JPH10292053A - Preparation of resin composition - Google Patents

Preparation of resin composition

Info

Publication number
JPH10292053A
JPH10292053A JP10044200A JP4420098A JPH10292053A JP H10292053 A JPH10292053 A JP H10292053A JP 10044200 A JP10044200 A JP 10044200A JP 4420098 A JP4420098 A JP 4420098A JP H10292053 A JPH10292053 A JP H10292053A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin
thermoplastic
melt
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10044200A
Other languages
Japanese (ja)
Other versions
JP3989075B2 (en
Inventor
Miki Yamagishi
幹 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP04420098A priority Critical patent/JP3989075B2/en
Publication of JPH10292053A publication Critical patent/JPH10292053A/en
Application granted granted Critical
Publication of JP3989075B2 publication Critical patent/JP3989075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To industrially advantageously prepare a thermoplastic resin compsn. which has a high impact strength and a low volatile content by melt mixing and kneading the first thermoplastic resin contg. low-mol.-wt. volatile components with the second and third thermoplastic resins having melting points or glass transition points lower than that of the first resin by feeding the latter two resins to a melt kneader before and after depressurizing and devolatilizing. SOLUTION: A thermoplastic resin (A) contg. 500-30,000 ppm volatile components having mol.wts. of 300 or lower and a thermoplastic resin (B) having an m.p. or glass transition point lower than that of resin A by at least 10 deg.C and contg. volatile components having mol.wts. of 300 or lower in an amt. lower than that contained in resin A in a quantity ratio of B/A of 0.05-1 are fed to a melt kneader through the top feed port and melt kneaded, and after depressurizing and devolatilizing, a thermoplastic resin (C) having an m.p. or glass transition point lower than that of resin A by at least 10 deg.C is fed in a quantity ratio of C/B of 0.5-5 through a side feed port and melt kneaded. Thus is obtd. the objective thermoplastic resin compsn. Pref. the barrel temp. of the melt kneader from the top feed port to the side feed port is 280-360 deg.C, and that after side feed port is 200-320 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱可塑性樹脂組成
物の製造方法に関するものである。詳しくは、溶融温度
又はガラス転移温度が10℃以上異なる熱可塑性樹脂の
配合により、耐衝撃性に優れ、揮発分の少ない熱可塑性
樹脂組成物を工業的に有利に製造する方法に関するもの
である。
[0001] The present invention relates to a method for producing a thermoplastic resin composition. More specifically, the present invention relates to a method for industrially advantageously producing a thermoplastic resin composition having excellent impact resistance and low volatile content by blending thermoplastic resins having melting temperatures or glass transition temperatures different by 10 ° C. or more.

【0002】[0002]

【従来の技術】耐熱性は高いが流動性・衝撃強さが低い
特性をもつ熱可塑性樹脂(A)は、溶融温度又はガラス
転移点が10℃以上低い熱可塑性樹脂又は/及びエラス
トマー等と混合して使用されて来た。従来、熱可塑性樹
脂(A)と溶融温度又はガラス転移点が10℃以上低い
熱可塑性樹脂又は/及びエラストマー等を混合する方法
としては、次の方法がある。 (1)両者の樹脂粉体又はペレットを固体状態で混合
し、一段溶融押出機等の練機を用いて溶融混練してペレ
ット化した後、そのペレットを射出成形あるいは、押出
成形して成型品を得る方法。 (2)両者の樹脂粉体又はペレットを固体状態でタンブ
ラーで混合し、得られた混合物を直接射出成形あるい
は、押出成形して、成形品を得る方法。 (3)熱可塑性樹脂(A)と少量の熱可塑性樹脂(A)
より溶融温度又はガラス転移点が10℃以上低い熱可塑
性樹脂(B)を固体状態で混合し、溶融押出機等の混練
機を用いてペレット化した後、更に熱可塑性樹脂(A)
より溶溶融温度又はガラス転移点が10℃以上低い熱可
塑性樹脂(C)等と固体状態で混合後、2段目の溶融押
出機等の混練機を用いてペレットを得る方法(特開平4
―117444号公報)。
2. Description of the Related Art A thermoplastic resin (A) having high heat resistance but low flowability and low impact strength is mixed with a thermoplastic resin or / and an elastomer having a melting temperature or a glass transition point of 10 ° C. or lower. And have been used. Conventionally, as a method for mixing a thermoplastic resin (A) with a thermoplastic resin and / or an elastomer having a melting temperature or a glass transition point lower by 10 ° C. or more, the following methods are available. (1) Both resin powders or pellets are mixed in a solid state, melt-kneaded using a kneading machine such as a one-stage melt extruder and pelletized, and then the pellets are injection-molded or extruded to form a molded product. How to get. (2) A method in which both resin powders or pellets are mixed in a tumbler in a solid state, and the resulting mixture is directly injection-molded or extruded to obtain a molded product. (3) Thermoplastic resin (A) and a small amount of thermoplastic resin (A)
A thermoplastic resin (B) having a melting temperature or a glass transition point lower than 10 ° C. or more is mixed in a solid state, pelletized using a kneading machine such as a melt extruder, and then further thermoplastic resin (A).
A method of mixing in a solid state with a thermoplastic resin (C) or the like having a lower melting temperature or glass transition point by 10 ° C. or more and then obtaining pellets using a kneader such as a second-stage melt extruder (Japanese Patent Laid-Open No.
-117444).

【0003】しかしながら、(1)の方法では、樹脂の
均一化を図るためには溶融押出機等の混練でA成分の溶
融のため樹脂温度が上がりすぎ、B成分等の劣化により
衝撃強度等が低下する。衝撃強度等の低下をさけるため
樹脂温度を下げると混練が悪くなるだけでなく、揮発分
を少なくすることができない。又エラストマーの添加量
増加では、対衝撃性は改善されるが揮発分を下げること
ができない。
However, in the method (1), in order to homogenize the resin, the temperature of the resin is excessively increased due to the melting of the component A by kneading with a melt extruder or the like, and the impact strength or the like is reduced due to the deterioration of the component B or the like. descend. If the resin temperature is lowered to avoid a decrease in impact strength or the like, kneading is not only deteriorated, but also volatile components cannot be reduced. When the amount of the elastomer added is increased, the impact resistance is improved, but the volatile content cannot be reduced.

【0004】(2)の方法においては、A成分の脱揮が
できないため、成型後のシルバーストリークス等が発生
すると共に、熱可塑性樹脂(B)が先に溶融して熱可塑
性樹脂(A)の溶融混練が不十分となり、熱可塑性樹脂
(A)の未溶融物の粒が発生すると共に、十分な衝撃強
度が得られない。(3)の方法(マスターバッチ法)で
は、溶融混練を2段で行うため、樹脂の劣化が起こり衝
撃強度が低下するとともに、エネルギー的に不利で、作
業的に複雑になるというような困難が伴う。
In the method (2), since the A component cannot be devolatilized, silver streaks and the like after molding are generated, and the thermoplastic resin (B) is melted first to form the thermoplastic resin (A). Melt kneading becomes insufficient, unmelted particles of the thermoplastic resin (A) are generated, and sufficient impact strength cannot be obtained. In the method (3) (master batch method), melt kneading is performed in two stages, so that the resin is deteriorated and the impact strength is reduced, and difficulties such as disadvantageous energy and complicated work are caused. Accompany.

【0005】特開7―149917号公報は、ポリフェ
ニレンエーテル及び芳香族アルケニル化合物重合体から
なる組成物100重量部に、1重量部以上の有機溶媒を
存在させて押出機を用いて溶融混練する際に、樹脂の流
れ方向に対して上流側にある原料投入口からポリフェニ
レンエーテル、芳香族アルケニル化合物の重合体の一
部、有機溶媒を供給し、下流側にある原料投入口から残
りの芳香族アルケニル化合物重合体を供給する熱可塑性
樹脂組成物の製造方法を開示している。この方法は、有
機溶媒がポリフェニレンエーテル及び芳香族アルケニル
化合物の重合体の混合物と押出機で混練されるため、組
成物の混合具合が不充分となる。十分混合するために有
機溶媒の量を増加すると、有機溶媒の除去が困難となる
ばかりでなく、第1原料供給口にガスの逆流が発生し、
押出生産性が下がると共に、押出量の変動が発生する。
Japanese Patent Application Laid-Open No. 7-149917 discloses that when 100 parts by weight of a composition comprising a polyphenylene ether and an aromatic alkenyl compound polymer is used in an amount of 1 part by weight or more of an organic solvent and melt-kneaded using an extruder. The polyphenylene ether, a part of the polymer of the aromatic alkenyl compound, and the organic solvent are supplied from a raw material inlet on the upstream side with respect to the flow direction of the resin, and the remaining aromatic alkenyl is supplied from the raw material inlet on the downstream side. A method for producing a thermoplastic resin composition for supplying a compound polymer is disclosed. In this method, an organic solvent is kneaded with a mixture of a polymer of polyphenylene ether and an aromatic alkenyl compound by an extruder, so that the degree of mixing of the composition is insufficient. When the amount of the organic solvent is increased for sufficient mixing, not only is it difficult to remove the organic solvent, but also a gas backflow occurs at the first raw material supply port,
Extrusion productivity decreases, and fluctuations in the amount of extrusion occur.

