JPH03287860A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPH03287860A
JPH03287860A JP9001990A JP9001990A JPH03287860A JP H03287860 A JPH03287860 A JP H03287860A JP 9001990 A JP9001990 A JP 9001990A JP 9001990 A JP9001990 A JP 9001990A JP H03287860 A JPH03287860 A JP H03287860A
Authority
JP
Japan
Prior art keywords
carbon fiber
carbon fibers
oxygen
treatment
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9001990A
Other languages
Japanese (ja)
Inventor
Masanobu Kobayashi
正信 小林
Yoji Matsuhisa
松久 要治
Noriaki Takada
高田 則明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9001990A priority Critical patent/JPH03287860A/en
Publication of JPH03287860A publication Critical patent/JPH03287860A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject carbon fiber excellent in adhesion to a resin matrix by heating a carbon fiber in an oxygen-containing atmosphere and subsequently electrolyzing the heat treated carbon fiber. CONSTITUTION:A carbon fiber (preferably acrylic-based or pitch-based carbon fiber) is heated preferably at 400-700 deg.C in an oxygen-containing atmosphere (air in general) and subsequently electrolyzed preferably in an alkaline electrolytic solution, thus obtaining the objective fiber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は炭素繊維の製造方法、特に樹脂マトリックスと
の接着力に優れた炭素繊維の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing carbon fibers, and particularly to a method for producing carbon fibers that have excellent adhesive strength with a resin matrix.

[従来の技術] 炭素繊維は一般に各種樹脂マ) IJワックスからなる
複合強化材料として利用されているが、炭素繊維の特性
を複合材料に生かすには、樹脂との接着力が重要であり
、この接着力を改善することを目的として、気相酸化お
よび電解酸化など種々の表面処理が行われている。気相
酸化法は短時間処理が可能であり、水洗・乾燥等の工程
が省ける点が優れているものの(特公昭45−1287
号公報、特公昭52−53092号公報)強度低下が起
こり易く、酸化ムラによる単繊維間のバラツキが大きい
という問題がある。一方、電解酸化は工業的に広く用い
られているが樹脂マトリックスとの接着力が不十分であ
り、さらに接着力を上げるために酸性電解質中で電解酸
化処理を行った後に、アルカリ性電解液中で電解処理を
行う方法等が提案されている(特開昭63−85167
号公報、特開昭64−45868号公報)が、表面処理
プロセスが複雑になるという問題がある。
[Prior art] Carbon fiber is generally used as a composite reinforcing material made of various resins (IJ wax), but in order to make use of the characteristics of carbon fiber in composite materials, adhesive strength with the resin is important. Various surface treatments such as vapor phase oxidation and electrolytic oxidation have been carried out to improve adhesion. Although the gas phase oxidation method is superior in that it can be processed in a short time and eliminates steps such as washing and drying,
(Japanese Patent Publication No. 52-53092) There are problems in that the strength tends to decrease and there is large variation among single fibers due to uneven oxidation. On the other hand, electrolytic oxidation is widely used industrially, but the adhesion with the resin matrix is insufficient.In order to further increase the adhesion, electrolytic oxidation treatment is performed in an acidic electrolyte, and then in an alkaline electrolyte. A method of electrolytic treatment has been proposed (Japanese Patent Laid-Open No. 63-85167).
However, there is a problem in that the surface treatment process becomes complicated.

[発明が解決しようとする課題] 本発明の課題は、上記従来技術では達成し得なかった樹
脂マトリックスとの接着力に優れた炭素繊維を生産性よ
く製造する方法を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a method for producing carbon fibers with good productivity that have excellent adhesive strength to a resin matrix, which could not be achieved with the above-mentioned conventional techniques.

