JPS5842288B2 - High strength carbon fiber and its manufacturing method - Google Patents

High strength carbon fiber and its manufacturing method

Info

Publication number
JPS5842288B2
JPS5842288B2 JP51029204A JP2920476A JPS5842288B2 JP S5842288 B2 JPS5842288 B2 JP S5842288B2 JP 51029204 A JP51029204 A JP 51029204A JP 2920476 A JP2920476 A JP 2920476A JP S5842288 B2 JPS5842288 B2 JP S5842288B2
Authority
JP
Japan
Prior art keywords
fiber
strength
transition metal
fibers
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51029204A
Other languages
Japanese (ja)
Other versions
JPS52114726A (en
Inventor
徹 平松
健一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP51029204A priority Critical patent/JPS5842288B2/en
Publication of JPS52114726A publication Critical patent/JPS52114726A/en
Publication of JPS5842288B2 publication Critical patent/JPS5842288B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 従来炭素繊維は耐熱性、耐摩性、耐蝕性、電気伝導性な
どに加えて強度、弾性率が著しく太きいという特性を有
するために、断熱材、アブレーション材、軸受材、フィ
ルター、バッキング等の一般的用途のほかに、複合材料
としてロケット、航空機、高圧容器、超遠心分離機等高
度の機械的、化学的特性を要求される分野において使用
されている。
[Detailed Description of the Invention] Conventionally, carbon fibers have properties such as heat resistance, abrasion resistance, corrosion resistance, electrical conductivity, etc., as well as extremely high strength and elastic modulus, so they have been used as insulation materials, abrasion materials, and bearing materials. In addition to general uses such as filters, backings, etc., it is also used as a composite material in fields that require high mechanical and chemical properties such as rockets, aircraft, high-pressure containers, and ultracentrifuges.

そしてロケットエンジン、航空機、高圧容器、超遠心分
離機等の用途に釦いては、その性能、耐久性の向上のた
めにより高強度で均質な信頼性の高い炭素繊維が要望さ
れているが、かかる炭素繊維を再現性よく、工業的に製
造する方法には多が現状である。
For applications such as rocket engines, aircraft, high-pressure vessels, and ultracentrifuges, carbon fibers with higher strength, homogeneity, and reliability are required to improve performance and durability. At present, there are many methods for industrially producing carbon fibers with good reproducibility.

すなわち、よく知られているように高強度の炭素繊維は
アクリル系繊維、レーヨン等の原料繊維を約200〜3
50°Cの高温の酸化性ガス雰囲気中で予備酸化した後
更に高温の不活性ガス雰囲気中で炭化することにより製
造されるが通常このような方法により得られる炭素繊維
の強度は約250ゆ/m4、弾性率22 tonメー程
度であり、しかも予備酸化むよび炭化の各工程において
繊維を引伸筐たは緊張下に維持する必要があるため、焼
成条件の制御が繁雑であり、安定した性能、品質を有す
る炭素繊維を再現性よく得ることが困難である。
In other words, as is well known, high-strength carbon fiber is made from raw material fibers such as acrylic fibers and rayon, and is made from approximately 200 to 30% carbon fiber.
Carbon fibers are produced by pre-oxidizing in an oxidizing gas atmosphere at a high temperature of 50°C and then carbonizing in an inert gas atmosphere at a high temperature, and the strength of carbon fibers obtained by this method is usually about 250 Yu/min. m4, elastic modulus is about 22 tons, and since it is necessary to maintain the fiber in a stretched case or under tension in each step of pre-oxidation and carbonization, controlling the firing conditions is complicated, and stable performance and It is difficult to obtain high-quality carbon fibers with good reproducibility.

また、特公昭47−26974号公報には高強度の炭素
繊維を短時間で製造する方法として、前記アクリル系繊
維を予備酸化する前に鉱酸とマンガン、クロム、鉄等の
遷移金属の酸素酸塩を含む溶液で前処理する方法が提案
されているが、この方法により得られる炭素繊維の強度
は100 KgA7Ifを越えるものではなく、前処理
を施さないで得られる公知の炭素繊維に比べて格別高強
度のものとはいえないのである。
In addition, Japanese Patent Publication No. 47-26974 discloses a method for producing high-strength carbon fibers in a short time, in which mineral acid and oxygen acid of transition metals such as manganese, chromium, and iron are used before preoxidizing the acrylic fibers. A method of pretreatment with a salt-containing solution has been proposed, but the strength of the carbon fiber obtained by this method does not exceed 100 KgA7If, which is significantly higher than known carbon fibers obtained without pretreatment. It cannot be said to be of high strength.

さらに、特開昭49−527号公報には過マンガン酸カ
リ筐たは重クロム酸カリ水溶液でアクリル系繊維を前処
理した後公知の予備酸化と炭化処理を行う方法が提案さ
れているが、この方法においては予備酸化された繊維を
塩酸溶液に浸漬して繊維表面に付着した化学的酸化剤を
除去することによってはじめて高強度の炭素繊維かえら
れることが記載されている。
Furthermore, JP-A-49-527 proposes a method in which acrylic fibers are pretreated with an aqueous solution of potassium permanganate or potassium dichromate, and then subjected to known preliminary oxidation and carbonization treatments. In this method, it is described that high-strength carbon fibers can only be obtained by immersing pre-oxidized fibers in a hydrochloric acid solution to remove the chemical oxidizing agent adhering to the fiber surfaces.