【0006】[0006]

【発明が解決しようとする課題】本発明は、耐衝撃性の
改善と、揮発分の少ないという相反する特性を同時に満
足し得る熱可塑性樹脂組成物を工業的に使用するエネル
ギーを少なくして有利に製造することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is advantageous in that a thermoplastic resin composition capable of simultaneously satisfying the improvement of impact resistance and the contradictory properties of a small amount of volatile components is reduced by using less energy for industrial use. It is intended to be manufactured.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記の目
的を解決するために鋭意検討を重ねた結果、本発明に至
った。すなわち本発明は、熱可塑性樹脂(A)と、熱可
塑性樹脂(A)よりも溶融温度又はガラス転移点が10
℃以上低い熱可塑性樹脂(B)及び(C)とを溶融混練
し熱可塑性樹脂組成物を製造する方法において、分子量
300以下の揮発分を500ppmから30,000p
pm有する熱可塑性樹脂(A)と(A)成分より分子量
300以下の揮発分の少ない熱可塑性樹脂(B)とを溶
融混練機のトップ供給口からフィードし、減圧脱揮後、
サイドフィード口から熱可塑性樹脂(C)を供給するこ
とを特徴とする熱可塑性樹脂組成物の製造方法である。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned objects, and as a result, have reached the present invention. That is, the present invention provides a thermoplastic resin (A) having a melting temperature or a glass transition point which is 10 times lower than that of the thermoplastic resin (A).
In a method for producing a thermoplastic resin composition by melt-kneading thermoplastic resins (B) and (C) having a temperature of at least 300 ° C., volatile components having a molecular weight of 300 or less are removed from 500 ppm to 30,000 p.
The thermoplastic resin (A) having a pm and the thermoplastic resin (B) having a molecular weight of 300 or less and a less volatile content than the component (A) are fed from a top supply port of a melt kneader, and devolatilized under reduced pressure.
A method for producing a thermoplastic resin composition, comprising supplying a thermoplastic resin (C) from a side feed port.

【0008】熱可塑性樹脂(A)、(B)、(C)の組
み合わせとしては、熱可塑性樹脂(A)がポリフェニレ
ンエーテル樹脂、熱可塑性樹脂(B)、(C)がスチレ
ン樹脂、熱可塑性樹脂(A)がポリフェニレンスルフィ
ド樹脂、熱可塑性樹脂(B)及び(C)が変性ポリフェ
ニレンエーテル樹脂及び又はスチレン樹脂、熱可塑性樹
脂(A)がポリカーボネート樹脂、熱可塑性樹脂(B)
及び(C)がABS樹脂及び又はスチレン樹脂、熱可塑
性樹脂(A)がポリフェニレンエーテル樹脂、熱可塑性
樹脂(B)が汎用ポリスチレン、熱可塑性樹脂(C)が
エラストマー補強スチレン樹脂、等が挙げられる。本発
明のポリフェニレンエーテル樹脂とは、下記の一般式
(1)及び/又は(2)で表される繰り返し単位を有す
る単独重合体、あるいは共重合体である。これら樹脂の
混合物も有用である。
As the combination of the thermoplastic resins (A), (B) and (C), the thermoplastic resin (A) is a polyphenylene ether resin, the thermoplastic resins (B) and (C) are a styrene resin and a thermoplastic resin. (A) is a polyphenylene sulfide resin, thermoplastic resins (B) and (C) are modified polyphenylene ether resins and / or styrene resins, and thermoplastic resin (A) is a polycarbonate resin and a thermoplastic resin (B).
And (C) are an ABS resin and / or a styrene resin, the thermoplastic resin (A) is a polyphenylene ether resin, the thermoplastic resin (B) is a general-purpose polystyrene, and the thermoplastic resin (C) is an elastomer-reinforced styrene resin. The polyphenylene ether resin of the present invention is a homopolymer or a copolymer having a repeating unit represented by the following general formulas (1) and / or (2). Mixtures of these resins are also useful.

【0009】[0009]

【化1】 (ここで、R1、R2、R3、R4、R5、R6は独立
に炭素1〜4のアルキル基、アリール基、ハロゲン、水
素を表す。但し、R5、R6は同時に水素ではない。)
Embedded image (Here, R1, R2, R3, R4, R5, and R6 independently represent an alkyl group having 1 to 4 carbon atoms, an aryl group, halogen, or hydrogen. However, R5 and R6 are not hydrogen at the same time.)

【0010】ポリフェニレンエーテル樹脂の単独重合体
の代表例としては、ポリ(2,6−ジメチル−1,4−
フェニレン)エーテル、ポリ(2−メチル−6−エチル
−1,4−フェニレン)エーテル、ポリ(2,6−ジエ
チル−1,4−フェニレン)エーテル、ポリ(2−エチ
ル−6−n−プロピル−1,4−フェニレン)エーテ
ル、ポリ(2,6−ジ−n−プロピル−1,4−フェニ
レン)エーテル、ポリ(2−メチル−6−n−ブチル−
1,4−フェニレン)エーテル、ポリ(2−エチル−6
−イソプロピル−1,4−フェニレン)エーテル、ポリ
(2−メチル−6−ヒドロキシエチル−1,4−フェニ
レン)エーテル、ポリ(2−メチル−6−クロロエチル
−1,4−フェニレン)エーテル等が挙げられる。
A typical example of a homopolymer of a polyphenylene ether resin is poly (2,6-dimethyl-1,4-
Phenylene) ether, poly (2-methyl-6-ethyl-1,4-phenylene) ether, poly (2,6-diethyl-1,4-phenylene) ether, poly (2-ethyl-6-n-propyl-) 1,4-phenylene) ether, poly (2,6-di-n-propyl-1,4-phenylene) ether, poly (2-methyl-6-n-butyl-
1,4-phenylene) ether, poly (2-ethyl-6)
-Isopropyl-1,4-phenylene) ether, poly (2-methyl-6-hydroxyethyl-1,4-phenylene) ether, poly (2-methyl-6-chloroethyl-1,4-phenylene) ether and the like. Can be

【0011】この中で、ポリ(2,6−ジメチル−1,
4−フェニレン)エーテルが特に好ましい。ポリフェニ
レンエーテル共重合体とは、例えばフェニレンエーテル
構造を主単量単位とする共重合体である。その例として
は、2,6−ジメチルフェノールと2,3,6−トリメ
チルフェノールとの共重合体、2,6−ジメチルフェノ
ールとo−クレゾールとの共重合体あるいは2,6−ジ
メチルフェノールと2,3,6−トリメチルフェノール
及びo−クレゾールとの共重合体等がある。
Among them, poly (2,6-dimethyl-1,1)
4-Phenylene) ether is particularly preferred. The polyphenylene ether copolymer is, for example, a copolymer having a phenylene ether structure as a main unit. Examples thereof include a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, a copolymer of 2,6-dimethylphenol and o-cresol, or a copolymer of 2,6-dimethylphenol and 2 , 3,6-trimethylphenol and o-cresol.

【0012】また、本発明のポリフェニレンエーテル樹
脂中には、本発明の主旨に反しない限り、従来ポリフェ
ニレンエーテル樹脂中に存在させてもよいことが提案さ
れている他の種々のフェニレンエーテルユニットを部分
構造として含んでいる樹脂も有用である。少量共存させ
ることが提案されているものの例としては、特開平1−
297428号公報及び特開昭63−301222号公
報に記載されている、2−(ジアルキルアミノメチル)
−6−メチルフェニレンエーテルユニットや、2−(N
−アルキル−N−フェニルアミノメチル)−6−メチル
フェニレンエーテルユニット等が挙げられる。
In the polyphenylene ether resin of the present invention, various other phenylene ether units which have been proposed to be present in the polyphenylene ether resin so far as they do not contradict the gist of the present invention are partially incorporated. Resins included as structures are also useful. Japanese Patent Application Laid-Open No.
2- (dialkylaminomethyl) described in JP-A-297428 and JP-A-63-301222.
-6-methylphenylene ether unit or 2- (N
-Alkyl-N-phenylaminomethyl) -6-methylphenylene ether unit.

【0013】また、ポリフェニレンエーテル樹脂の主鎖
中にジフェノキノン等が少量結合したものも含まれる。
さらに、例えば特開平2−276823号公報、特開昭
63−108059号公報、特開昭59−59724号
公報等に記載されている、炭素−炭素二重結合を持つ化
合物により変性されたポリフェニレンエーテルも含む。
本発明に用いるポリフェニレンエーテル樹脂の製造方法
は、例えば特公平5−13966号公報に記載されてい
る方法に従ってジブチルアミンの存在下に2,6−キシ
レノールを酸化カップリング重合して製造することがで
きる。また、分子量および分子量分布は特に限定される
ものではない。
The polyphenylene ether resin also includes a resin in which diphenoquinone or the like is bonded in a small amount in the main chain.
Further, for example, polyphenylene ether modified with a compound having a carbon-carbon double bond described in JP-A-2-276823, JP-A-63-108059, JP-A-59-59724 and the like. Including.
The method for producing the polyphenylene ether resin used in the present invention can be produced, for example, by oxidative coupling polymerization of 2,6-xylenol in the presence of dibutylamine according to the method described in Japanese Patent Publication No. 5-13966. . Further, the molecular weight and the molecular weight distribution are not particularly limited.