[課題を解決するための手段] 本発明の上記課題は、炭素繊維を酸素含有雰囲気中で加
熱した後、電解処理することを特徴とする炭素繊維の製
造方法によって解決することができる。
[Means for Solving the Problems] The above problems of the present invention can be solved by a method for manufacturing carbon fibers, which is characterized in that carbon fibers are heated in an oxygen-containing atmosphere and then electrolytically treated.

本発明に用いられる炭素繊維としては、アクリル系、ピ
ッチ系、レーヨン系等の公知の炭素繊維を適用できる。
As the carbon fibers used in the present invention, known carbon fibers such as acrylic, pitch, and rayon fibers can be used.

好ましくは高性能な炭素長繊維が得られ易いアクリル系
あるいはピッチ系炭素繊維がよい。
Preferably, acrylic or pitch carbon fibers from which high-performance long carbon fibers can be easily obtained are preferred.

焼成温度については1000〜2000℃で焼成した炭
化糸および2000〜3300℃で焼成した黒鉛化糸の
いずれにも適用できる。
Regarding the firing temperature, it is applicable to both carbonized yarn fired at 1000 to 2000°C and graphitized yarn fired at 2000 to 3300°C.

繊維束としては、100〜100000デニール、好ま
しくは生産性の面から3000〜100000デニール
がよい。繊維束が太(なるほど処理による束の内外差が
大きくなる傾向があるので、酸素含有雰囲気での単繊維
間バラツキを小さくするために、糸束を開繊し、糸束断
面の短径と長径の比を好ましくは2以上、より好ましく
は5以上にするのがよい。この場合の開繊方法としては
V溝よりもU溝のようなできるだけ底の平らで広い溝ロ
ーラーあるいは平ローラーを使用し、好ましくは凸型あ
るいは平型ガイドと組み合わせるのが効果的である。更
に好ましくはガイドに低周波あるいは超音波などの振動
を加えるのがよい。
The fiber bundle has a denier of 100 to 100,000, preferably 3,000 to 100,000 in terms of productivity. The fiber bundle is thick (I see, the difference between the inside and outside of the bundle tends to increase due to processing, so in order to reduce the variation between single fibers in an oxygen-containing atmosphere, the yarn bundle is opened, and the short axis and long axis of the cross section of the yarn bundle are The ratio is preferably 2 or more, more preferably 5 or more.In this case, the opening method is to use a groove roller or a flat roller with a flat and wide bottom as much as possible, such as a U groove rather than a V groove. It is effective to combine the guide with a convex or flat guide.It is more preferable to apply vibrations such as low frequency or ultrasonic waves to the guide.

本発明においては、まず上記のような炭素繊維を酸素含
有雰囲気中で加熱処理を行う。この場合の酸素含有雰囲
気とは、空気、酸素、水蒸気、オゾン、酸化窒素等から
選ばれた1種あるいは2種以上の混合ガスを含む雰囲気
をいうが、空気が最も一般的である。またこれらの酸素
含有雰囲気には、不活性ガス例えばアルゴン、窒素、ヘ
リウム、あるいは酸化ムラを抑えるための塩素等を混合
してもよい。
In the present invention, first, the above-described carbon fibers are heat-treated in an oxygen-containing atmosphere. The oxygen-containing atmosphere in this case refers to an atmosphere containing one or more mixed gases selected from air, oxygen, water vapor, ozone, nitrogen oxide, etc., with air being the most common. In addition, an inert gas such as argon, nitrogen, helium, or chlorine for suppressing oxidation unevenness may be mixed into these oxygen-containing atmospheres.

加熱処理時の加熱温度は好ましくは200〜1000℃
、より好ましくは400〜700℃がよい。200℃よ
り低い温度では熱処理量が少なく加熱時間が長くなり、
また1000℃を越えると強度低下や強度のバラツキが
生じ易いことがある。
The heating temperature during heat treatment is preferably 200 to 1000°C
, more preferably 400 to 700°C. At temperatures lower than 200℃, the amount of heat treatment will be small and the heating time will be longer.
Furthermore, if the temperature exceeds 1000°C, strength may tend to decrease or vary.