本発明者らは上記化学的酸化剤で前処理を施したアクリ
ル系繊維からの炭素繊維の製造法について検討した結果
、この方法により得られる炭素繊維は毛羽が多く、しか
も特開昭49−527号公報に記載の方法に釦いては予
備酸化後の塩酸溶液処理が繁雑であり、繊維から除去さ
れた酸化剤の回収、後処理を必要とするという環境公害
上の問題を伴う欠点があることが判明し、鋭意研究を進
めて本発明を見出したのである。
The present inventors investigated a method for producing carbon fibers from acrylic fibers pretreated with the above chemical oxidizing agent, and found that the carbon fibers obtained by this method had a lot of fluff. The method described in the publication has disadvantages in that the hydrochloric acid solution treatment after preliminary oxidation is complicated, and that it requires recovery of the oxidizing agent removed from the fibers and post-treatment, which poses environmental pollution problems. This led to the discovery of the present invention through intensive research.

すなわち、本発明の目的とするところは機械的強度、特
にストランドコンポジット強度にすぐれ、繊維表面が主
として遷移金属によび7寸たは該金属化合物によって改
質され、樹脂との接着性が向上した易加工性の炭素繊維
を提供するにあり、他の目的はアクリル系繊維表面に付
着含有せしめた前記酸化剤をその11炭素繊維の表層部
に化体せしめ、該酸化剤を除去、回収することがない新
規炭素繊維の製造方法を提供するにある。
That is, the object of the present invention is to provide a material that has excellent mechanical strength, particularly strand composite strength, whose fiber surface is modified mainly by a transition metal or a metal compound, and which has improved adhesiveness with resin. Another object of the present invention is to provide processable carbon fibers, and another purpose is to convert the oxidizing agent attached to the surface of the acrylic fiber into the surface layer of the carbon fiber, and to remove and recover the oxidizing agent. The purpose of the present invention is to provide a novel method for producing carbon fiber.

更に他の目的は以下に詳述するところから明らかになる
であろう。
Further objects will become apparent from the detailed description below.

上記本発明の目的はマンガン、クロム釦よび鉄からなる
群から選ばれた遷移金属釦よび/または該遷移金属化合
物を繊維重量当り該金属原子換算で約0.3〜2.5重
量係の範囲量含有する繊維表層部を有し、かつストラン
ドコンポジット強度が少くトモ約340−7m7i、ス
トランドコンポジット伸度が少くとも約1,4多である
炭素繊維トよびアクリロニトリル系重合体繊維をマンガ
ン、クロム釦よび鉄からなる群から選ばれた遷移金属酸
化剤の溶液中に浸漬する前処理工程、少くとも約200
℃の酸化性ガス雰囲気中で加熱する予備酸化処理工程ト
よび少くとも1000°Cの不活性ガス雰囲気中で加熱
する炭化工程を順次通過せしめて炭素繊維を製造する方
法において、前記予備酸化工程に訃ける酸化炉内に設け
た移送ローラ、糸条ガイド等の加熱体表面に繊維が接触
する時間を約15秒/回以下に制御して予備酸化するこ
とを特徴とする炭素繊維の製造方法によって遠戚するこ
とができる。
The object of the present invention is to provide a transition metal button selected from the group consisting of manganese, chromium button, and iron, and/or the transition metal compound in a range of about 0.3 to 2.5 weight ratio in terms of the metal atom per fiber weight. Carbon fibers and acrylonitrile-based polymer fibers, which have a fiber surface layer containing a large amount of carbon fibers, have a low strand composite strength of about 340-7 m7i, and a strand composite elongation of at least about 1.4 m, are combined with manganese and chromium buttons. a pretreatment step of immersion in a solution of a transition metal oxidizing agent selected from the group consisting of iron and iron;
A method for producing carbon fibers by sequentially passing through a preliminary oxidation treatment step of heating in an oxidizing gas atmosphere at a temperature of at least 1000°C and a carbonization step of heating in an inert gas atmosphere of at least 1000°C, wherein the preliminary oxidation step By a method for producing carbon fiber, which is characterized in that preliminary oxidation is carried out by controlling the contact time of the fiber with the surface of a heating element such as a transfer roller or a thread guide provided in an oxidation furnace to about 15 seconds or less per time. They can be distant relatives.

本発明に釦いて炭素繊維は前記遷移金属および/捷たは
該遷移金属化合物を該金属原子換算量で約0.3〜2.
5wt%の範囲量含有する表層部を有するが、この表層
部に存在する該遷移金属および/捷たは該遷移金属化合
物は通常の化学的手段によっては除去されない程度に強
固に炭素繊維に結合している。
According to the present invention, the carbon fiber contains the transition metal and/or the transition metal compound in an amount of about 0.3 to 2.0% in terms of the metal atom.
The carbon fiber has a surface layer containing an amount in the range of 5 wt%, but the transition metal and/or the transition metal compound present in this surface layer is strongly bonded to the carbon fiber to the extent that it cannot be removed by ordinary chemical means. ing.

釦そらく、高温の炭化処理によって炭素繊維に焼結され
た構造に変化しているものと考えられる。
It is thought that the structure of the button has changed to a sintered carbon fiber due to the high-temperature carbonization process.

すなわち第1図は本発明の1実施態様によってえられた
炭素繊維の表面構造を示す走査電顕写真であるが、図か
ら判るように繊維表面の遷移金属釦よび/または該遷移
金属化合物は粒子状ではあるが焼成工程で一度融解した
如く、広がった形態で繊維に固着されていることがわか
る。
That is, FIG. 1 is a scanning electron micrograph showing the surface structure of a carbon fiber obtained according to one embodiment of the present invention. As can be seen from the figure, the transition metal buttons and/or the transition metal compound on the fiber surface are particles. It can be seen that although it has a shape, it is fixed to the fiber in a spread form, as if it had been melted once during the firing process.