【0014】本発明のポリフェニレンスルフィド樹脂と
は、一般にはPPSとも呼ばれ、下記の一般式(3)で
表される繰り返し単位を有する単独重合体である。
The polyphenylene sulfide resin of the present invention is a homopolymer having a repeating unit represented by the following general formula (3), which is generally called PPS.

【化2】 Embedded image

【0015】本発明のポリカーボネート樹脂とは、下記
の一般式(4)で表される繰り返し単位を有する重合体
である。
The polycarbonate resin of the present invention is a polymer having a repeating unit represented by the following general formula (4).

【化3】 Embedded image

【0016】本発明のスチレン樹脂とは、汎用ポリスチ
レン及びエラストマー補強スチレン樹脂を示す。本発明
の汎用ポリスチレンとしては、スチレンのほか、o−メ
チルスチレン、p−メチルスチレン、m−メチルスチレ
ン、2,4−ジメチルスチレン、エチルスチレン、p−
tert−ブチルスチレンなどの核アルキル置換スチレ
ン、α−メチルスチレン、α−メチル−p−メチルスチ
レンなどのα−アルキル置換スチレン等の重合体、及び
これらビニル芳香族化合物1種以上と他のビニル化合物
の少なくとも1種以上との共重合体、これら2種以上の
共重合体が挙げられる。ビニル芳香族化合物と共重合可
能な化合物としては、メチルメタクリレート、エチルメ
タクリレートなどのメタクリル酸エステル類、アクリロ
ニトリル、メタクリロニトリルなどの不飽和ニトリル化
合物類、無水マレイン酸等の酸無水物などが挙げられ
る。これら樹脂の重合方法としてはラジカル重合ばかり
でなくイオン重合も挙げられる。これらの重合体の中で
特に好ましい重合体は、ポリスチレン、スチレン−アク
リロニトリル共重合体(AS樹脂)である。これら樹脂
の混合物も有用である。
The styrene resin of the present invention refers to general-purpose polystyrene and an elastomer-reinforced styrene resin. As the general-purpose polystyrene of the present invention, in addition to styrene, o-methylstyrene, p-methylstyrene, m-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, p-methylstyrene
Polymers such as nuclear alkyl-substituted styrenes such as tert-butylstyrene, α-alkyl-substituted styrenes such as α-methylstyrene and α-methyl-p-methylstyrene, and one or more of these vinyl aromatic compounds and other vinyl compounds And copolymers of at least one of these. Examples of the compound copolymerizable with the vinyl aromatic compound include methyl methacrylate, methacrylic esters such as ethyl methacrylate, acrylonitrile, unsaturated nitrile compounds such as methacrylonitrile, and acid anhydrides such as maleic anhydride. . Examples of the polymerization method of these resins include not only radical polymerization but also ionic polymerization. Among these polymers, particularly preferred polymers are polystyrene and styrene-acrylonitrile copolymer (AS resin). Mixtures of these resins are also useful.

【0017】エラストマー補強スチレン樹脂に用いるエ
ラストマーとしては、ポリブタジエン、スチレン−ブタ
ジエン共重合体、ポリイソプレン、ブタジエン−イソプ
レン共重合体、天然ゴム、エチレン−プロピレン共重合
体などを挙げることができる。特に、ポリブタジエン、
スチレン−ブタジエン共重合体及びこれらの部分水素添
加物が好ましい。
Examples of the elastomer used for the elastomer-reinforced styrene resin include polybutadiene, styrene-butadiene copolymer, polyisoprene, butadiene-isoprene copolymer, natural rubber, and ethylene-propylene copolymer. In particular, polybutadiene,
Styrene-butadiene copolymers and their partially hydrogenated products are preferred.

【0018】エラストマー補強スチレン樹脂としては、
エラストマー補強ポリスチレン(HIPS)、エラスト
マー補強スチレン−アクリロニトリル共重合体(ABS
樹脂)が好ましい。これら樹脂の混合物も有用である。
エラストマー含有量は6%以上、好ましくは8%以上、
更に好ましくは10%以上である。組成物の量的範囲
は、A成分が5〜92.5重量%、B成分が5〜80重
量%、C成分が2.5〜80重量%が好ましい。より好
ましくはA成分が10〜90重量%、B成分が5〜70
重量%、C成分が2.5〜60重量%である。
As the elastomer-reinforced styrene resin,
Elastomer reinforced polystyrene (HIPS), elastomer reinforced styrene-acrylonitrile copolymer (ABS)
Resin). Mixtures of these resins are also useful.
The elastomer content is 6% or more, preferably 8% or more,
It is more preferably at least 10%. The quantitative range of the composition is preferably 5 to 92.5% by weight of the component A, 5 to 80% by weight of the component B, and 2.5 to 80% by weight of the component C. More preferably, the component A is 10 to 90% by weight, and the component B is 5 to 70% by weight.
% By weight, and the C component is 2.5 to 60% by weight.

【0019】トップフィードでA成分に加えてB成分を
加えるのはA成分の溶融混練を助け、吐出量を上げる効
果を有すると共にC成分との溶融混練を助けるためであ
る。B成分の量はA成分に対し5〜100重量%が好ま
しく、より好ましくは10〜50重量%、最も好ましく
は20〜30重量%である。B成分が多すぎると熱可塑
性樹脂組成物の揮発分が増すと共にB成分の熱劣化が進
む上に、更にはB成分のみが先に溶融しやすくなりA成
分が均一に溶融しにくく好ましくない。B成分が少なす
ぎるとA成分の溶融混練が悪くなり低押出吐出量とせざ
るを得なくなるばかりか押出が不安定になると共に次の
C成分との混練が悪くなり押出が不安定となり好ましく
ない。
The addition of the component B in addition to the component A in the top feed assists the melt kneading of the component A, has the effect of increasing the discharge rate, and assists the melt kneading with the component C. The amount of the component B is preferably 5 to 100% by weight, more preferably 10 to 50% by weight, and most preferably 20 to 30% by weight based on the component A. If the amount of the component B is too large, the volatile component of the thermoplastic resin composition increases, and the thermal deterioration of the component B proceeds. Further, only the component B is easily melted first, and the component A is not easily melted uniformly, which is not preferable. If the amount of the component B is too small, the melt-kneading of the component A is deteriorated, so that not only the extrusion extrusion amount must be reduced, but also extrusion becomes unstable, and kneading with the next component C deteriorates, resulting in unstable extrusion.

【0020】C成分の量はB成分に対し50〜500重
量%が好ましい。より好ましくは75〜300重量%、
最も好ましくは100〜200重量%である。C成分が
少なすぎると相対的にB成分が多いということになり、
B成分の熱劣化が進むことになる。C成分が多すぎると
樹脂組成物の温度が急激に低下し押出が不安定となり、
好ましくない。熱可塑性樹脂(A)の流動性向上のため
に、熱可塑性樹脂(B)や熱可塑性樹脂(C)の溶融温
度又はガラス転移温度は熱可塑性樹脂(A)のよりも1
0℃以上低い必要がある。好ましくは30℃以上が有用
である。
The amount of the component C is preferably from 50 to 500% by weight based on the component B. More preferably 75 to 300% by weight,
Most preferably, it is 100 to 200% by weight. If the C component is too small, the B component is relatively large,
The thermal degradation of the B component proceeds. If the amount of the C component is too large, the temperature of the resin composition rapidly decreases and extrusion becomes unstable,
Not preferred. In order to improve the fluidity of the thermoplastic resin (A), the melting temperature or the glass transition temperature of the thermoplastic resin (B) or the thermoplastic resin (C) is one unit higher than that of the thermoplastic resin (A).
It must be lower than 0 ° C. Preferably 30 ° C. or higher is useful.

【0021】A成分中の分子量300以下の揮発分は溶
融温度(軟化温度)の高い熱可塑性樹脂(A)の溶融温
度を下げ、溶融温度がA成分より低いB成分との混練を
向上させる効果がある。しかし、多すぎる場合には溶融
混練機での脱揮が不十分となり成型後のシルバーストリ
ークス等が発生すると共に、十分な衝撃強度が得られな
い。従って、A成分中の分子量300以下の揮発分の量
は500ppm〜30,000ppmの必要がある。A
成分中の分子量300以下の揮発分は熱可塑性樹脂
(A)の重合溶媒やモノマー・オリゴマー等を洗浄・濾
過・乾燥した残留分とし、新たに後から添加し含侵させ
る工程を省くことができる。
The volatile component having a molecular weight of 300 or less in the component A lowers the melting temperature of the thermoplastic resin (A) having a high melting temperature (softening temperature) and improves the kneading with the component B having a lower melting temperature than the component A. There is. However, if the amount is too large, devolatilization in the melt kneader becomes insufficient, so that silver streaks and the like after molding are generated, and sufficient impact strength cannot be obtained. Therefore, the amount of volatile components having a molecular weight of 300 or less in the component A needs to be 500 ppm to 30,000 ppm. A
Volatile components having a molecular weight of 300 or less in the components are residuals obtained by washing, filtering and drying the polymerization solvent, monomers and oligomers of the thermoplastic resin (A), and a step of newly adding and impregnating the components can be omitted. .

