
が必要なことや粒子径制御が難しいため生産性は低い。
[0006] Specific examples of the evaporative condensation method include a volatilization method, an in-gas evaporation method, a plasma evaporation method, and an arc plasma evaporation method. In these various evaporation methods, a metal is evaporated and condensed. A method of obtaining metal powder,
A metal powder having an extremely small particle size of several tens of nm can be obtained, and there are many target metals that can be further processed. However, productivity is low because expensive equipment is required and particle size control is difficult.

【0007】一方化学的製造方法のうち熱分解法は、ニ
ッケル精練技術の1つとして古くから行われている。こ
の例としてはニッケルカーボニルの熱分解法によってニ
ッケル粉を製造する方法が代表的であり、比較的低い温
度で熱分解が生じ、生産性が高いため現在も工業生産が
行われており、粒子径2〜5μmのニッケル粉は大部分
がこの方法で製造され市販されている。しかしこの粒子
径以下の金属粉を製造することは熱分解法では困難であ
る。
On the other hand, among the chemical production methods, the thermal decomposition method has long been used as one of nickel refining techniques. As a typical example, a method of producing nickel powder by a pyrolysis method of nickel carbonyl is representative. Pyrolysis occurs at a relatively low temperature, and the productivity is high. Most nickel powders of 2-5 μm are produced by this method and are commercially available. However, it is difficult to produce a metal powder having a particle size equal to or less than this particle size by a thermal decomposition method.

【0008】また気相反応法としてはCVD法が代表的
な例であり、金属塩化物蒸気を水素やCOで還元して金
属粉を得るものであり、サブミクロンの球状粉が得られ
るものの、生産性は低い。
A typical example of the gas phase reaction method is a CVD method, in which metal chloride vapor is reduced with hydrogen or CO to obtain metal powder, and although submicron spherical powder is obtained, Productivity is low.

【0009】さらに沈殿法は金属イオンを還元して金属
として沈殿させる方法であって、沈殿条件により樹枝
状、球状などの粉となり、また電析法は金属塩溶液を用
いて電気分解によって金属粉を析出させる方法であり、
樹枝状などの異形状となる場合が多く、いずれの方法も
10μm以下の粒子が得られ、生産性が高いものの、反
応温度が比較的低いため結晶性が低い。
Further, the precipitation method is a method in which metal ions are reduced to precipitate as a metal, and powders such as dendrites and spheres are formed depending on precipitation conditions. The electrodeposition method is a method in which metal powder is formed by electrolysis using a metal salt solution. Is a method of precipitating
In many cases, dendrites and other irregular shapes are obtained. In either method, particles having a size of 10 μm or less are obtained. Although the productivity is high, the crystallinity is low because the reaction temperature is relatively low.

【0010】このような各種の金属粉の製造法のうちガ
ス還元法は固体塩を融点以下の温度で水素やCOで還元
して金属粉末を得るものであって、粒子径は金属塩の粒
子径への依存度が高く、また主に不定形粒子が得られる
という問題があるものの、生産性が高い方法の1つとし
て実用化させており、ニッケル塩やコバルト塩を400
〜500℃付近で水素還元することにより金属粉を製造
している。しかし、このガス還元法で得られた金属粉の
粒子径は、より微細な粉を製造しようとしても、平均粒
子径で0.4〜0.6μmが限界であり、また粒度分布
においては0.1μmから数μmにおよぶ広い粒度分布
を有するものである。そして粒子の球形性も悪く、反応
時の粒子の融着などにより不定形粒子が多く存在する。
この理由により前記した通り粒度分布おける粒度範囲の
幅が大きくなっているものと考えられる。
Among the various methods for producing metal powder, the gas reduction method is a method in which a solid salt is reduced with hydrogen or CO at a temperature lower than the melting point to obtain a metal powder. Although it has a high degree of dependence on the diameter and has a problem that mainly amorphous particles can be obtained, it has been put to practical use as one of the methods with high productivity.
Metal powder is produced by hydrogen reduction at about 500 ° C. However, the particle size of the metal powder obtained by this gas reduction method is limited to an average particle size of 0.4 to 0.6 μm even if an attempt is made to produce a finer powder. It has a wide particle size distribution ranging from 1 μm to several μm. The spherical shape of the particles is also poor, and many irregular-shaped particles are present due to fusion of the particles during the reaction.
For this reason, it is considered that the width of the particle size range in the particle size distribution is increased as described above.