したがって本発明の炭素繊維はその表面に存在する該遷
移金属および/または該遷移金属化合物自体努よびこれ
らの遷移金属釦よび/筐たは該遷移金属化合物による表
面の凹凸化によって樹脂との接着性が向上すると同時に
複合材料としての強度が大巾に向上する。
Therefore, the carbon fiber of the present invention has improved adhesion with the resin due to the transition metal and/or transition metal compound present on its surface and the unevenness of the surface due to the transition metal button and/or the casing or the transition metal compound. At the same time, the strength of the composite material is greatly improved.

さらに遷移金属および/昔たは該遷移金属化合物の存在
は炭素繊維の開繊性を向上させるので後処理捷たは製品
化に当って取扱い易く、品質、性能の均一な製品を再現
性よ〈製造することができる。
Furthermore, the presence of transition metals and/or transition metal compounds improves the opening properties of carbon fibers, making them easier to handle during post-processing or commercialization, and making it possible to reproducibly produce products with uniform quality and performance. can be manufactured.

しかしながら、前記炭素繊維表層部中に含有される遷移
金属および/または該遷移金属化合物の量は金属原子換
算で繊維重量当り0.3〜2.5wt%の範囲内である
ことが必要であり、その含有量が0.3%より少なくな
ると、炭素繊維の強度向上および樹脂との接着性向上効
果が顕著でなくなるため好1しくない。
However, the amount of the transition metal and/or the transition metal compound contained in the carbon fiber surface layer needs to be within the range of 0.3 to 2.5 wt% per fiber weight in terms of metal atoms, If the content is less than 0.3%, the effect of improving the strength of the carbon fibers and the adhesion with the resin will not be significant, which is not preferable.

一方、2.5係を越える場合は炭素繊維の強度、接着性
などの向上に格別効果がなく、製造上繊維構造に欠陥を
生じ易くなるので好1しくないのである。
On the other hand, if the ratio exceeds 2.5, there is no particular effect on improving the strength, adhesiveness, etc. of carbon fibers, and defects are likely to occur in the fiber structure during manufacturing, which is not desirable.

本発明において前処理繊維および炭素繊維における遷移
金属耘よび/または該金属化合物の付着量とは、次のご
とくして求められる測定値である1ず、試料約1gを籾
量し600〜650℃の空気中で約2時間加熱灰化し、
灰分を6規定塩酸で溶解し、蒸留水で60倍に希釈して
得た溶液を日立207型原子吸光分光光度計を用いて波
長2795m、”の吸光度を求め、あらかじめ作成しで
ある遷移金属濃度−吸光度の較正曲線を用いてマンガン
含有量を求める。
In the present invention, the adhesion amount of transition metals and/or metal compounds on pretreated fibers and carbon fibers is a measured value determined as follows. heat in the air for about 2 hours,
The ash content was dissolved in 6N hydrochloric acid, and the resulting solution was diluted 60 times with distilled water. The absorbance at a wavelength of 2795 m was determined using a Hitachi 207 atomic absorption spectrophotometer, and the transition metal concentration was determined using a pre-prepared method. - Determine the manganese content using the absorbance calibration curve.

次に本発明になる炭素繊維はフィラメントの引張強度で
はなく、ストランドコンポジットとしての引張強伸度が
それぞれ少くとも約340 kg/rIL1Nおよび少
くとも約1.4条であるという特徴を有する。
Next, the carbon fiber according to the present invention is characterized not by the tensile strength of the filament but by the tensile strength and elongation as a strand composite of at least about 340 kg/rIL1N and at least about 1.4 threads, respectively.

本発明に釦いてストランドコンポジツ)強1i釦よび伸
度は次のごとくして求められる測定値である。
Strand composite according to the present invention) Strength and elongation are measured values obtained as follows.

筐ず、ストランド含浸用樹脂としてチッソノックス22
1(チッソ株式会社製)100部(重量、モノエチルア
□ン三弗化ホウ素錯体3部およびアセトン4部を調合し
た室温の液中に、炭素繊維束を1800デニール当り約
50,9の張力をかけた状態で含浸せしめた後約130
℃で30分間加熱し硬化させて、ストランドコンポジッ
ト試験片を得る。
Chissonox 22 as resin for strand impregnation
1 (manufactured by Chisso Corporation) 100 parts (by weight, by weight) A carbon fiber bundle was placed under a tension of approximately 50.9 per 1800 denier in a solution at room temperature containing 3 parts of monoethylane trifluoroboron complex and 4 parts of acetone. Approximately 130% after being impregnated with
A strand composite specimen is obtained by heating and curing at ℃ for 30 minutes.

この試験片を島津オートグラフを用いて試長200mm
、引張速度5 an /y11 i n で引張るこ
とにより強伸度を求める。
This test piece was cut to a test length of 200 mm using a Shimadzu autograph.
, the strength and elongation is determined by pulling at a tensile rate of 5 an /y11 i n .

上記測定法から判るようにストランドコンポジット強伸
度はフィラメントの強伸度に必ずしも対応しないが複合
材料あるいは炭素繊維製品そのものにより近似した強伸
度を示すことは明らかである。
As can be seen from the above measurement method, the strength and elongation of the strand composite does not necessarily correspond to the strength and elongation of the filament, but it is clear that the strength and elongation of the strand composite is more similar to the strength and elongation of the composite material or carbon fiber product itself.

しかも本発明の炭素繊維はフィラメント強度においても
約370 kg /mA以上であり、フィラメント強度
に加えて単繊維相互間の強度のバラツキが少ない均一な
炭素繊維である。
Furthermore, the carbon fiber of the present invention has a filament strength of approximately 370 kg/mA or more, and is a uniform carbon fiber with little variation in strength between single fibers in addition to filament strength.