【0022】B成分中の分子量300以下の揮発分は、
A成分中の分子量300以下の揮発分の量以上の場合、
B成分の溶融温度が低下しすぎるため、A成分との溶融
混練がしにくくなる。従って、B成分中の分子量300
以下の揮発分は、A成分中の揮発分より少ないことが必
要である。分子量300以下の揮発分としては,エチル
ベンゼン、キシレン、トルエン、スチレン等の炭素数6
〜18の芳香族炭化水素、炭素数1〜10のアルコール
類等があげられる。
The volatile components having a molecular weight of 300 or less in the component B are as follows:
When the amount of volatile components having a molecular weight of 300 or less in the component A is not less than
Since the melting temperature of the component B is too low, the melt kneading with the component A becomes difficult. Therefore, the molecular weight of component B is 300
The following volatile components need to be smaller than the volatile components in the component A. Volatile components having a molecular weight of 300 or less include those having 6 carbon atoms such as ethylbenzene, xylene, toluene, and styrene.
To 18 aromatic hydrocarbons, alcohols having 1 to 10 carbon atoms, and the like.

【0023】以下製造方法を図を用いて、説明する。図
1で請求項6のケースについて詳述すると押出機等の溶
融混練機において原料の流れ方向に対して上流側に設け
られた第1原料供給口(1)、第2原料供給口(2)を
有し、第1供給口(1)よりポリフェニレンエーテル樹
脂(A)、汎用ポリスチレン(B)をドライブレンド又
は/及び個別に供給し、揮発分の多いポリフェニレンエ
ーテル樹脂濃度の高い組成で(5)にて第1段脱揮をし
た後、第2供給口(2)よりエラストマー補強スチレン
樹脂(C)を加えることを特徴とするポリフェニレンエ
ーテル樹脂組成物の製造法に関するものである。
Hereinafter, the manufacturing method will be described with reference to the drawings. In FIG. 1, the case of claim 6 will be described in detail. In a melt kneader such as an extruder, a first raw material supply port (1) and a second raw material supply port (2) provided on the upstream side in the flow direction of raw materials. And the polyphenylene ether resin (A) and the general-purpose polystyrene (B) are dry-blended or / and individually supplied from the first supply port (1), and have a composition having a high concentration of the volatile polyphenylene ether resin and a high concentration (5). And a method for producing a polyphenylene ether resin composition, comprising adding an elastomer-reinforced styrene resin (C) from a second supply port (2) after the first stage of devolatilization.

【0024】また、他の組成物を添加することもでき
る。図1で請求項9のケースに他の組成物を添加するケ
ースについて詳述すると押出機等の溶融混練機において
原料の流れ方向に対して上流側に設けられた第1原料供
給口(1)、第2(2)、第3(3)、第4原料供給口
(4)を有し、第1供給口(1)よりポリフェニレンエ
ーテル樹脂(A)、汎用ポリスチレン(B)をドライブ
レンド又は/及び個別に供給し、揮発分の多いポリフェ
ニレンエーテル樹脂濃度の高い組成で(5)にて第1段
脱揮をした後、第2(2)供給口より汎用ポリスチレン
(B)、エラストマー補強スチレン樹脂(C)、エラス
トマー(E)、不揮発性難燃剤(G)、第3(3)供給
口より汎用ポリスチレン(B)、エラストマー補強スチ
レン樹脂(C)、エラストマー(E)、フィラー
(D)、不揮発性難燃剤(G)を加え、更に(8)より
脱揮を行い、第4供給口より揮発性難燃剤(F)を液状
添加することを特徴とするポリフェニレンエーテル樹脂
組成物の製造法に関するものである。各原料供給口の間
のスクリュー機構は送りと溶融混練の能力を有する機構
とし、各原料供給口では樹脂がベントアップしないよう
に圧力がかからないスクリュー機構とする。第2
(2)、第3(3)供給口近くには、大気ベント口
(6)、(7)をつけることが望ましい。第3供給口は
フィードする物がない場合は使用せず、塞ぐケースもあ
る。
Further, other compositions can be added. In FIG. 1, the case where another composition is added to the case of claim 9 will be described in detail. In a melt kneader such as an extruder, a first raw material supply port (1) provided on the upstream side with respect to the flow direction of raw materials. , A second (2), a third (3), and a fourth raw material supply port (4), and the polyphenylene ether resin (A) and the general-purpose polystyrene (B) are dry-blended or / and mixed from the first supply port (1). And after the first stage of devolatilization in (5) with a composition having a high concentration of polyphenylene ether resin having a high volatile content, which is supplied individually, and then through a second (2) supply port, a general-purpose polystyrene (B), an elastomer-reinforced styrene resin (C), elastomer (E), nonvolatile flame retardant (G), third (3) general-purpose polystyrene (B), elastomer-reinforced styrene resin (C), elastomer (E), filler (D), nonvolatile from the supply port Flame retardant (G Was added and further subjected to devolatilization (8), a manufacturing method of a polyphenylene ether resin composition volatile flame retardant than the fourth supply port (F) is characterized by adding liquid. The screw mechanism between the raw material supply ports is a mechanism having the ability of feeding and melt kneading, and a screw mechanism is applied at each raw material supply port so that no pressure is applied so that the resin does not vent up. Second
(2) It is desirable to provide an air vent port (6) or (7) near the third (3) supply port. The third supply port is not used when there is no material to be fed, and may be closed.

【0025】エラストマー補強スチレン樹脂をサイドフ
ィード供給することにより、エラストマーの熱履歴を少
なくすることにより劣化を防ぎ、耐衝撃性の高いかつ揮
発分の少ないポリフェニレンエーテル樹脂組成物を得る
ことができる。エラストマー補強スチレン樹脂はすべて
サイドフィードにすることが望ましいが、(A)成分単
独でトップ供給口(1)より供給する場合は、混練機ス
クリューでの初期における溶融混練が不充分になるとい
う問題があり、スチレン樹脂成分が存在しない場合、一
部をトップフィードすることも可能である。
By feeding the elastomer-reinforced styrene resin in a side feed, the thermal history of the elastomer is reduced to prevent deterioration, and a polyphenylene ether resin composition having high impact resistance and low volatile content can be obtained. It is desirable that all the elastomer-reinforced styrene resin be fed in a side feed. However, when the component (A) alone is supplied from the top supply port (1), there is a problem that the initial melt kneading with a kneader screw becomes insufficient. Yes, when no styrene resin component is present, it is possible to top feed a part.

【0026】従来の一段押出ではエラストマー添加によ
り耐衝撃性は向上するが、揮発分の少ない組成物は製造
困難で、二段押出ではエラストマーの添加量増加によっ
て耐衝撃性は向上するもののエラストマーの劣化により
熱安定性に劣ると共に作業性が悪く、使用エネルギーが
大きくなる。添加剤として揮発性難燃剤を加える場合、
減圧脱揮の後に加えることにより、揮発ロスを減らすこ
とができる。不揮発性難燃剤の場合は、どこから加えて
も良く、分割フィードもできる。
In conventional single-stage extrusion, the impact resistance is improved by the addition of an elastomer, but it is difficult to produce a composition with a low volatile content. In the two-stage extrusion, the impact resistance is improved by an increase in the amount of elastomer added, but the deterioration of the elastomer is deteriorated. This leads to poor thermal stability, poor workability, and large energy consumption. When adding a volatile flame retardant as an additive,
Volatile loss can be reduced by adding after vacuum devolatilization. In the case of a non-volatile flame retardant, it can be added from any location, and a divided feed can be made.

【0027】溶融混練機は、1軸・2軸・多軸押出機等
であり、2軸押出機では例えばワーナー&フライドラー
社製のZSKシリーズ、東芝機械社製のTEMシリー
ズ、日本製鋼社製のTEXシリーズ等が有用である。溶
融混練機の長さと口径の比は、L/D=10以上(L=
長さ、D=スクリュー径)80以下で、L/Dが10よ
り短いと脱揮、サイドフィードが困難になる。又、L/
Dが80より長いと樹脂の滞留時間が長くなり、樹脂が
劣化しやすくなるので好ましくない。脱揮機構の圧力は
溶融混練機の各脱揮出口で大気圧以下、好ましくは25
0Torr以下、より好ましくは150Torr以下、
更に好ましくは50Torr以下である。
The melt-kneading machine is a single-screw, twin-screw or multi-screw extruder. Examples of the twin-screw extruder include ZSK series manufactured by Warner & Friedler Co., Ltd., TEM series manufactured by Toshiba Machine Co., and Nippon Steel Corporation. Is useful. The ratio between the length and the diameter of the melt kneader is L / D = 10 or more (L =
If L / D is less than 10 and length / D = screw diameter is 80 or less, devolatilization and side feed become difficult. Also, L /
If D is longer than 80, the residence time of the resin becomes longer, and the resin is apt to deteriorate, which is not preferable. The pressure of the devolatilizing mechanism is below atmospheric pressure at each devolatilizing outlet of the melt kneader, preferably 25
0 Torr or less, more preferably 150 Torr or less,
More preferably, it is 50 Torr or less.