【0011】またガス還元法により得られた金属粉はま
た一見球形と思われるものでも、表面が角張ったものが
多く確認されている。そして金属粉の球形性を高くする
には融点温度近傍、あるいは融点温度以上に昇温すれば
表面張力の効果により球形性を上げることができるが、
反面形状制御の前に焼結が生じて不定形化し、さらに粉
としての回収が困難になるという問題が生ずる。
[0011] In addition, many metal powders obtained by the gas reduction method, which seem to be spherical at first glance, have a sharp surface. In order to increase the sphericity of the metal powder, the sphericity can be increased by the effect of surface tension if the temperature is raised near the melting point temperature or above the melting point temperature.
On the other hand, there is a problem that sintering occurs before the shape control to make the shape irregular, and that it becomes difficult to recover the powder.

【0012】さらにこのガス還元方法で得られた金属粉
は、前記の通り還元前の塩の粒子径への依存が大きいた
め、塩の粒子径を小さくしなければならない。しかし塩
の粒子径を小さくして1μm以下の金属粉を得ようとす
る場合、取り出し時に大気と接触すると発火の危険があ
る。このような発火防止には粒子径の粗大化による比表
面積の低減や、徐酸化を施す方法があるが、前者は粉の
大きさの性状そのものに制約を科するもので好ましくな
く、また後者は粉体特性を損なわず回収するには、粉の
大きさは保持したままで水中に一旦投下する必要があっ
た。
Further, since the metal powder obtained by this gas reduction method largely depends on the particle size of the salt before reduction as described above, the particle size of the salt must be reduced. However, when attempting to obtain a metal powder having a particle size of 1 μm or less by reducing the particle size of the salt, there is a danger of ignition if it comes into contact with the atmosphere at the time of removal. In order to prevent such ignition, there is a method in which the specific surface area is reduced by coarsening the particle diameter or a method of performing gradual oxidation, but the former imposes restrictions on the properties of the size of the powder itself and is not preferable, and the latter is not preferable. In order to recover the powder without impairing its properties, it was necessary to drop the powder once in water while maintaining the size of the powder.

【0013】[0013]

【発明が解決しようとする課題】本発明は、生産性が高
いガス還元法における前記した問題点を解消し、その高
い生産性を損なわずに粒子径の微細化、球状化、単分散
化、さらに粒度分布の制御性がよい金属粉の製造方法を
提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in the high-productivity gas reduction method, and makes it possible to reduce the particle size, to make the particles spherical, to monodisperse, without impairing the high productivity. It is another object of the present invention to provide a method for producing a metal powder having good control of particle size distribution.

【0014】[0014]

【課題を解決するための手段】本発明は上記問題点を解
決するために、水素還元可能な金属塩粉末の少なくとも
1種と、水素還元温度より高い融点温度を有するアルカ
リ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、
希土類ハロゲン化物のうち少なくとも1種とを混合し、
水素還元した後、ハロゲン化物の融点温度以上まで昇温
した後冷却し、得られた反応物を湿式処理によりハロゲ
ン化物を除去して、金属粉を回収することを特徴とし、
またアルカリ金属酸化物、アルカリ金属水酸化物、アル
カリ金属炭酸化物、アルカリ土類金属酸化物、アルカリ
土類金属水酸化物、アルカリ土類金属炭酸化物、希土類
金属酸化物、希土類金属水酸化物、希土類金属炭酸化物
のうち少なくとも1種をさらに添加し、混合する金属粉
および合金粉の製造方法を特徴とするものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides at least one kind of hydrogen-reducible metal salt powder, an alkali metal halide having a melting point higher than the hydrogen reduction temperature, and an alkaline earth metal. Metal halides,
Mixing at least one of the rare earth halides,
After hydrogen reduction, the temperature is raised to a temperature equal to or higher than the melting point of the halide, followed by cooling.The obtained reaction product is subjected to wet treatment to remove the halide, and the metal powder is recovered.
In addition, alkali metal oxides, alkali metal hydroxides, alkali metal carbonates, alkaline earth metal oxides, alkaline earth metal hydroxides, alkaline earth metal carbonates, rare earth metal oxides, rare earth metal hydroxides, A method for producing a metal powder and an alloy powder to which at least one of the rare earth metal carbonates is further added and mixed is characterized.