このような本発明繊維は過マンガン酸カリ等の酸化剤に
よる前処理を施した後焼成することにより得られるか、
公知の方法をその1筐適用しても得られるものではない
Such fibers of the present invention can be obtained by pretreatment with an oxidizing agent such as potassium permanganate and then firing.
This cannot be obtained by applying only one known method.

以下本発明炭素繊維の製造法について詳述する。The method for producing the carbon fiber of the present invention will be described in detail below.

筐ず、本発明に用いられる原料繊維としてはアクリロニ
トリル(以下ANと略す)系重合体繊維、好1しくはポ
リアクリロニトリルまたはANを少くとも85mol俤
と該ハと共重合性のビニルモノマ、たとえばアクリル酸
、メタクリル酸、イタコン酸筐たはそれらのエステル類
、2−オキシメチルアクリロニトリル、2−オキシメチ
ルアクリル酸メチル、2−オキシメチルアクリル酸エチ
ル、スチレン、塩化ビニル、塩化ビニリデンなど15m
o 1%以下とのAN系共重合体繊維が用いられる。
The raw material fibers used in the present invention are acrylonitrile (hereinafter abbreviated as AN) polymer fibers, preferably polyacrylonitrile or AN in an amount of at least 85 mol and a vinyl monomer copolymerizable with the fibers, such as acrylic acid. , methacrylic acid, itaconic acid or their esters, 2-oxymethylacrylonitrile, methyl 2-oxymethylacrylate, ethyl 2-oxymethylacrylate, styrene, vinyl chloride, vinylidene chloride, etc.15m
o An AN-based copolymer fiber with 1% or less is used.

これらの繊維はフィラメント4たはトウいずれの形態で
もよい。
These fibers may be in the form of filaments 4 or tows.

上記原料繊維はまずマンガン、クロムむよび鉄からなる
群から選ばれた遷移金属の酸化剤の溶液中に浸漬して前
処理される。
The raw material fiber is first pretreated by immersing it in a solution of an oxidizing agent of a transition metal selected from the group consisting of manganese, chromium, and iron.

ここで上記遷移金属の酸化剤としてはアクリルニトリル
系繊維を化学的に酸化する能力を有し、かつ水に可溶性
のものであればよく特に限定されない。
Here, the transition metal oxidizing agent is not particularly limited as long as it has the ability to chemically oxidize acrylonitrile fibers and is soluble in water.

このような遷移金属化合物(酸化剤)としてはたとえば
KMnO4゜NaMnO4t K2 Cr 207 t
Na 2 Cr 207 s F e CA’3などを
挙げることができ、これらの中でもアクリル系繊維に対
する酸化能力にすぐれたKMnO4が特に適している。
Examples of such transition metal compounds (oxidizing agents) include KMnO4゜NaMnO4t K2 Cr 207 t
Examples include Na 2 Cr 207 s Fe CA'3, and among these, KMnO4, which has excellent oxidizing ability for acrylic fibers, is particularly suitable.

また前処理に使用する酸化剤溶液としては濃度が約0.
5〜10重量多のものがよく、約0.5多より濃度が小
さくなると、処理時間を長くしないと所望の遷移金属釦
よび/または遷移金属化合物を繊維表面に付着、結合せ
しめることができず、生産性も悪いし、一方10%を越
えると該酸化剤の繊維への付着が不均一になり易く、そ
のため予備酸化または炭化工程で繊維の切断が起り易く
なるので好1しくない。
In addition, the concentration of the oxidizing agent solution used for pretreatment is approximately 0.
A weight of 5 to 10% is better; if the concentration is less than about 0.5%, the desired transition metal button and/or transition metal compound cannot be attached or bonded to the fiber surface unless the treatment time is prolonged. On the other hand, if it exceeds 10%, the oxidizing agent tends to adhere unevenly to the fibers, making it easy for the fibers to be cut during the preliminary oxidation or carbonization process, which is not preferable.

同様に酸化剤溶液の温度も生産性、付着量、水に対する
溶解度などとの関係で約20〜98℃の範囲にするのが
よい。
Similarly, the temperature of the oxidizing agent solution is preferably in the range of about 20 to 98° C. in relation to productivity, adhesion amount, solubility in water, etc.

酸化剤溶液のpHについても特に制限はなくアルカリ、
酸性のいずれでもよいがアクリル系繊維に付着する酸化
剤−実際には上記酸化剤の形だけではなくて、酸化物等
を含む各種遷移金属化合物として付着結合する−の量は
金属原子換算量で約0.2〜1,5重量多の範囲になる
ようにコントロールするのがよい。
There are no particular restrictions on the pH of the oxidizing agent solution; alkaline,
The amount of oxidizing agent that adheres to the acrylic fibers (actually, not only in the form of the above-mentioned oxidizing agent but also as various transition metal compounds including oxides), which may be any acidic type, is expressed in terms of metal atoms. It is preferable to control the amount within the range of about 0.2 to 1.5 weight.

すなわち該酸化剤の付着量が金属原子換算で約0.2多
より少なくなると本発明に規定する遷移金属および/筐
たは該遷移金属化合物が一体に繊維に固着した表面部が
形成されず、強度の向上が不十分になるし、一方約1.
5係を越えると予備酸化、炭化工程に釦ける繊維の切断
等のトラブルが発生したり、均一な品質、性能の炭素繊
維がえられ難いのである。
That is, when the amount of the oxidizing agent attached is less than about 0.2 in terms of metal atoms, the surface portion where the transition metal and/or the transition metal compound defined in the present invention are integrally fixed to the fibers is not formed. The improvement in strength will be insufficient, and on the other hand, the improvement in strength will be insufficient.
If the ratio exceeds 5, troubles such as cutting of fibers during pre-oxidation and carbonization processes may occur, and it is difficult to obtain carbon fibers of uniform quality and performance.