【0028】溶融混練温度は樹脂トップフィード口から
出口方向に向けて高めから低めに誘導するのが好まし
い。トップフィード口から第1サイドフィード手前まで
は280〜360℃好ましくは320〜340℃、第1
サイドフィード以降は200〜320℃好ましくは24
0〜300℃のバレル温度条件下とする。又、各ゾーン
では10sec−1以上250sec−1以下の剪断速
度にて行うことにより、均一な組成物を得ることができ
る。
It is preferable that the melt-kneading temperature is guided from a higher level to a lower level from the resin top feed port toward the outlet. From the top feed port to just before the first side feed, 280 to 360 ° C, preferably 320 to 340 ° C,
200-320 ° C, preferably 24 after side feed
A barrel temperature condition of 0 to 300 ° C is set. In each zone, a uniform composition can be obtained by performing the shearing at a rate of 10 sec-1 or more and 250 sec-1 or less.

【0029】D成分のフィラーとしては無機物粉末・無
機物フィラー・有機物フィラー・着色剤・シリコーン等
があげられる。具体的には、珪藻土、カーボン、タル
ク、マイカ、ガラスビーズ、ガラスフレーク、ガラス繊
維、炭素繊維、ケプラー繊維、ステンレス繊維、銅繊維
等の中から選ばれた1種又は2種以上の物をあげること
ができる。又これらを樹脂等とコンパウンドして取扱性
・分散性を向上させたマスターバッチも有用である。
Examples of the D component filler include inorganic powder, inorganic filler, organic filler, colorant, silicone and the like. Specifically, one or more kinds selected from diatomaceous earth, carbon, talc, mica, glass beads, glass flake, glass fiber, carbon fiber, Kepler fiber, stainless steel fiber, copper fiber, and the like are given. be able to. A masterbatch in which these are compounded with a resin or the like to improve the handleability and dispersibility is also useful.

【0030】E成分のエラストマーとしては、ポリブタ
ジエン、スチレン−ブタジエン共重合体、ポリイソプレ
ン、ブタジエン−イソプレン共重合体、天然ゴム、エチ
レン−プロピレン共重合体などを挙げることができる。
特に、ポリブタジエン、スチレン−ブタジエン共重合体
が好ましい。これらエラストマーの混合物も有用であ
る。F成分の揮発性難燃剤としてはリン系難燃剤が好ま
しく沸点400℃以下のものでトリフェニルホスフェー
ト、クレジルジフェニルホスフェート等のリン系難燃剤
があげられる。
Examples of the E-component elastomer include polybutadiene, styrene-butadiene copolymer, polyisoprene, butadiene-isoprene copolymer, natural rubber, and ethylene-propylene copolymer.
Particularly, polybutadiene and styrene-butadiene copolymer are preferable. Mixtures of these elastomers are also useful. The volatile flame retardant of the component F is preferably a phosphorus-based flame retardant having a boiling point of 400 ° C. or lower, and examples thereof include phosphorus-based flame retardants such as triphenyl phosphate and cresyl diphenyl phosphate.

【0031】G成分の不揮発性難燃剤としては沸点が4
00℃よりも高く減圧脱揮機構や先端のノズルで揮発し
にくいものが有用である。具体的には、2官能フェノー
ルによる結合構造と特定の単官能フェノールを末端構造
に持つリン酸エステル化合物、三酸化アンチモン、ハロ
ゲン系難燃剤の中から選ばれた1種又は2種以上の物を
あげることができる。リン酸エステル化合物はより具体
的には2,2−ビス−{4−(ビス(メチルフェノキ
シ)ホスフォニルオキシ)フェニル}プロパン(以下
「CR741C」と略す))、2,2−ビス−{4−
(ビス(フェノキシ)ホスフォニルオキシ)フェニル}
プロパン、レゾルシノールビス(ジフェニルフォスフェ
ート)等の芳香族縮合燐酸エステルの中から選ばれた1
種又は2種以上の物をあげることができる。
The non-volatile flame retardant of component G has a boiling point of 4
Those which are higher than 00 ° C. and are not easily volatilized by a vacuum devolatilizing mechanism or a nozzle at the tip are useful. Specifically, one or two or more selected from phosphoric ester compounds, antimony trioxide, and halogen-based flame retardants having a bond structure of a bifunctional phenol and a specific monofunctional phenol at a terminal structure. I can give it. More specifically, the phosphate compound is 2,2-bis- {4- (bis (methylphenoxy) phosphonyloxy) phenyl} propane (hereinafter abbreviated as “CR741C”), 2,2-bis-} 4-
(Bis (phenoxy) phosphonyloxy) phenyl}
1 selected from condensed aromatic phosphates such as propane and resorcinol bis (diphenyl phosphate)
The species or two or more species can be mentioned.

【0032】F成分、G成分については、難燃剤に樹脂
成分が溶融している形態で添加することもできる。尚、
難燃剤に樹脂成分が溶融している形態は、例えば、特願
平8−237812号、PCT/JP97/O3179
記載の方法によって得ることができる。熱可塑性樹脂以
外の成分が入る組成物の量的範囲は、D成分が0〜50
重量%、E成分が0〜30重量%、F成分が0〜30重
量%、G成分が0から30重量%が好ましい。より好ま
しくはD成分が0〜42重量%、E成分が0〜10重量
%、F成分が0〜10重量%、G成分が0〜10重量%
とする。
The F component and the G component can be added in a form in which the resin component is melted in the flame retardant. still,
The form in which the resin component is melted in the flame retardant is described in, for example, Japanese Patent Application No. 8-237812, PCT / JP97 / O3179.
It can be obtained by the method described. The quantitative range of the composition containing components other than the thermoplastic resin is such that the D component is 0 to 50.
% By weight, 0 to 30% by weight of the E component, 0 to 30% by weight of the F component, and 0 to 30% by weight of the G component. More preferably, the D component is 0 to 42% by weight, the E component is 0 to 10% by weight, the F component is 0 to 10% by weight, and the G component is 0 to 10% by weight.
And

【0033】[0033]

【発明の実施の形態】以下、実施例によって本発明を具
体的に説明する。実施例及び比較例においてA成分とし
て用いたポリフェニレンエーテル樹脂は、クロロホルム
中30℃で測定した極限粘度〔η〕が0.53であるポ
リ2,6−ジメチル−1,4フェニレンエーテル(以下
「PPE」と略称する)の粉末を用いた。このものの分
子量300以下の揮発分は、特に記載のない例では1
2,000ppmであった。B成分としての汎用ポリス
チレンは重量平均分子量26万・数平均分子量14万・
分子量300以下の揮発分500ppmのポリスチレン
(以下「GP」と略称する)、C成分としてのエラスト
マー補強スチレン樹脂はポリブタジエン濃度12%・ポ
リブタジエン粒子径1.5μm・揮発分1,000pp
mのハイインパクトポリスチレン(以下「HIPS」と
略称する)を用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to examples. The polyphenylene ether resin used as the component A in Examples and Comparative Examples was poly 2,6-dimethyl-1,4 phenylene ether (hereinafter referred to as “PPE”) having an intrinsic viscosity [η] of 0.53 measured at 30 ° C. in chloroform. ) Was used. The volatile matter having a molecular weight of 300 or less is 1 in the examples not particularly described.
It was 2,000 ppm. General-purpose polystyrene as the B component has a weight average molecular weight of 260,000 and a number average molecular weight of 140,000.
Polystyrene having a molecular weight of 300 or less and a volatile matter of 500 ppm (hereinafter abbreviated as “GP”), and an elastomer-reinforced styrene resin as a C component have a polybutadiene concentration of 12%, a polybutadiene particle diameter of 1.5 μm, and a volatile matter of 1,000 pp.
m high impact polystyrene (hereinafter abbreviated as “HIPS”).

【0034】D成分としてのフィラーは直径13μm・
カット長3mmのガラスファイバー(以下「GF」と略
称する)を用いた。E成分のエラストマーとしてはスチ
レン−ブタジエン共重合体を用いた。F成分としての揮
発性難燃剤としてはトリフェニルホスフェート(以下
「TPP」と略称する)を用いた。G成分としての不揮
発性難燃剤としては、2,2−ビス−{4−(ビス(メ
チルフェノキシ)ホスホリルオキシ)フェニル}プロパ
ン(以下「CR741C」と略す)を用いた。
The filler as the D component has a diameter of 13 μm.
A glass fiber having a cut length of 3 mm (hereinafter abbreviated as “GF”) was used. A styrene-butadiene copolymer was used as the elastomer of the component E. Triphenyl phosphate (hereinafter abbreviated as “TPP”) was used as the volatile flame retardant as the F component. As the non-volatile flame retardant as the G component, 2,2-bis- {4- (bis (methylphenoxy) phosphoryloxy) phenyl} propane (hereinafter abbreviated as “CR741C”) was used.