【0015】[0015]

【発明の実施の形態】本発明は前記したようにガス還元
法、特に水素還元法を利用したものである。対象となる
金属はその塩が水素還元可能なものであればいずれでも
よいが、具体的には、ニッケル、コバルト、銅、鉄、モ
リブデン、タングステンなどが挙げられる。また金属単
体に限らず還元前の原料塩に2種以上の金属元素が共沈
法やメカノケミカル的に十分に混合された状態であれ
ば、合金粉を使用することもできる。なお水素還元可能
な金属塩粉末の平均粒子径は目的とする金属粉の粒子径
や形状などにより異なるが、目的粒子径以下とすること
が好ましい。
DETAILED DESCRIPTION OF THE INVENTION As described above, the present invention utilizes a gas reduction method, particularly a hydrogen reduction method. The target metal may be any one as long as its salt can be reduced by hydrogen, and specific examples include nickel, cobalt, copper, iron, molybdenum, and tungsten. In addition to the simple metal, an alloy powder may be used as long as two or more metal elements are sufficiently mixed by coprecipitation or mechanochemically with the raw material salt before reduction. The average particle size of the hydrogen-reducible metal salt powder varies depending on the particle size and shape of the target metal powder, but is preferably not more than the target particle size.

【0016】つぎに前記原料塩に実質的な水素還元温度
以上の融点を有するアルカリ金属ハロゲン化物、アルカ
リ土類金属ハロゲン化物、希土類ハロゲン化物のうち1
種または2種以上をフラックス成分として混合し、水素
還元を行う。これらのフラックス成分は水素還元温度以
上の融点を有するものであればいずれでもよいが、具体
的に塩化カルシウム、塩化リチウム、塩化ナトリウムな
どが挙げられ、また水素還元温度以上の融点を有するた
め、原料金属塩と水素ガスとの還元反応の阻害は極めて
小さく、実質的にはその阻害の程度は認められない。ま
たこれらのフラックス成分は、水素還元の対象とする金
属に対して反応性がきわめて小さいため好適である。な
お前記フラックス成分の平均粒子径も目的とする金属粉
の粒子径や形状などにより異なるが、一般的には1〜1
0μmとすることが好ましい。
Next, one of alkali metal halides, alkaline earth metal halides and rare earth halides having a melting point not lower than the substantial hydrogen reduction temperature in the raw material salt is used.
The species or two or more species are mixed as a flux component, and hydrogen reduction is performed. These flux components may be any as long as they have a melting point equal to or higher than the hydrogen reduction temperature.Specifically, calcium chloride, lithium chloride, sodium chloride, and the like are mentioned. The inhibition of the reduction reaction between the metal salt and hydrogen gas is extremely small, and the degree of the inhibition is not substantially recognized. Further, these flux components are suitable because they have extremely low reactivity with respect to the metal to be subjected to hydrogen reduction. The average particle diameter of the flux component also varies depending on the particle diameter and shape of the target metal powder.
Preferably, it is 0 μm.

【0017】水素還元後にフラックス成分の融点温度以
上に昇温すると、すでに還元生成した金属粉はフラック
ス融体中で、球形性を形成維持しながら均等に粒成長を
行う。またこの時金属粉はフラックス融体中にあるので
ガス相との直接接触はないため、酸化抑制のため水素ガ
スによる還元雰囲気を維持する必要は必ずしもなく、窒
素、アルゴンなどの不活性ガスによる雰囲気を維持すれ
ばよい。
When the temperature of the flux component is raised to a temperature equal to or higher than the melting point of the flux component after the hydrogen reduction, the metal powder already reduced and formed grows uniformly in the flux melt while maintaining its spherical shape. At this time, since the metal powder is in the flux melt, there is no direct contact with the gas phase. Therefore, it is not necessary to maintain a reducing atmosphere with hydrogen gas to suppress oxidation, and the atmosphere with an inert gas such as nitrogen or argon is not necessary. Should be maintained.