かくして前記酸化剤を付着含有せしめられた処理繊維は
その11または約100〜280℃の温度で乾燥したの
ち予備酸化工程に供される。
The treated fibers thus adhering to the oxidizing agent are dried at a temperature of 11 or about 100 DEG to 280 DEG C. and then subjected to a preliminary oxidation step.

本発明の予備酸化工程は約200〜350℃の酸化性ガ
スたとえば空気、酸素またはオゾンを含有する空気、N
09SO2、塩素、亜硝酸等のガス中で加熱する公知の
方法が適用されるが、この場合予備酸化のための炉内に
設けられた繊維を炉中に導入、移送するためのローラや
ガイド等の部材(以下加熱体という)に繊維が接触する
時間を15秒/回以下、好オしくは8秒/回以下に保持
する必要があり、これらの加熱体と繊維との接触時間が
約15秒/回を越えるときはえられる炭素繊維の強度が
低下し約340 kg/rnaの高強度の炭素繊維がえ
難いし、場合によっては炭素繊維の表面、または内部に
クラックやボイド等の構造的欠陥が発生するのである。
The preoxidation step of the present invention is carried out using an oxidizing gas such as air, oxygen or ozone-containing air, N
09A known method of heating in a gas such as SO2, chlorine, or nitrous acid is applied, but in this case, rollers, guides, etc. for introducing and transporting the fibers provided in the furnace for preliminary oxidation are used. It is necessary to keep the contact time of the fibers with the members (hereinafter referred to as heating bodies) at 15 seconds or less, preferably 8 seconds or less, and the contact time between these heating bodies and the fibers is approximately 15 seconds/time or less. If the rotation rate exceeds 2 seconds/rna, the strength of the resulting carbon fiber decreases, making it difficult to obtain a high-strength carbon fiber of approximately 340 kg/rna, and in some cases, structural damage such as cracks or voids may occur on the surface or inside of the carbon fiber. Defects occur.

このような炉内のローラやガイドとの接触による強度低
下を防止するために該予備酸化炉として炉外に繊維移送
用のローラ群を設けた炉を用いることは本発明の目的達
成にかいて特に有利である。
In order to prevent strength reduction due to contact with rollers and guides inside the furnace, it is advantageous to use a furnace provided with a group of rollers for transferring fibers outside the furnace as the preliminary oxidation furnace. Particularly advantageous.

さらに炭素繊維の製造において予備酸化オたは炭化工程
で繊維を緊張下に保持するとえられる炭素繊維の強度が
向上することが知られているが、本発明にづいては予備
酸化むよび炭化工程にむける緊張!たは延伸は弾性率の
向上は認められるが強度の向上には大きな寄与がなく、
約0.039/d以下の張力または収縮許容下に焼成し
ても十分高強度の炭素繊維かえられるという特徴を有す
る。
Furthermore, in the production of carbon fibers, it is known that the strength of carbon fibers is improved by holding the fibers under tension during the pre-oxidation and carbonization steps. Tension towards! Although it is recognized that stretching or stretching improves the elastic modulus, it does not significantly contribute to improving the strength.
It has the characteristic that even if it is fired under a tension of about 0.039/d or less or shrinkage tolerance, a sufficiently high strength carbon fiber can be obtained.

すなわちこのような低張下または収縮許容下に焼成し得
るということは焼成中の張力コントロールを必要としな
い外に緊張または延伸による焼成中の糸切れを防止でき
るし、炭素繊維の引張伸度を向上させることができるの
である。
In other words, the ability to fire under such low tension or shrinkage tolerance does not require tension control during firing, can prevent yarn breakage during firing due to tension or stretching, and can improve the tensile elongation of carbon fibers. It can be improved.

次にかくして得られた酸化繊維は高温の窒素、ヘリウム
、アルゴン等の不活性ガス雰囲気中にもたらされ炭化さ
れるが本発明に釦いては酸化繊維表面に固着する遷移金
属化合物を除去することなく、そのit炭化工程に導入
することによってはじめて遷移金属および遷移金属化合
物が炭素繊維と一体に結合した表層部が繊維外周辺に形
成されるのである。
Next, the oxidized fiber thus obtained is brought into a high-temperature inert gas atmosphere such as nitrogen, helium, argon, etc. and carbonized. However, in the present invention, transition metal compounds that adhere to the surface of the oxidized fiber are removed. Rather, by introducing it into the carbonization process, a surface layer portion in which transition metals and transition metal compounds are integrally bonded to carbon fibers is formed around the outside of the fibers.

また炭化条件としては特に限定されないが好1しくは加
熱温度が350〜500℃の範囲内における該不活性ガ
ス雰囲気の昇温速度を約3000°C分好1しくは20
00°C/分以下とし、かつこの不活性ガス雰囲気の到
達最高温度を1000℃以上にするのがよい。
The carbonization conditions are not particularly limited, but preferably the heating temperature is within the range of 350 to 500°C, and the temperature increase rate of the inert gas atmosphere is set to about 3000°C, preferably 20°C.
It is preferable that the maximum temperature reached by this inert gas atmosphere be 1000°C or higher.