処理時間については数秒〜15分、好ましくは20秒〜
2分がよいが、処理温度との組合せで最適化することが
好ましい。
The processing time is several seconds to 15 minutes, preferably 20 seconds to
2 minutes is good, but it is preferable to optimize it in combination with the treatment temperature.

処理張力は、好ましくは緊張下、より好ましくは0°1
〜10g/d(デニール)程度がよい。
The processing tension is preferably under tension, more preferably 0°1
~10 g/d (denier) is preferable.

次に、本発明方法は炭素繊維を酸素含有雰囲気中で加熱
した後、電解処理を行う。
Next, in the method of the present invention, the carbon fibers are heated in an oxygen-containing atmosphere and then electrolytically treated.

この場合の電解液としては、酸性、アルカリ性いずれも
採用できるが、特に樹脂マトリックスとの接着力向上効
果に優れたアルカリ性電解液が好ましい。
As the electrolytic solution in this case, both acidic and alkaline electrolytic solutions can be used, but an alkaline electrolytic solution is particularly preferred since it has an excellent effect of improving adhesive strength with the resin matrix.

アルカリ性電解液としてはpHが7〜14、より好まし
くは電解力の強いpH10〜14の水溶液がよい。具体
的には水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナ
トリウム、炭酸水素ナトリウム等の無機塩類、酢酸ナト
リウム、安息香酸ナトリウム等の有機塩の水溶液、これ
らのカリウム塩、バリウム塩あるいは他の金属塩、さら
にアンモニアおよびアンモニウム塩等が挙げられるが、
好ましくは樹脂マトリックスとの接着力に特に優れた水
酸化テトラエチルアンモニウム(EAH)がよい。
The alkaline electrolyte is preferably an aqueous solution with a pH of 7 to 14, more preferably a pH of 10 to 14 with strong electrolytic power. Specifically, aqueous solutions of inorganic salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, and sodium hydrogen carbonate, organic salts such as sodium acetate and sodium benzoate, potassium salts, barium salts, and other metal salts thereof, and Examples include ammonia and ammonium salts,
Preferred is tetraethylammonium hydroxide (EAH), which has particularly excellent adhesive strength with the resin matrix.

電解液の濃度としては、好ましくは0.01〜5モル1
5より好ましくは0.1〜1モル/Iがよい。
The concentration of the electrolytic solution is preferably 0.01 to 5 mol 1
5, more preferably 0.1 to 1 mol/I.

電解温度としては好ましくは0〜100℃、より好まし
くは電解液が取り扱い易くまた液相として安定している
5〜80°01更に好ましくは処理設備を簡単にできる
室温がよい。
The electrolysis temperature is preferably 0 to 100°C, more preferably 5 to 80°C, where the electrolytic solution is easy to handle and stable as a liquid phase, and even more preferably room temperature, where processing equipment can be easily installed.

電気量は被処理炭素繊維の焼成温度に合わせて最適化す
るが、好ましくは5〜500C/g (炭素繊維1g当
りのクーロン数)、より好ましくは20〜200 C/
gの範囲で設定するのがよい。
The amount of electricity is optimized according to the firing temperature of the carbon fiber to be treated, but is preferably 5 to 500 C/g (number of coulombs per gram of carbon fiber), more preferably 20 to 200 C/g.
It is best to set it within the range of g.

電解電圧は好ましくは0,5〜25V1より好ましくは
安全を考慮してIOV未満がよい。
The electrolytic voltage is preferably 0.5 to 25 V1, preferably less than IOV in consideration of safety.

電解処理時間は電気量、電解質濃度により最適化すべき
であるが、生産性の面から数秒〜10分、好ましくは1
0秒〜2分程度がよい。
The electrolytic treatment time should be optimized depending on the amount of electricity and the electrolyte concentration, but from the viewpoint of productivity it should be several seconds to 10 minutes, preferably 1 minute.
Approximately 0 seconds to 2 minutes is preferable.