【0018】そのため、従来水素還元後大気中で取り出
す場合、金属粉が大気と接触して急激な酸化により発火
することがあったが、本発明の方法では予め一旦フラッ
クス成分の融点温度以上まで昇温して冷却したものであ
れば、金属粉がフラックス融体中に分散しているため、
大気との接触による酸化、発火の可能性は極めて少な
い。したがって予め還元処理を行なった金属粉含有フラ
ックスを回収準備しておき、目的に応じて必要容量を再
度フラックス成分の融点温度以上で処理することも可能
である。
For this reason, conventionally, when the metal powder is taken out in the atmosphere after hydrogen reduction, the metal powder may come into contact with the air and ignite due to rapid oxidation. If heated and cooled, since the metal powder is dispersed in the flux melt,
The possibility of oxidation and ignition due to contact with the atmosphere is extremely low. Therefore, it is also possible to recover and prepare the metal powder-containing flux which has been subjected to the reduction treatment in advance, and to process the required volume again at a temperature equal to or higher than the melting point temperature of the flux component according to the purpose.

【0019】フラックス成分の添加量については特に限
定するものではなく、微量の添加でもその効果を発揮で
きる。したがってフラックス成分の種類、添加量は目的
とする金属粉の種類、粒度、形状などにより適宜選定す
ることができる。フラックス成分の融点温度以上の昇温
に伴って粒子径は大きくなり、局部的な焼結反応がフラ
ックス成分により抑制されて、粒成長が均質化される効
果があり、粒度分布のばらつきは小さく、球形性も高
い。
The addition amount of the flux component is not particularly limited, and the effect can be exerted even when a small amount is added. Therefore, the type and amount of the flux component can be appropriately selected depending on the type, particle size, shape and the like of the target metal powder. As the temperature rises above the melting point temperature of the flux component, the particle size increases, the local sintering reaction is suppressed by the flux component, and there is an effect that the grain growth is homogenized. Sphericality is also high.

【0020】しかしハロゲン化物のフラックス成分だけ
の場合は融点温度以上では液相であるため、ある程度成
長した粒子同士が接触して融着した粒子が生成する場合
がある。その理由は定かではないが、フラックス成分中
の金属粉の移動がよいためと考えられる。このような場
合には、アルカリ金属酸化物、アルカリ金属水酸化物、
アルカリ金属炭酸化物、アルカリ土類金属酸化物、アル
カリ土類金属水酸化物、アルカリ土類金属炭酸化物、希
土類金属酸化物、希土類金属水酸化物、希土類金属炭酸
化物のうち1種または2種以上を前記原料金属塩とフラ
ックス成分に添加することにより、粒子の接触を抑制す
ることができる。
However, in the case where only the flux component of the halide is used, since the phase is a liquid phase at a temperature equal to or higher than the melting point, particles grown to some extent may come into contact with each other to form fused particles. Although the reason is not clear, it is considered that the movement of the metal powder in the flux component is good. In such a case, an alkali metal oxide, an alkali metal hydroxide,
One or more of alkali metal carbonates, alkaline earth metal oxides, alkaline earth metal hydroxides, alkaline earth metal carbonates, rare earth metal oxides, rare earth metal hydroxides, and rare earth metal carbonates Is added to the raw metal salt and the flux component, whereby contact of particles can be suppressed.

【0021】この現象はこれらの化合物が、ハロゲン化
物のフラックス成分中で、酸化物、炭酸化物、あるいは
オキシ塩化物の微細な固体粒子として存在することによ
りフラックス成分中の金属粉の接触を抑制しているため
と考えられる。なおこれらの化合物の添加においては予
め原料金属塩と十分に粉砕混合しておくことが効果的で
ある。なおこれら化合物の具体的な例としては、酸化カ
ルシウム、水酸化マグネシウム、炭酸マグネシウムなど
が挙げられる。
This phenomenon is due to the fact that these compounds are present as fine solid particles of oxides, carbonates or oxychlorides in the halide flux component, thereby suppressing the contact of the metal powder in the flux component. It is thought that it is. When these compounds are added, it is effective to sufficiently pulverize and mix them in advance with the raw metal salt. Specific examples of these compounds include calcium oxide, magnesium hydroxide, magnesium carbonate and the like.