【0035】なお、実施例及び比較例に記した樹脂組成
物及び成型品の特性評価、押し出し時の比エネルギーは
次の方法に従って実施した。 (1)溶融粘度(MFR):ASTM D1238 (2)アイゾット衝撃強度:ASTM D256 (3)曲げ強さ :ASTM D790 (4)揮発分 :ガスクロマトグラフィーでエチル
ベンゼン、キシレン、トルエン、スチレンなどの低分子
量揮発分はカラム充填剤PEG−20M;25%(坦体
クロモソルブW、カラム長さ3m)を用い115℃で定
量し、スチレンダイマー等の高分子量揮発分はカラム充
填剤シリコンOV−17;3%(坦体クロモソルブW、
カラム長さ3m)を用い、190℃及び260℃にて定
量した。スチレントリマーより前の保持時間を有する成
分を合計して樹脂組成物中の揮発性成分の量とした。 揮発分残存率(%):(押出機出樹脂組成物揮発分/入
り原料揮発分)×100
The characteristics of the resin compositions and molded articles described in the examples and comparative examples, and the specific energy during extrusion were determined according to the following methods. (1) Melt viscosity (MFR): ASTM D1238 (2) Izod impact strength: ASTM D256 (3) Flexural strength: ASTM D790 (4) Volatile content: low molecular weight of ethylbenzene, xylene, toluene, styrene, etc. by gas chromatography Volatile content was determined at 115 ° C. using PEG-20M; 25% (Chromosolve W carrier, column length: 3 m) as a column filler, and high molecular weight volatile components such as styrene dimer were used as column filler silicone OV-17; 3%. (Carbon Chromosolve W,
Quantification was performed at 190 ° C. and 260 ° C. using a column having a length of 3 m). The components having a retention time prior to the styrene trimer were summed to determine the amount of volatile components in the resin composition. Volatile residue rate (%): (Volatile content of resin composition exiting extruder / Volatile raw material entering) × 100

【0036】(5)ガラス転移点(Tg):バイブロン
法(オリエンテック社、レオバイブロンDDV−25F
P)、損失弾性率のピーク位置温度。 (6)比エネルギー(KWH/KG):モーター出力側
電力/吐出量 (7)PPE未溶融物の外観評価:厚さ0.04〜0.
06mm、大きさ50mm×90mmのフィルムを作
り、直径0.2mm以下の未溶融物が1個存在すると1
点、0.2mm〜0.5mmの未溶融物が1個存在する
と10点と評価し、25点以下を良品(○)とした。
(5) Glass transition point (Tg): Vibron method (Orientec, Leo Vibron DDV-25F)
P), peak position temperature of loss modulus. (6) Specific energy (KWH / KG): motor output side power / discharge amount (7) Appearance evaluation of unmelted PPE: thickness 0.04 to 0.
06mm, make a film 50mm x 90mm in size, and if there is one unmelted material with a diameter of 0.2mm or less, 1
If there is one unmelted material having a point of 0.2 mm to 0.5 mm, it was evaluated as 10 points, and 25 points or less were evaluated as good (品).

【0037】[0037]

【実施例1】溶融混練機としては、同方向2軸(L/D
=44)押出機を用いた。図1のトップフィード(1)
よりPPE54.7部/GP12.8部/酸化防止剤
0.3部を加え溶融混練した後、(5)にて50Tor
rにて減圧脱揮し、サイドフィード(2)よりHIPS
を28部加え、溶融混練した後、(8)にて50Tor
rにて脱揮し、更にTPPを4.2部加えた。(3)及
び(7)は塞いで使用しなかった。この樹脂組成物の物
性測定結果を表1に記す。
Embodiment 1 As a melt kneader, a biaxial (L / D)
= 44) An extruder was used. Top feed (1) in Fig. 1
After adding 54.7 parts of PPE / 12.8 parts of GP / 0.3 part of antioxidant, melt-kneading, and then (5) 50 Torr
r devolatilized under reduced pressure and HIPS from side feed (2)
, And melt-kneaded, and then (8) at 50 Torr.
After devolatilization at r, 4.2 parts of TPP was added. (3) and (7) were closed and not used. Table 1 shows the measurement results of the physical properties of the resin composition.

【0038】[0038]

【比較例1】第1段溶融混練機としては、同方向2軸
(L/D=32)押出機を用いた。トップフィードよ
り、PPE54.7部/GP12.8部/酸化防止剤
0.3部/HIPS28部を加え溶融混練した後、50
Torrにて減圧脱揮し、更にTPPを4.2部加え
た。この組成物の揮発分は3,200ppmであった。
第2段溶融混練機としては、単軸90mmφ押出機を用
いた。第1段でできた樹脂組成物を全量トップフィード
し、溶融混練後50Torrで脱揮した。この樹脂組成
物の物性測定結果を表1に記す。
Comparative Example 1 As the first stage melt kneader, a biaxial (L / D = 32) extruder in the same direction was used. From the top feed, 54.7 parts of PPE / 12.8 parts of GP / 0.3 part of antioxidant / 28 parts of HIPS were added and melt-kneaded.
The mixture was devolatilized under reduced pressure at Torr, and 4.2 parts of TPP was further added. The volatile content of this composition was 3,200 ppm.
As the second-stage melt kneader, a single-screw 90 mmφ extruder was used. The whole amount of the resin composition formed in the first stage was top-fed, melt-kneaded, and devolatilized at 50 Torr. Table 1 shows the measurement results of the physical properties of the resin composition.

【0039】[0039]

【比較例2】第1段溶融混練機としては、同方向2軸
(L/D=32)押出機を用いた。トップフィードよ
り、PPE54.7部/GP12.8部/酸化防止剤
0.3部/HIPS25部/エラストマー3部を加え溶
融混練した後、50Torrにて減圧脱揮し、更にTP
Pを4.5部加えた。この組成物の揮発分は3,200
ppmであった。第2段溶融混練機としては、単軸90
mmφ押出機を用いた。第1段でできた樹脂組成物を全
量トップフィードし、溶融混練後50Torrで脱揮し
た。この樹脂組成物の物性測定結果を表1に記す。
Comparative Example 2 As a first-stage melt kneader, a co-rotating biaxial (L / D = 32) extruder was used. From the top feed, 54.7 parts of PPE / 12.8 parts of GP / 0.3 part of antioxidant / 25 parts of HIPS / 3 parts of elastomer were added and melt-kneaded, then devolatilized under reduced pressure at 50 Torr, and further TP.
4.5 parts of P were added. The volatile content of this composition is 3,200
ppm. As the second stage melt kneader, a single shaft 90
A mmφ extruder was used. The whole amount of the resin composition formed in the first stage was top-fed, melt-kneaded, and devolatilized at 50 Torr. Table 1 shows the measurement results of the physical properties of the resin composition.

【0040】[0040]

【実施例2】溶融混練機としては、同方向2軸(L/D
=44)押出機を用いた。図1のトップフィード(1)
より分子量300以下の揮発分を30,000ppmと
したPPE54.7部/GP12.8部/酸化防止剤
0.3部を加え溶融混練した後、(5)にて50Tor
rにて減圧脱揮し、サイドフィード(2)よりHIPS
を28部加え、溶融混練した後、(8)にて50Tor
rにて脱揮し、更にTPPを4.2部加えた。(3)及
び(7)は塞いで使用しなかった。この樹脂組成物の物
性測定結果を表1に記す。
Embodiment 2 As a melt kneader, a biaxial (L / D)
= 44) An extruder was used. Top feed (1) in Fig. 1
After adding and mixing 54.7 parts of PPE / 12.8 parts of GP / 0.3 part of antioxidant with the volatile matter having a molecular weight of 300 or less being 30,000 ppm, the mixture was melt-kneaded.
r devolatilized under reduced pressure and HIPS from side feed (2)
, And melt-kneaded, and then (8) at 50 Torr.
After devolatilization at r, 4.2 parts of TPP was further added. (3) and (7) were closed and not used. Table 1 shows the measurement results of the physical properties of the resin composition.

【0041】[0041]

【比較例3】溶融混練機としては、同方向2軸(L/D
=44)押出機を用いた。図1のトップフィード(1)
より分子量300以下の揮発分を500ppm未満とし
たPPE54.7部/GP12.8部/酸化防止剤0.
3部/キシレン1.6部を十分混合したものを加え溶融
混練した後、(5)にて50Torrにて減圧脱揮し、
サイドフィード(2)よりHIPSを28部加え、溶融
混練した後、(8)にて50Torrにて脱揮し、更に
TPPを4.2部加えた。(3)及び(7)は塞いで使
用しなかった。この樹脂組成物の物性測定結果を表1に
記す。
Comparative Example 3 As a melt kneader, a biaxial (L / D)
= 44) An extruder was used. Top feed (1) in Fig. 1
54.7 parts of PPE / 12.8 parts of GP / antioxidant whose volatile matter having a molecular weight of 300 or less was less than 500 ppm.
A mixture obtained by sufficiently mixing 3 parts / 1.6 parts of xylene was added and melt-kneaded, and then devolatilized under reduced pressure at 50 Torr in (5).
After 28 parts of HIPS was added from the side feed (2) and melt-kneaded, devolatilization was performed at 50 Torr in (8), and 4.2 parts of TPP was further added. (3) and (7) were closed and not used. Table 1 shows the measurement results of the physical properties of the resin composition.