電解処理方法としてはバッチ式、連続式いずれでもよい
が、生産性がよくバラツキが小さくできlる連続式が好
ましい。
The electrolytic treatment method may be either a batch method or a continuous method, but a continuous method is preferred because it has good productivity and can reduce variations.

通電方法としては直接通電、間接通電のいずれも採用す
るこ・とができる。
As the energization method, either direct energization or indirect energization can be adopted.

なお、本発明における炭素繊維には、上記の電解処理に
先立ち、水洗および乾燥を施すことができる。
Note that the carbon fibers in the present invention can be washed with water and dried prior to the above-mentioned electrolytic treatment.

また電解処理後の炭素繊維は、必要に応じてサイジング
処理を施し、長繊維のまま、あるいは短繊維にして補強
材として用い、複合材料とすることができる。
Further, the carbon fibers after the electrolytic treatment can be subjected to a sizing treatment if necessary, and can be used as a reinforcing material as long fibers or as short fibers to form a composite material.

[実施例コ 以下、実施例により本発明を具体的に説明する。[Example code] Hereinafter, the present invention will be specifically explained with reference to Examples.

なお、本発明に於けるストランド強度および層間剪断強
度(ILSS)は以下の方法により求めた。
In addition, the strand strength and interlaminar shear strength (ILSS) in the present invention were determined by the following method.

ストランド強度は、炭素繊維束を”ベークライト”ER
L4221樹脂/三フッ化ホウ素モノエチルアミン(B
F、  ・MEA)/アセトン=100/3/4部に含
浸し、得られた樹脂含浸ストランドを130℃で30分
間加熱して硬化させ、Jts−R−7601に規定する
樹脂含浸ストランド試験法に従って測定した値を用いた
Strand strength is determined by using carbon fiber bundles with "Bakelite" ER
L4221 resin/boron trifluoride monoethylamine (B
F, ・MEA)/acetone = 100/3/4 parts, and the resulting resin-impregnated strand was cured by heating at 130°C for 30 minutes, according to the resin-impregnated strand test method specified in Jts-R-7601. The measured value was used.

ILSSは、炭素繊維束を”ペトロケミカルズ”Ep8
28樹脂/BF、  ・MEA/アセトン=100/3
/4部に含浸し、ASTM−D2344に規定する方法
で測定した値を用いた。
ILSS uses carbon fiber bundles as “Petrochemicals” Ep8
28 resin/BF, ・MEA/acetone = 100/3
The value measured by the method specified in ASTM-D2344 was used.

実施例1.比較例1 アクリロニトリル(AN)99.4モル%とメタクリル
酸0.6モル%からなる共重合体を用いて、乾湿式紡糸
法により単繊維デニール0.7d。
Example 1. Comparative Example 1 Using a copolymer consisting of 99.4 mol% of acrylonitrile (AN) and 0.6 mol% of methacrylic acid, a single fiber denier of 0.7 d was produced by a dry-wet spinning method.

フィラメント数12000のアクリル系繊維を得た。得
られた繊維束を240〜280℃の空気中で、延伸比1
.05で加熱し、耐炎化繊維に転換し、ついで窒素雰囲
気中300〜900℃の温度領域での昇温速度を200
℃/分とし10%の延伸を行なった後、1600℃まで
焼成した。
Acrylic fibers having 12,000 filaments were obtained. The obtained fiber bundle was stretched at a drawing ratio of 1 in air at 240 to 280°C.
.. 05 to convert it into a flame-resistant fiber, and then the heating rate in the temperature range of 300 to 900 °C in a nitrogen atmosphere was increased to 200 °C.
After stretching at 10% at a rate of 0.degree. C./min, the film was fired to 1600.degree.