【0022】水素還元法における金属粉の粒子径は原料
金属塩の粒子径への依存性が大きく、したがってあまり
粒子径の小さい原料塩を用いた場合、水素還元後十分に
粒子径が成長せずに焼結を生じるため原料塩としては使
用しづらいものであった。しかし本発明ではフラックス
成分中に生成金属粉が保持されるため、水素還元後発火
することなく安全に水中投下して金属粉の徐酸化を行う
ことができるため、サブミクロンオーダーの球状粒子が
安全かつ容易に回収できる。
The particle size of the metal powder in the hydrogen reduction method largely depends on the particle size of the raw metal salt. Therefore, when a raw material salt having a very small particle size is used, the particle size does not grow sufficiently after hydrogen reduction. Since sintering occurred, it was difficult to use as a raw material salt. However, in the present invention, since the generated metal powder is retained in the flux component, the metal powder can be safely dropped into water without igniting after hydrogen reduction to slowly oxidize the metal powder. And can be easily collected.

【0023】反応物の湿式処理は用いたハロゲン化物の
溶解度が高い場合には、水または脱イオン水などに投入
し、反応物を崩壊してハロゲン化物を除去することが可
能である。場合によっては酸洗浄により効率的に除去し
てもよい。また酸化物、炭酸化物などを添加した場合は
溶解度が小さいため酸洗浄による溶解除去が効果的であ
る。用いる酸は特に限定されるものではなく、不溶性の
塩を生成しないものを適宜選択することができる。
In the wet treatment of the reactant, when the halide used is high in solubility, the reactant can be poured into water or deionized water to disintegrate the reactant and remove the halide. In some cases, it may be efficiently removed by acid washing. When oxides, carbonates, and the like are added, the solubility is small, so that dissolution and removal by acid washing is effective. The acid used is not particularly limited, and an acid that does not generate an insoluble salt can be appropriately selected.

【0024】このようにして本発明では粒子径の微細
化、球状化、単分散化、さらに粒度分布の制御性がよい
金属粉を製造できるが、前記したように水素還元前の原
料塩に十分に混合された2種以上の金属元素からなる合
金粉を使用すれば、該効果を有する合金粉も容易に製造
できる。
As described above, according to the present invention, it is possible to produce a metal powder having a fine particle size, a spheroidization, a monodispersion, and a good controllability of the particle size distribution. By using an alloy powder composed of two or more metal elements mixed with each other, an alloy powder having the above effect can be easily produced.

【0025】[0025]

【実施例】以下、本発明の実施例を比較例とともに説明
する。
EXAMPLES Examples of the present invention will be described below along with comparative examples.

【0026】(実施例1)金属塩として粒子径1μm以
下の一次粒子の炭酸ニッケル200gとフラックスとし
て塩化カルシウム150gとを混合し、ステンレススチ
ール製容器に入れ窒素ガスフロー雰囲気で450℃に昇
温し、この雰囲気下で約2時間保持し還元した。その後
窒素ガスフローにして、1300℃まで昇温、30分保
持した後室温まで冷却し、反応物を水中投下し崩壊させ
た。その後脱イオン水で濾過洗浄し、アルコール置換洗
浄した後真空乾燥機で乾燥し、30.8gのニッケル粉
を得た。ニッケルの収率は98.7%と高いものであっ
た。得られたニッケル粉をSEM観察した結果は、球状
単分散で粒子径のばらつきが小さい約1.5〜2μmの
粒子であった。
(Example 1) 200 g of primary particles of nickel carbonate having a particle size of 1 μm or less as a metal salt and 150 g of calcium chloride as a flux were mixed, placed in a stainless steel container, and heated to 450 ° C. in a nitrogen gas flow atmosphere. Approximately 2 hours in this atmosphere for reduction. Thereafter, the temperature was raised to 1300 ° C. and maintained for 30 minutes with a nitrogen gas flow, and then cooled to room temperature. Then, it was filtered and washed with deionized water, washed with alcohol replacement, and dried with a vacuum drier to obtain 30.8 g of nickel powder. The nickel yield was as high as 98.7%. As a result of SEM observation of the obtained nickel powder, it was found that the particles were spherical monodisperse particles having a small variation in particle diameter of about 1.5 to 2 μm.