【0042】[0042]

【実施例3】溶融混練機としては、同方向2軸(L/D
=44)押出機を用いた。図1のトップフィード(1)
よりPPE48.1部/GP19部/酸化防止剤0.3
部を加え溶融混練した後、(5)にて50Torrにて
減圧脱揮し、第1サイドフィード(2)よりHIPSを
8部/GP20部を加え溶融混練した後、第2サイドフ
ィード(3)よりGFを20部加え、(8)にて50T
orrにて脱揮し、更にTPPを(4)より4.6部加
えた。この樹脂組成物の物性測定結果を表1に記す。
Embodiment 3 As a melt kneader, a biaxial (L / D)
= 44) An extruder was used. Top feed (1) in Fig. 1
PPE 48.1 parts / GP 19 parts / antioxidant 0.3
After melt kneading at 50 Torr in (5), 8 parts of HIPS / 20 parts of GP were added from the first side feed (2) and melt kneaded, and then the second side feed (3) Add 20 parts of GF, and in (8) 50T
devolatilized at orr, and 4.6 parts of TPP was added from (4). Table 1 shows the measurement results of the physical properties of the resin composition.

【0043】[0043]

【比較例4】第1段溶融混練機としては、同方向2軸
(L/D=32)押出機を用いた。トップフィードよ
り、PPE48.1部/GP19部/酸化防止剤0.3
部/HIPS8部を加え溶融混練した後、50Torr
にて減圧脱揮し、更にTPPを4.6部加えた。第2段
溶融混練機としては、単軸90mmφ押出機を用いた。
第1段でできた樹脂組成物80部とGP20部をトップ
フィードし、溶融混練後、サイドフィードよりGF20
部を加え溶融混練した後、50Torrで脱揮した。こ
の樹脂組成物の物性測定結果を表1に記す。
Comparative Example 4 As the first-stage melt kneader, a biaxial (L / D = 32) extruder in the same direction was used. From top feed, 48.1 parts of PPE / 19 parts of GP / 0.3 of antioxidant
Parts / HIPS 8 parts and melt kneading, then 50 Torr
And devolatilized under reduced pressure, and 4.6 parts of TPP was further added. As the second-stage melt kneader, a single-screw 90 mmφ extruder was used.
80 parts of the resin composition and 20 parts of GP formed in the first stage are top-fed, melt-kneaded, and then GF20 is fed from the side feed.
And melt kneading, followed by devolatilization at 50 Torr. Table 1 shows the measurement results of the physical properties of the resin composition.

【0044】[0044]

【実施例4】溶融混練機としては、同方向2軸(L/D
=44)押出機を用いた。トップフィード(1)よりP
PE54.7部/GP12.8部/酸化防止剤0.3部
を加え溶融混練した後、(5)にて50Torrにて減
圧脱揮し、第1サイドフィード(2)よりHIPSを2
8部、第2サイドフィード(3)よりCR741Cを
4.2部加え、溶融混練した後、(8)にて50Tor
rにて脱揮した。(7)は塞いだ。この樹脂組成物の物
性測定結果を表1に記す。
Embodiment 4 As a melt kneader, a biaxial (L / D)
= 44) An extruder was used. P from top feed (1)
After adding and mixing 54.7 parts of PE / 12.8 parts of GP / 0.3 part of antioxidant, the mixture was melted and kneaded, and then devolatilized under reduced pressure at 50 Torr in (5), and HIPS was reduced to 2 from the first side feed (2).
8 parts, 4.2 parts of CR741C was added from the second side feed (3), and the mixture was melt-kneaded.
devolatilized at r. (7) is closed. Table 1 shows the measurement results of the physical properties of the resin composition.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【発明の効果】本発明によれば、耐衝撃性の改良と、揮
発分の少ない特性を同時に満足した熱可塑性樹脂組成物
を工業的に製造する方法において、エネルギー的、作業
的に有利に製造できる。
According to the present invention, in a method for industrially producing a thermoplastic resin composition which simultaneously satisfies the improvement of impact resistance and the property of low volatile content, it is advantageous in terms of energy and work. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を説明するための溶融混練機の概略図で
ある。
FIG. 1 is a schematic view of a melt kneader for explaining the present invention.

【符号の説明】[Explanation of symbols]

1 第1原料供給口(トップフィード供給口) 2 第2原料供給口(第1サイドフィード供給口) 3 第3原料供給口(第2サイドフィード供給口) 4 第4原料供給口 5 第1減圧脱揮口 6 大気ベント口 7 大気ベント口 8 第2減圧脱揮口 A:ポリフェニレンエーテル樹脂 B:スチレン樹脂 C:エラストマー補強スチレン樹脂 D:フィラー E:エラストマー F:揮発性難燃剤 G:不揮発性難燃剤 DESCRIPTION OF SYMBOLS 1 1st raw material supply port (top feed supply port) 2 2nd raw material supply port (1st side feed supply port) 3 3rd raw material supply port (2nd side feed supply port) 4 4th raw material supply port 5 1st decompression Volatilization port 6 Atmospheric vent port 7 Atmospheric vent port 8 Second decompression devolatilizing port A: Polyphenylene ether resin B: Styrene resin C: Elastomer reinforced styrene resin D: Filler E: Elastomer F: Volatile flame retardant G: Non-volatile non-volatile Fuel

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂(A)と、熱可塑性樹脂
(A)よりも溶融温度又はガラス転移点が10℃以上低
い熱可塑性樹脂(B)及び(C)とを溶融混練し熱可塑
性樹脂組成物を製造する方法において、分子量300以
下の揮発分を500ppmから30,000ppm有す
る熱可塑性樹脂(A)と(A)成分より分子量300以
下の揮発分の少ない熱可塑性樹脂(B)とを溶融混練機
のトップ供給口からフィードし、減圧脱揮後、サイドフ
ィード口から熱可塑性樹脂(C)を供給することを特徴
とする熱可塑性樹脂組成物の製造方法。
1. A thermoplastic resin obtained by melt-kneading a thermoplastic resin (A) and thermoplastic resins (B) and (C) having a melting temperature or a glass transition point lower by at least 10 ° C. than the thermoplastic resin (A). In the method for producing a composition, a thermoplastic resin (A) having a volatile content of 300 or less in molecular weight from 500 ppm to 30,000 ppm and a thermoplastic resin (B) having a volatile content of 300 or less in molecular weight than the component (A) are melted. A method for producing a thermoplastic resin composition, comprising feeding from a top supply port of a kneader, devolatilizing under reduced pressure, and then supplying a thermoplastic resin (C) from a side feed port.
【請求項2】 トップ供給口からフィードする熱可塑性
樹脂(A)と熱可塑性樹脂(B)との量が、(B)/
(A)=0.05〜1であり、かつサイドフィード口か
ら供給する熱可塑性樹脂(C)の量が(C)/(B)=
0.5〜5であることを特徴とする請求項1記載の熱可
塑性樹脂組成物の製造方法。
2. The amount of the thermoplastic resin (A) and the thermoplastic resin (B) fed from the top supply port is (B) /
(A) = 0.05 to 1, and the amount of the thermoplastic resin (C) supplied from the side feed port is (C) / (B) =
2. The method for producing a thermoplastic resin composition according to claim 1, wherein the amount is 0.5 to 5.
【請求項3】 熱可塑性樹脂(A)がポリフェニレンエ
ーテル樹脂、熱可塑性樹脂(B)及び(C)がスチレン
樹脂であることを特徴とする請求項1〜2記載の熱可塑
性樹脂組成物の製造方法。
3. The production of a thermoplastic resin composition according to claim 1, wherein the thermoplastic resin (A) is a polyphenylene ether resin, and the thermoplastic resins (B) and (C) are styrene resins. Method.
【請求項4】 熱可塑性樹脂(A)がポリフェニレンス
ルフィド樹脂、熱可塑性樹脂(B)及び(C)が変性ポ
リフェニレンエーテル樹脂及び又はスチレン樹脂である
ことを特徴とする請求項1〜2記載の熱可塑性樹脂組成
物の製造方法。
4. The heat according to claim 1, wherein the thermoplastic resin (A) is a polyphenylene sulfide resin, and the thermoplastic resins (B) and (C) are a modified polyphenylene ether resin and / or a styrene resin. A method for producing a plastic resin composition.
【請求項5】 熱可塑性樹脂(A)がポリカーボネート
樹脂、熱可塑性樹脂(B)及び(C)がABS樹脂及び
又はスチレン樹脂であることを特徴とする請求項1〜2
記載の熱可塑性樹脂組成物の製造方法。
5. The thermoplastic resin (A) is a polycarbonate resin, and the thermoplastic resins (B) and (C) are an ABS resin and / or a styrene resin.
A method for producing the thermoplastic resin composition according to the above.
【請求項6】 熱可塑性樹脂(A)がポリフェニレンエ
ーテル樹脂、熱可塑性樹脂(B)が汎用ポリスチレン、
熱可塑性樹脂(C)がエラストマー補強スチレン樹脂で
あることを特徴とする請求項1〜2記載の熱可塑性樹脂
組成物の製造方法。
6. The thermoplastic resin (A) is a polyphenylene ether resin, the thermoplastic resin (B) is a general-purpose polystyrene,
3. The method for producing a thermoplastic resin composition according to claim 1, wherein the thermoplastic resin (C) is an elastomer-reinforced styrene resin.
【請求項7】 トップフィード口からサイドフィード口
手前までのバレル温度を280〜360℃とし、サイド
フィード口以降のバレル温度を200〜320℃とする
ことを特徴とする請求項1〜2記載の熱可塑性樹脂組成
物の製造方法。
7. The barrel according to claim 1, wherein the barrel temperature from the top feed port to the side before the side feed port is 280 to 360 ° C., and the barrel temperature after the side feed port is 200 to 320 ° C. A method for producing a thermoplastic resin composition.
【請求項8】 減圧脱揮機構が溶融混練機のサイドフィ
ードの後段にも設置することを特徴とする請求項7記載
の熱可塑性樹脂組成物の製造方法。
8. The method for producing a thermoplastic resin composition according to claim 7, wherein the reduced-pressure devolatilization mechanism is also provided after the side feed of the melt kneader.
【請求項9】 溶融混練機のサイドフィードの後段に設
置する減圧脱揮機構の更に後段に揮発性難燃剤をフィー
ドすることを特徴とする請求項8記載の熱可塑性樹脂組
成物の製造方法。
9. The method for producing a thermoplastic resin composition according to claim 8, wherein the volatile flame retardant is fed further downstream of the vacuum devolatilizing mechanism installed downstream of the side feed of the melt kneader.
JP04420098A 1997-02-18 1998-02-12 Method for producing resin composition Expired - Lifetime JP3989075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04420098A JP3989075B2 (en) 1997-02-18 1998-02-12 Method for producing resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4855497 1997-02-18
JP9-48554 1997-02-18
JP04420098A JP3989075B2 (en) 1997-02-18 1998-02-12 Method for producing resin composition