すなわち、雰囲気温度が350〜500℃における昇温
速度が約り000℃/分を越えるときは中空の炭素繊維
になりやすく、また該雰囲気の到達最高温度が1000
℃以下であると炭化工程に時間がかかる上に得られる炭
素繊維の強度、ヤング率が低い。
That is, when the temperature increase rate exceeds about 1,000 °C/min at an ambient temperature of 350 to 500 °C, hollow carbon fibers tend to form, and the maximum temperature reached by the atmosphere is 1,000 °C/min.
If the temperature is below 0.degree. C., the carbonization process will take a long time and the strength and Young's modulus of the obtained carbon fibers will be low.

さらに、得られた炭素繊維は2000℃以上の高温不活
性ガス雰囲気中で加熱して黒鉛繊維に転化することがで
きる。
Further, the obtained carbon fibers can be converted into graphite fibers by heating in a high temperature inert gas atmosphere of 2000° C. or higher.

かくして得られる炭素繊維は遷移金属原子換算量で約0
.3〜2.5多の該遷移金属および遷移金属化合物を含
有する表層部を有し、ストランドコンポジットによる引
張強伸度が約340 g/min以上於よび約1.4多
以上という特性を有する。
The carbon fiber thus obtained has a transition metal atom equivalent amount of approximately 0.
.. The strand composite has a surface layer portion containing 3 to 2.5 g/min of the transition metal and the transition metal compound, and has properties such that the tensile strength and elongation of the strand composite is about 340 g/min or more and about 1.4 g/min or more.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

実施例 1 単糸繊度1.Od、フィラメント数3000本のアクリ
ル系繊維を約90’Cに保たれた5重量係の過マンガン
酸カリウム溶液に2秒から600秒1で浸漬時間を変更
して処理した後水洗・乾燥することにより、マンガン化
合物の付着量がマンガン換算量で0.07wt%から2
wt%昔で変化した前処理繊維を作った。
Example 1 Single yarn fineness 1. Od, 3000 filament acrylic fibers are treated in a potassium permanganate solution of 5 parts by weight kept at about 90'C by changing the immersion time from 2 seconds to 600 seconds 1, then washed with water and dried. As a result, the amount of attached manganese compounds increased from 0.07 wt% to 2% in terms of manganese.
We made pretreated fibers whose wt% changed in the past.

この前処理繊維を空気中で2000C〜300°Cに3
5分間、200’C以上に加熱された物体に接触させる
ことなく、加熱予備酸化処理した後、窒素雰囲気中最高
温度1300℃で炭化処理を行なって得た炭素繊維のマ
ンガンおよびその化合物の付着量と強伸度特性を第1表
に示した。
This pretreated fiber was heated to 2000C to 300℃ in air for 3
Amount of manganese and its compounds deposited on carbon fibers obtained by pre-oxidizing by heating for 5 minutes without contacting objects heated to 200'C or higher, and then carbonizing at a maximum temperature of 1300°C in a nitrogen atmosphere. Table 1 shows the strength and elongation properties.

更に表1に釦ける炭素繊維A、Dよりそれぞれエポキシ
樹脂を用いて、コンポジット試験片を作り、3点曲げ試
1験法により層間セン断強度を測定した結果を第2表に
示した。
Furthermore, composite test pieces were made using epoxy resin from carbon fibers A and D shown in Table 1, and the interlaminar shear strength was measured using the 3-point bending test method. Table 2 shows the results.

実施例 2 実施例1のADと同じ条件で前処理した繊維を空気中で
260℃に45分間加熱予備酸化する際炉内にあって2
60℃に加熱されたローラに1回に接触する時間を0秒
から40秒1で変更して予備酸化処理した後窒素雰囲気
中最高温度1300℃で炭化処理を行なって得た炭素繊
維の強伸度特性を第3表に示した。
Example 2 Fibers pretreated under the same conditions as AD in Example 1 were pre-oxidized by heating at 260°C for 45 minutes in air.
Strong elongation of carbon fibers obtained by preliminary oxidation treatment by changing the contact time at each time with a roller heated to 60°C from 0 seconds to 40 seconds 1, followed by carbonization treatment at a maximum temperature of 1300°C in a nitrogen atmosphere. The temperature characteristics are shown in Table 3.

実施例 3 実施例1のADと同じ条件で前処理した繊維を200〜
300℃に35分間、2QO’C以上に加熱された物体
に接触させることなく、加熱予備酸化する際繊維に与え
る張力を3000デニール当り30gから4414で変
更して行なった後、実施例1と同様の条件で炭化処理を
行なって得た炭素繊維の強度、ヤング率、伸度を第4表
に示した。
Example 3 Fibers pretreated under the same conditions as AD in Example 1 were
After pre-oxidizing by heating at 300°C for 35 minutes without contacting an object heated to 2QO'C or higher, the tension applied to the fiber was changed from 30g per 3000 denier to 4414, and then the same as in Example 1 was carried out. Table 4 shows the strength, Young's modulus, and elongation of the carbon fibers obtained by carbonization under the following conditions.

実施例 4 実施例1のADと同じ条件で前処理ならびに予備酸化処
理した繊維を窒素雰囲気中で最高1300℃で炭化処理
を行なう際、350℃から500℃に卦ける平均昇温速
度を1000℃/分から5000℃/分筐で変更して得
られた炭素繊維の強伸度特性と炭素繊維単糸における中
空化の程度を第5表に示した。
Example 4 When carbonizing fibers pretreated and preoxidized under the same conditions as AD in Example 1 at a maximum temperature of 1300°C in a nitrogen atmosphere, the average temperature increase rate from 350°C to 500°C was set at 1000°C. Table 5 shows the strength and elongation properties of the carbon fibers obtained by changing the heating rate from 5000° C./min to 5000° C./min and the degree of hollowing in the carbon fiber single yarns.