【0027】(実施例2)水素還元後窒素ガスフローで
1000℃まで昇温、30分保持する以外は、実施例1
と同様にして30.5gのニッケル粉を得た。得られた
ニッケル粉は球状単分散で、粒子径は0.8〜1.2μ
mであり、その粒子構造をSEM写真により図1に示
す。実施例1および2より、雰囲気温度によって球状単
分散性を確保したまま、容易に粒子径が制御できること
がわかる。
Example 2 Example 1 was repeated except that after hydrogen reduction, the temperature was raised to 1000 ° C. in a nitrogen gas flow and held for 30 minutes.
30.5 g of nickel powder was obtained in the same manner as described above. The resulting nickel powder is spherically monodispersed and has a particle size of 0.8 to 1.2 μm.
m and its particle structure is shown in FIG. 1 by an SEM photograph. Examples 1 and 2 show that the particle diameter can be easily controlled while maintaining the spherical monodispersibility depending on the ambient temperature.

【0028】(実施例3)さらに酸化カルシウムを50
gを添加して混合したことと、反応物の湿式処理に塩酸
を用いた希酸洗浄後水洗、アルコール置換を行なう以外
は実施例2と同様にして、30.1gのニッケル粉を得
た。得られたニッケル粉は球状単分散で粒子径は0.6
〜1.0μmであった。
Example 3 Calcium oxide was further added to 50
g of 30.1 g of nickel powder was obtained in the same manner as in Example 2 except that g was added and mixed, and that the wet treatment of the reaction product was performed with dilute acid washing using hydrochloric acid, followed by washing with water and alcohol replacement. The obtained nickel powder is spherical monodisperse and has a particle diameter of 0.6.
1.01.0 μm.

【0029】(実施例4)さらに水酸化マグネシウムを
60gを添加して混合したことと、水素還元後窒素ガス
フローで800℃まで昇温し、反応物の湿式処理に塩酸
を用いた希酸洗浄後水洗、アルコール置換を行なう以外
は、実施例1と同様にして、30.9gのニッケル粉を
得た。得られたニッケル粉は球状単分散で、粒子径は
0.3〜0.7μmであった。実施例3、4よりアルカ
リ土類金属酸化物あるいはアルカリ土類金属水酸化物の
添加により粒子成長を抑制できることがわかる。
Example 4 Further, 60 g of magnesium hydroxide was added and mixed, and after hydrogen reduction, the temperature was raised to 800 ° C. with a nitrogen gas flow, and dilute acid washing was performed using hydrochloric acid for wet treatment of the reaction product. 30.9 g of nickel powder was obtained in the same manner as in Example 1 except that post-water washing and alcohol substitution were performed. The obtained nickel powder was spherical and monodispersed, and the particle diameter was 0.3 to 0.7 μm. Examples 3 and 4 show that the particle growth can be suppressed by adding an alkaline earth metal oxide or an alkaline earth metal hydroxide.

【0030】(実施例5)塩化カルシウムに替え塩化リ
チウム120gを混合し、さらに水酸化マグネシウム6
0gを添加し、水素還元後窒素ガスフローで650℃ま
で昇温し反応物の湿式処理に塩酸を用いた希酸洗浄後水
洗、アルコール置換を行なう以外は、実施例1と同様に
して、30.8gのニッケル粉を得た。得られたニッケ
ル粉は球状単分散で、粒子径は0.08〜0.1μmで
あった。実施例1〜5は特にコンデンサー電極の内部電
極用ニッケル紛として有用な粒子径分布を有するもので
ある。
Example 5 Instead of calcium chloride, 120 g of lithium chloride was mixed, and magnesium hydroxide 6
0 g was added, the temperature was raised to 650 ° C. with a nitrogen gas flow after hydrogen reduction, and the wet treatment of the reaction product was carried out in the same manner as in Example 1 except for washing with dilute acid using hydrochloric acid, washing with water, and alcohol replacement. 0.8 g of nickel powder was obtained. The obtained nickel powder was spherical and monodispersed, and the particle size was 0.08 to 0.1 μm. Examples 1 to 5 have a particle size distribution particularly useful as nickel powder for an internal electrode of a capacitor electrode.

【0031】(実施例6)金属塩として粒子径2μmの
一次粒子を有する炭酸ニッケルを用いること以外は、実
施例1の方法で30.0gのニッケル粉を得た。得られ
たニッケル粉は球状単分散で粒子径は3〜5μmであっ
た。
Example 6 30.0 g of nickel powder was obtained by the method of Example 1 except that nickel carbonate having primary particles of 2 μm in particle diameter was used as the metal salt. The obtained nickel powder was spherical and monodispersed and had a particle size of 3 to 5 μm.