得られた炭素繊維を、500℃の空気雰囲気電気管状炉
内に滞留時間2分でU溝ローラーと平型ガイドを用いて
糸束を広げながら連続的に供給し加熱処理した後、引き
続き0.1モル/lのEAH水溶液中、電気量40C/
gで電解酸化処理を行った。得られた炭素繊維のストラ
ンド強度は650kg/肛2であり、ILSSは8.7
kg/mm2であった。空気中加熱処理のみ施した炭素
繊維のストランド強度およびILSSはそれぞれ、65
5kg/w2,6.0kg/w2であり、アルカリ電解
処理を組み合わせることによりILSSが大幅に向上し
たことがわかる。
The obtained carbon fibers were continuously fed into an electric tubular furnace in an air atmosphere at 500° C. for a residence time of 2 minutes while spreading the yarn bundle using a U-groove roller and a flat guide, and then heat-treated. In 1 mol/l EAH aqueous solution, electricity amount 40C/
Electrolytic oxidation treatment was performed in g. The strand strength of the obtained carbon fiber was 650 kg/2, and the ILSS was 8.7.
kg/mm2. Strand strength and ILSS of carbon fibers subjected only to heat treatment in air are 65, respectively.
5 kg/w2 and 6.0 kg/w2, and it can be seen that the ILSS was significantly improved by combining the alkaline electrolytic treatment.

実施例2〜4.比較例2〜4 実施例1において処理条件を表1のように変更した以外
は、実施例1と同様に処理して炭素繊維を得た。得られ
た炭素繊維の特性を表1に示した。
Examples 2-4. Comparative Examples 2 to 4 Carbon fibers were obtained in the same manner as in Example 1, except that the treatment conditions were changed as shown in Table 1. Table 1 shows the properties of the obtained carbon fibers.

実施例5.比較例5〜6 実施例1で得られた処理前の炭素繊維をさらに窒素雰囲
気中2400℃まで黒鉛化した炭素繊維を用いて、空気
中650℃で2分間加熱処理した後、引き続き0.1モ
ル/lのEAH水溶液中、電気量80C/gで電解酸化
処理を行った。得られた炭素繊維のストランド強度は5
05 kg/me2でI LSSは7 、 ’5 kg
/mm’であった。650℃の空気中加熱処理のみでは
510kg/mm’ 、  6゜8kg/皿’、EAH
電解処理のみでは505kg/mm2.5.4kg/+
nm’であり、本発明の方法によりILSSが大幅に向
上した。
Example 5. Comparative Examples 5 to 6 The untreated carbon fiber obtained in Example 1 was further graphitized to 2400°C in a nitrogen atmosphere, and the carbon fiber was heat-treated in air at 650°C for 2 minutes, followed by 0.1 Electrolytic oxidation treatment was carried out in a mol/l EAH aqueous solution at an electrical charge of 80 C/g. The strand strength of the obtained carbon fiber was 5
At 05 kg/me2, I LSS is 7, '5 kg
/mm'. Heat treatment in air at 650℃ alone yields 510kg/mm', 6°8kg/dish, EAH
Electrolytic treatment alone: 505kg/mm2.5.4kg/+
nm', and ILSS was significantly improved by the method of the present invention.