決;施例1 ’1)JJ (V同L7.、.1イ牛−C
前% l’jij iHら(−、J’ (”−””F’
jMj1俊化処、[甲1./(二牽11某M(を誓・昌
←;雰[川、m、 rトド−(l美、 n、’kt:
、i甲イトf」なうに際り、−(l官高温更:’;r
9 (’) O’C−:・−15Q Q ”c、’、、
、 −、’、。
Decision; Example 1 '1) JJ (V same L7., .1 I cow-C
Previous% l'jiji iH et al (-, J'("-""F'
jMj1 Shunkadokoro, [K1. /(Niken 11 a certain M(wo oath・昌←; atmosphere [kawa, m, rtodo-(lmi, n, 'kt:
, i A point
9 (') O'C-:・-15Q Q ``c,',,
, −,',.

−C・寒中し、−C得t・J−1た炭素繊シ4(、の強
If 、 入”2.ゲ阜1、!持性を第(−;良に示
1− A= 、。
The carbon fibers were exposed to -C cold and -C obtained tJ-1.

’! )t’t、i ’rイj10 ’、(4、+イj、jf1.+ 1. t!巨−II
様(−7)−ア り リ)Li″Nl友1苓1(ルー・
δ任+90’(:f・′(フィー′妃ン(J’ :’c
5−重−a−、、% (1”、’)、! ;:、’
) c’ A f、’+32 フ7 ’、)
i、、) l、溶液に u<。
'! ) t't, i 'r i j10 ', (4, +i j, jf1.+ 1. t!Giant-II
Mr. (-7) - Ali Li)
δRin + 90'(:f・'(Fee'hiin(J':'c
5-heavy-a-,,% (1”,'),!;:,'
) c' A f,'+32 f7',)
i,,) l, in solution u<.

、t・しe、漬また優、xkZ’tI、弧e、 7:j
’−y、(>= 、L、 (、(,7J、j)、、(、
’ C1,,1,x化0物(7)付着潰”が4.7 「
i 1、換1?舅、’−(: ’Ff:’lJ O,:
、’> wt%イ・、1着し、た)”nJ IJ!、理
繊冠師・作り、′−、*−li剖&jj −−−plY
、件−7゛了・宿貞酸化−1、χ了に−え・1″に台、
い + (IT−・′・1ト:管゛′(沙11・しW鈴
(71バj)410.5wt% の炭素繊、糸fl
K’ 4”j’r AT、7’)”、 (:’、、、:
f”i 1・:、t 9m、 jM、、: 35 (
、)kgy’myA沖1ft−がi、、49%であつノ
弓、
, t・shie, Yuzukemata, xkZ'tI, arc e, 7:j
'-y, (>= ,L, (,(,7J,j),,(,
' C1,,1,
i 1, conversion 1? Father-in-law,'-(: 'Ff:'lJ O,:
,'> wt% I・, 1st place, ta)”nJ IJ!, Risen crown master/creation, ′-, *-li autopsy & jj ---plY
, Matter-7゛了・Sukusei Oxidation-1,
+ (IT-・′・1t: Tube ゛′ (S11・ShiW Suzu (71Baj)) 410.5wt% carbon fiber, yarn fl
K'4"j'r AT, 7')", (:',,,:
f”i 1・:, t 9m, jM, ,: 35 (
,)kgy'myA offshore 1ft- is i,, 49% and Atsu no Yumi,