【0032】(実施例7)金属塩に共沈法により製造し
た粒子径1μm以下の一次粒子のコバルト5%固溶水酸
化ニッケル52gを用いること以外は、実施例2と同様
にして29.8gの金属粉を得た。得られた金属粉は球
状単分散で、粒子径は0.9〜1.3μmであり、かつ
組織はNi−Co合金であった。
Example 7 29.8 g of a metal salt was prepared in the same manner as in Example 2 except that 52 g of nickel hydroxide having a primary particle diameter of 1 μm or less and 5% cobalt solid solution was used as a metal salt. Was obtained. The obtained metal powder was spherical and monodispersed, the particle diameter was 0.9 to 1.3 μm, and the structure was a Ni—Co alloy.

【0033】(比較例1)塩化カルシウムを添加しない
こと以外は、実施例1と同様にして、ニッケル粉の製造
を行ったが、焼結が進行し金属粉として回収は困難であ
った。
(Comparative Example 1) A nickel powder was produced in the same manner as in Example 1 except that calcium chloride was not added. However, sintering proceeded and it was difficult to recover as a metal powder.

【0034】(比較例2)塩化カルシウムを添加せず還
元後の昇温を行なわないこと以外は、実施例1と同様に
して反応物を得た。この反応物は、大気中にしばらく放
置するとニッケル粉の酸化燃焼を生じたので、再び同条
件で処理して、どの反応物を不活性雰囲気から直ちに水
中に投下し、以降、実施例1と同様に処理し26gのニ
ッケル粉を得た。得られたニッケル粉は局所的に凝集部
分があり、粒子径0.1〜12μmの広い幅に亘る粒度
分布を示し、かつ不定形粒子を多く含むものであった。
Comparative Example 2 A reaction product was obtained in the same manner as in Example 1 except that calcium chloride was not added and the temperature after reduction was not increased. This reactant was oxidized and burned out of the nickel powder when left in the air for a while, so it was treated again under the same conditions, and any reactant was immediately dropped into water from an inert atmosphere. To obtain 26 g of nickel powder. The obtained nickel powder had a locally agglomerated portion, exhibited a particle size distribution over a wide range with a particle diameter of 0.1 to 12 μm, and contained a large amount of irregular particles.

【0035】[0035]

【発明の効果】以上述べた通り本発明によればガス還元
法により、球形性、単分散性に優れた金属粉を製造で
き、特に粒子径0.1〜5μm程度の範囲において、所
定の粒度に対し粒度分布が狭い球状金属粉を製造するこ
とができ、したがって電子材料用金属粉、特に導電ペー
スト用フィラーなどの用いる金属粉または合金粉として
有用である。さらに本発明では高温部において特に還元
雰囲気とする必要がないこと、また反応物の取り扱いが
安全なことから、反応容器の材質や製造上の安全性も優
れた経済的な金属粉または合金粉の製造を提供できるな
ど、工業的に極めて有用なものである。
As described above, according to the present invention, metal powder having excellent sphericity and monodispersibility can be produced by the gas reduction method. Therefore, a spherical metal powder having a narrow particle size distribution can be produced, and thus is useful as a metal powder for electronic materials, particularly a metal powder or alloy powder used as a filler for conductive paste. Further, in the present invention, it is not necessary to provide a reducing atmosphere particularly in a high-temperature portion, and since the handling of the reactants is safe, economical metal powder or alloy powder excellent in material and manufacturing safety of the reaction vessel is excellent. It is extremely useful industrially, for example, it can provide production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例2により得られたニッケル粉の
SEMによる粒子構造を示す写真である。
FIG. 1 is a photograph showing a particle structure of a nickel powder obtained by Example 2 of the present invention by SEM.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素還元可能な金属塩粉末の少なくとも
1種と、水素還元温度より高い融点を有するアルカリ金
属ハロゲン化物、アルカリ土類金属ハロゲン化物、希土
類ハロゲン化物のうち少なくとも1種とを混合し、水素
還元した後、ハロゲン化物の融点温度以上まで昇温した
後冷却し、得られた反応物を湿式処理によりハロゲン化
物を除去して、金属粉を回収することを特徴とする金属
粉および合金粉の製造方法。
1. A mixture of at least one kind of hydrogen-reducible metal salt powder and at least one kind of alkali metal halide, alkaline earth metal halide, and rare earth halide having a melting point higher than the hydrogen reduction temperature. , After hydrogen reduction, the temperature is raised to the melting point temperature of the halide or higher, and then cooled. The obtained reactant is subjected to wet treatment to remove the halide, and the metal powder is recovered. Powder manufacturing method.
【請求項2】 アルカリ金属酸化物、アルカリ金属水酸
化物、アルカリ金属炭酸化物、アルカリ土類金属酸化
物、アルカリ土類金属水酸化物、アルカリ土類金属炭酸
化物、希土類金属酸化物、希土類金属水酸化物、希土類
金属炭酸化物のうち少なくとも1種をさらに添加し、混
合すること特徴とする請求項1記載の金属粉および合金
粉の製造方法。
2. An alkali metal oxide, an alkali metal hydroxide, an alkali metal carbonate, an alkaline earth metal oxide, an alkaline earth metal hydroxide, an alkaline earth metal carbonate, a rare earth metal oxide, and a rare earth metal. The method for producing a metal powder and an alloy powder according to claim 1, wherein at least one of a hydroxide and a rare earth metal carbonate is further added and mixed.
JP18922497A 1997-06-30 1997-06-30 Production of metal powder and alloy powder Pending JPH1121603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18922497A JPH1121603A (en) 1997-06-30 1997-06-30 Production of metal powder and alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18922497A JPH1121603A (en) 1997-06-30 1997-06-30 Production of metal powder and alloy powder