Publications (2)

Publication Number Publication Date
JPH10292053A true JPH10292053A (en) 1998-11-04
JP3989075B2 JP3989075B2 (en) 2007-10-10

Family

ID=26384049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04420098A Expired - Lifetime JP3989075B2 (en) 1997-02-18 1998-02-12 Method for producing resin composition

Country Status (1)

Country Link
JP (1) JP3989075B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541295A (en) * 1999-04-02 2002-12-03 ゼネラル・エレクトリック・カンパニイ Method for producing polyphenylene ether thermoplastic resin composition and product made from the composition
JP2004137450A (en) * 2002-08-22 2004-05-13 Asahi Kasei Chemicals Corp Method for producing resin composition and resin composition
JP2004137447A (en) * 2002-08-22 2004-05-13 Asahi Kasei Chemicals Corp Flame-retardant resin composition and manufacturing method therefor
WO2005030872A1 (en) * 2003-09-30 2005-04-07 Asahi Kasei Chemicals Corporation Process for producing polyphenylene ether resin composition
JPWO2005056260A1 (en) * 2003-12-12 2007-07-05 ポリプラスチックス株式会社 Resin composition with less mold deposit and method for producing the same
JP2007297620A (en) * 2006-04-06 2007-11-15 Nippon Shokubai Co Ltd Acrylic resin, its composition and process for its production
US7544728B2 (en) 2006-04-19 2009-06-09 Asahi Kasei Chemicals Corporation Production process of polyphenylene ether composition
WO2012147185A1 (en) * 2011-04-27 2012-11-01 ポリプラスチックス株式会社 Method for producing polyarylene sulfide resin compositions
WO2017057092A1 (en) * 2015-10-02 2017-04-06 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and method for producing same
JP2017075297A (en) * 2015-10-16 2017-04-20 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
US10385207B2 (en) 2015-10-02 2019-08-20 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and method for producing same
CN112405931A (en) * 2020-10-26 2021-02-26 苏州和塑美科技有限公司 Preparation method of nano-montmorillonite reinforced starch-based biodegradable blown film material, product and application thereof
JP2021030661A (en) * 2019-08-28 2021-03-01 住友化学株式会社 Method for manufacturing resin composition and method for manufacturing resin molded body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295121A (en) * 1992-04-16 1993-11-09 Asahi Chem Ind Co Ltd Poly@(3754/24)phenylene ether) resin powder reduced in residual-volatile content and production thereof
JPH0657008A (en) * 1992-08-05 1994-03-01 Asahi Chem Ind Co Ltd Production of resin composition excellent in thermal stability
JPH06172544A (en) * 1992-12-09 1994-06-21 Asahi Chem Ind Co Ltd Polyphenylene ether powder
JPH07149917A (en) * 1993-09-27 1995-06-13 Mitsubishi Chem Corp Production of thermoplastic resin composition
JPH081665A (en) * 1994-06-23 1996-01-09 Asahi Chem Ind Co Ltd Production of high strength polyphenylene ether resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295121A (en) * 1992-04-16 1993-11-09 Asahi Chem Ind Co Ltd Poly@(3754/24)phenylene ether) resin powder reduced in residual-volatile content and production thereof
JPH0657008A (en) * 1992-08-05 1994-03-01 Asahi Chem Ind Co Ltd Production of resin composition excellent in thermal stability
JPH06172544A (en) * 1992-12-09 1994-06-21 Asahi Chem Ind Co Ltd Polyphenylene ether powder
JPH07149917A (en) * 1993-09-27 1995-06-13 Mitsubishi Chem Corp Production of thermoplastic resin composition
JPH081665A (en) * 1994-06-23 1996-01-09 Asahi Chem Ind Co Ltd Production of high strength polyphenylene ether resin composition

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541295A (en) * 1999-04-02 2002-12-03 ゼネラル・エレクトリック・カンパニイ Method for producing polyphenylene ether thermoplastic resin composition and product made from the composition
JP2004137450A (en) * 2002-08-22 2004-05-13 Asahi Kasei Chemicals Corp Method for producing resin composition and resin composition
JP2004137447A (en) * 2002-08-22 2004-05-13 Asahi Kasei Chemicals Corp Flame-retardant resin composition and manufacturing method therefor
JP4794302B2 (en) * 2003-09-30 2011-10-19 旭化成ケミカルズ株式会社 Method for producing polyphenylene ether resin composition
WO2005030872A1 (en) * 2003-09-30 2005-04-07 Asahi Kasei Chemicals Corporation Process for producing polyphenylene ether resin composition
JPWO2005030872A1 (en) * 2003-09-30 2007-11-15 旭化成ケミカルズ株式会社 Method for producing polyphenylene ether resin composition
US7541399B2 (en) 2003-09-30 2009-06-02 Asahi Kasei Chemicals Corporation Process for producing polyphenylene ether resin composition
JPWO2005056260A1 (en) * 2003-12-12 2007-07-05 ポリプラスチックス株式会社 Resin composition with less mold deposit and method for producing the same
JP2007297620A (en) * 2006-04-06 2007-11-15 Nippon Shokubai Co Ltd Acrylic resin, its composition and process for its production
US7544728B2 (en) 2006-04-19 2009-06-09 Asahi Kasei Chemicals Corporation Production process of polyphenylene ether composition
WO2012147185A1 (en) * 2011-04-27 2012-11-01 ポリプラスチックス株式会社 Method for producing polyarylene sulfide resin compositions
WO2017057092A1 (en) * 2015-10-02 2017-04-06 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and method for producing same
US10385207B2 (en) 2015-10-02 2019-08-20 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and method for producing same
JP2017075297A (en) * 2015-10-16 2017-04-20 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
JP2021030661A (en) * 2019-08-28 2021-03-01 住友化学株式会社 Method for manufacturing resin composition and method for manufacturing resin molded body
CN112405931A (en) * 2020-10-26 2021-02-26 苏州和塑美科技有限公司 Preparation method of nano-montmorillonite reinforced starch-based biodegradable blown film material, product and application thereof
CN112405931B (en) * 2020-10-26 2022-09-20 苏州和塑美科技有限公司 Preparation method of nano-montmorillonite reinforced starch-based biodegradable blown film material, product and application thereof

Also Published As

Publication number Publication date
JP3989075B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JPH02110147A (en) Polyphenylene ether/polyolefin composition
JP3989075B2 (en) Method for producing resin composition
AU3759400A (en) Polyphenylene ether resin concentrates containing organic phosphates
US4228258A (en) Resin composition containing polyphenylene oxide
US5008314A (en) Polyphenylene ether compositions resistant to environmental stress cracking
US6133379A (en) Method for producing a resin composition
JPH08199051A (en) Composition comprising poly(phenylene ether) resin and polyester resin and having improved heat resistance and fluiditity
JPH06345918A (en) Thermoplastic resin composition
JP3735966B2 (en) Resin composition and process for producing the same
EP1259567A1 (en) Poly(arylene ether)-polystyrene composition
JP4357009B2 (en) Polyphenylene ether resin composition having excellent light discoloration resistance
JP3558381B2 (en) Method for producing flame-retardant resin composition
JP3465969B2 (en) Method for producing flame-retardant resin composition
US20180142098A1 (en) Resin composition
JP2797015B2 (en) Resin molding
JP2001064503A (en) Thermoplastic resin composition, its preparation and pump part
JPH0940858A (en) Film or sheet of polyphenylene ether
JP2973498B2 (en) Resin composition
JPS63199753A (en) Polystyrene modified in impact resistance by rubber and polyphenylene ether resin containing the same
JPH06200147A (en) Polyphenylene ether-based resin composition
JPH081665A (en) Production of high strength polyphenylene ether resin composition
JPH08134346A (en) Polypheylene ether resin composition
JPH11116794A (en) Ic tray-molding resin composition
JP3812612B2 (en) Polyphenylene ether resin composition that resists photo-discoloration
JP2593532B2 (en) Method for producing thermoplastic polyester resin composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term