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1 マンガン・yB−よびクロムからなる群から選ばれ
た遷移金属釦よび/または該遷移金属化合物を繊維重量
当り金属原子換算量で約0.3〜2.5重量多の範囲量
含有する表層部を有し、かつストランドコンポジット強
度が少くとも340 kg/+ut。 ストランドコンポジット伸度が少くとも約1.4係であ
る高強度炭素繊維。 2 アクリルニトリル系繊維をマンガン、クロム、鉄か
らなる群から選ばれた遷移金属化合物の酸化剤溶液に浸
漬する前処理工程、少くとも200’Cの酸化性ガス雰
囲気中で加熱する予備酸化工程釦よび少くとも1000
℃の不活性ガス雰囲気中で加熱する炭化工程を順次通過
せしめて炭素繊維を製造する方法において、前記予備酸
化工程に釦ける酸化炉内に設けられた移送ローラ、ガイ
ド等の加熱体に繊維が接触する時間を1回の接触当り1
5秒以下になる如く制御して予備酸化したのち、次いで
炭化工程に供することを特徴とする高強度炭素繊維の製
造法。 3 アクリロニトリル系繊維がポリアクリロニトリルま
たは少くとも85mo1% のアクリロニトリルと該
アクリルニトリルと共重合性のビニルモノマismo1
%以下との共重合体である特許請求の範囲第2項に記載
の高強度炭素繊維の製造法。 4 前処理工程においてアクリロニトリル系繊維に付着
する遷移金属化合物の酸化剤の量が繊維重量当り金属原
子換算量で約0.2〜1.5wt%の範囲内である特許
請求の範囲第2項に記載の炭素繊維の製造法。 5 酸化剤溶液の濃度が約0.5〜10重量多重量塵が
約20〜98℃である特許請求の範囲第2項に記載の高
強度炭素繊維の製造法。 6 酸化剤が次の一般式で示されるマンガン化合物であ
る特許請求の範囲第2項に記載の高強度炭素繊維の製造
法。 MMn04 (Mはに、Na、Hを示す)7 酸化
剤が過マンガン酸カリである特許請求の範囲第6項に記
載の高強度炭素繊維の製造法。 8 炭化工程において350’C〜500℃の温度範囲
における平均昇温速度が3000℃/分以下、最高到達
温度が1000’C以上である特許請求の範囲第2項に
記載の高強度炭素繊維の製造法。
[Scope of Claims] 1. A transition metal button selected from the group consisting of manganese/yB- and chromium and/or the transition metal compound in an amount of about 0.3 to 2.5 in terms of metal atom per fiber weight. and a strand composite strength of at least 340 kg/+ut. A high strength carbon fiber having a strand composite elongation of at least about 1.4 factors. 2. A pre-treatment step in which the acrylonitrile fiber is immersed in an oxidizing agent solution of a transition metal compound selected from the group consisting of manganese, chromium, and iron, and a pre-oxidation step button in which the fiber is heated in an oxidizing gas atmosphere at at least 200'C. and at least 1000
In a method for producing carbon fibers by successively passing through a carbonization step in which the fibers are heated in an inert gas atmosphere at a temperature of Contact time: 1 per contact
A method for producing high-strength carbon fiber, which comprises preoxidizing in a controlled manner for 5 seconds or less, and then subjecting it to a carbonization step. 3 The acrylonitrile fiber is polyacrylonitrile or at least 85 mo1% acrylonitrile and a vinyl monomer ismo1 copolymerizable with the acrylonitrile.
% or less of the high-strength carbon fiber according to claim 2. 4. According to claim 2, the amount of the oxidizing agent of the transition metal compound adhering to the acrylonitrile fiber in the pretreatment step is within the range of about 0.2 to 1.5 wt% in terms of metal atoms per weight of the fiber. The method of manufacturing the carbon fiber described. 5. The method for producing high-strength carbon fibers according to claim 2, wherein the concentration of the oxidizing agent solution is about 0.5-10% by weight and about 20-98°C. 6. The method for producing high-strength carbon fibers according to claim 2, wherein the oxidizing agent is a manganese compound represented by the following general formula. MMn04 (M represents Na or H) 7 The method for producing high-strength carbon fibers according to claim 6, wherein the oxidizing agent is potassium permanganate. 8. The high-strength carbon fiber according to claim 2, wherein the average heating rate in the temperature range of 350'C to 500°C in the carbonization step is 3000°C/min or less, and the maximum temperature reached is 1000'C or more. Manufacturing method.
JP51029204A 1976-03-19 1976-03-19 High strength carbon fiber and its manufacturing method Expired JPS5842288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51029204A JPS5842288B2 (en) 1976-03-19 1976-03-19 High strength carbon fiber and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51029204A JPS5842288B2 (en) 1976-03-19 1976-03-19 High strength carbon fiber and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS52114726A JPS52114726A (en) 1977-09-26
JPS5842288B2 true JPS5842288B2 (en) 1983-09-19

Family

ID=12269656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51029204A Expired JPS5842288B2 (en) 1976-03-19 1976-03-19 High strength carbon fiber and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5842288B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244925U (en) * 1985-09-02 1987-03-18
JPH047268Y2 (en) * 1985-07-16 1992-02-26

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721521A (en) * 1980-07-14 1982-02-04 Mitsubishi Rayon Co Ltd Production of carbon fiber of high strength and elongation
JPS58214533A (en) * 1982-06-09 1983-12-13 Toray Ind Inc Carbon fiber bundle having improved mechanical property and production thereof
JPS592746U (en) * 1982-06-29 1984-01-09 富士通株式会社 Near-end detection mechanism
JPS62125017A (en) * 1986-10-03 1987-06-06 Japan Exlan Co Ltd Carbon fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49527A (en) * 1972-04-20 1974-01-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49527A (en) * 1972-04-20 1974-01-07

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047268Y2 (en) * 1985-07-16 1992-02-26
JPS6244925U (en) * 1985-09-02 1987-03-18

Also Published As

Publication number Publication date
JPS52114726A (en) 1977-09-26

Similar Documents

Publication Publication Date Title
EP1130140B1 (en) Acrylonitril-based precursor fiber for carbon fiber and method for production thereof
JP5324472B2 (en) Flame-resistant fiber and carbon fiber manufacturing method
US4051659A (en) Production of carbon fibre
CN101956252A (en) Method for preparing carbon fibers from boron modified polyacrylonitrile precursors
US4073869A (en) Internal chemical modification of carbon fibers to yield a product of reduced electrical conductivity
EP0168669B1 (en) Ultrahigh strength carbon fibers
US3497318A (en) Preparation of carbon textiles from polyacrylonitrile base textiles
JPS5842288B2 (en) High strength carbon fiber and its manufacturing method
US4374114A (en) Process for the surface modification of carbon fibers
US4526770A (en) Method of producing carbon fiber and product thereof
JP2010242249A (en) Flame-proof fiber for high strength carbon fiber, and method for producing the same
US3708326A (en) Stabilization of acrylic fibers and films
JPS6128019A (en) Production of pitch based carbon fiber
JPH01306619A (en) High-strength and high elastic modulus carbon fiber
JPH0258367B2 (en)
JPH0229766B2 (en)
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
US3488151A (en) Preparation of carbon fibers from polyvinyl alcohol base fibers
JPS6141326A (en) Preparation of precursor for carbon fiber
KR100206488B1 (en) The manufacture method of the active carbon fiber
JP3303424B2 (en) Method for producing acrylic carbon fiber
JP2004060126A (en) Carbon fiber and method for producing the same
JPH02264011A (en) Acrylic fiber for graphite fibers
JPH0415288B2 (en)
US3656883A (en) Process for the stabilization of acrylic fibers