Publications (1)

Publication Number Publication Date
JPH1121603A true JPH1121603A (en) 1999-01-26

Family

ID=16237664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18922497A Pending JPH1121603A (en) 1997-06-30 1997-06-30 Production of metal powder and alloy powder

Country Status (1)

Country Link
JP (1) JPH1121603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815045B2 (en) * 2000-04-27 2004-11-09 Murata Manufacturing Co. Ltd Method for manufacturing a metal powder, a metal powder, an electroconductive paste using the same, and a multilayer ceramic electronic component using the same
US6827758B2 (en) 2001-05-30 2004-12-07 Tdk Corporation Method for manufacturing magnetic metal powder, and magnetic metal powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815045B2 (en) * 2000-04-27 2004-11-09 Murata Manufacturing Co. Ltd Method for manufacturing a metal powder, a metal powder, an electroconductive paste using the same, and a multilayer ceramic electronic component using the same
US6827758B2 (en) 2001-05-30 2004-12-07 Tdk Corporation Method for manufacturing magnetic metal powder, and magnetic metal powder
US7416795B2 (en) 2001-05-30 2008-08-26 Tdk Corporation Method for manufacturing magnetic metal powder, and magnetic metal powder

Similar Documents

Publication Publication Date Title
US9421612B2 (en) Production of substantially spherical metal powders
JP5008524B2 (en) Metal powder produced by reduction of oxides using gaseous magnesium
TWI554344B (en) Nickel fine powder and its manufacturing method
CN111819016A (en) Spherical tantalum powder, products containing same and method for making same
JP4687599B2 (en) Copper fine powder, method for producing the same, and conductive paste
US20080226488A1 (en) Production of high-purity niobium monoxide and capacitor production therefrom
CN112207285B (en) Preparation method and application of powder material
US20230364677A1 (en) Alloy powder, preparation method therefor, and use therefor
JP4060187B2 (en) Method for producing ITO powder in which tin is dissolved in indium oxide and method for producing ITO target
WO1999064191A1 (en) Method for producing metal powder
JP2004091843A (en) Manufacturing method of high purity high melting point metal powder
US6869461B2 (en) Fine powder of metallic copper and process for producing the same
JP2007314867A (en) Manufacturing method of nickel powder
JPH0623405B2 (en) Method for producing spherical copper fine powder
JP5530270B2 (en) Cobalt powder and method for producing the same
JP2008223096A (en) Method for manufacturing flaky silver powder
JP2007197836A (en) Nickel powder
JPH1121603A (en) Production of metal powder and alloy powder
JPH0445207A (en) Manufacture of spherical nickel fine particles
RU2432231C2 (en) Method of producing metal nano-sized powders
JP2000119709A (en) Production of metallic powder
JP3945740B2 (en) Nickel powder
JP2000096110A (en) Production of metallic powder
JP5361759B2 (en) Method for producing noble metal fine particles
JP4514807B2 (en) Method for producing noble metal fine particles