(以下、余白) [発明の効果] 本発明により、従来技術では達成し得なかった樹脂マト
リックスとの接着力向上効果に優れた、すなわちILS
Sが本発明処理により従来処理に比べて3 、0 kg
 /1m 2以上も大幅に向上する炭素繊維製造方法が
可能になった。
(Hereinafter, blank space) [Effects of the invention] The present invention has an excellent effect of improving adhesive strength with the resin matrix, which could not be achieved with conventional techniques, that is, ILS
S is reduced by 3.0 kg by the treatment of the present invention compared to the conventional treatment.
A carbon fiber manufacturing method that significantly improves the carbon fiber production by more than /1 m2 has become possible.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素繊維を酸素含有雰囲気中で加熱した後、電解
処理することを特徴とする炭素繊維の製造方法。
(1) A method for producing carbon fibers, which comprises heating carbon fibers in an oxygen-containing atmosphere and then subjecting them to electrolytic treatment.
(2)酸素含有雰囲気中の加熱処理後の電解処理をアル
カリ性水溶液中で行うことを特徴とする請求項1記載の
炭素繊維の製造方法。
(2) The method for producing carbon fibers according to claim 1, wherein the electrolytic treatment is performed in an alkaline aqueous solution after the heat treatment in an oxygen-containing atmosphere.
JP9001990A 1990-04-04 1990-04-04 Production of carbon fiber Pending JPH03287860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9001990A JPH03287860A (en) 1990-04-04 1990-04-04 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9001990A JPH03287860A (en) 1990-04-04 1990-04-04 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPH03287860A true JPH03287860A (en) 1991-12-18

Family

ID=13986994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9001990A Pending JPH03287860A (en) 1990-04-04 1990-04-04 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPH03287860A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101605A (en) * 2012-11-21 2014-06-05 Toho Tenax Co Ltd Method of manufacturing carbon fiber
CN105332098A (en) * 2015-11-25 2016-02-17 安徽佳力奇航天碳纤维有限公司 Carbon fiber activation process
EP3214220A4 (en) * 2014-10-31 2018-06-20 Japan Matex Co., Ltd. Process for producing carbon-fiber resin tape, and carbon-fiber resin tape
US11225754B2 (en) 2017-05-26 2022-01-18 Dow Global Technologies Llc Electrochemical grafting of carbon fibers with aliphatic amines for improved composite strength

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101605A (en) * 2012-11-21 2014-06-05 Toho Tenax Co Ltd Method of manufacturing carbon fiber
EP3214220A4 (en) * 2014-10-31 2018-06-20 Japan Matex Co., Ltd. Process for producing carbon-fiber resin tape, and carbon-fiber resin tape
CN105332098A (en) * 2015-11-25 2016-02-17 安徽佳力奇航天碳纤维有限公司 Carbon fiber activation process
US11225754B2 (en) 2017-05-26 2022-01-18 Dow Global Technologies Llc Electrochemical grafting of carbon fibers with aliphatic amines for improved composite strength

Similar Documents

Publication Publication Date Title
EP2905364A1 (en) Flame-proofed fiber bundle, carbon fiber bundle, and processes for producing these
CN105484012B (en) A kind of polyacrylonitrile carbon fiber surface treatment method and device
JP3003521B2 (en) Carbon fiber and method for producing the same
JPS6211089B2 (en)
JPH03287860A (en) Production of carbon fiber
JPH0544154A (en) Surface treatment of carbon fiber
US3972984A (en) Process for the preparation of carbon fiber
US3759805A (en) Electrolytic treatment of filamentary carbon material
JP3755255B2 (en) Carbon fiber and method for producing the same
US3894884A (en) Process for the enhancement of low modulus carbon fibers
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JPS62149964A (en) Production of ultrahigh strength carbon fiber
JP5667380B2 (en) Flame-resistant fiber bundle, carbon fiber bundle, and production method thereof
JPH0544155A (en) Surface treatment of carbon fiber
JPH0284527A (en) Treatment of carbon fiber
JP7360244B2 (en) Carbon fiber manufacturing method and carbon fiber
JPS60252719A (en) Production of carbon fiber having high elongation
JPH0376869A (en) Method for treating surface of carbon fiber in vapor phase
JPS60110925A (en) Manufacture of high-performance carbon fiber
JP2008248424A (en) Method of multistage electrolytic treatment of carbon fiber
JPS6366325A (en) Production of carbon fiber for high-performance cfrp
JPS6112916A (en) Super high-strength carbon fiber and its production
JPH0931841A (en) Surface treatment of carbon fiber
JPS61282470A (en) Treatment of carbon fiber
JPS602711A (en) Preparation of graphite yarn