JPH088147B2 - Thin film EL device - Google Patents

Thin film EL device

Info

Publication number
JPH088147B2
JPH088147B2 JP62173230A JP17323087A JPH088147B2 JP H088147 B2 JPH088147 B2 JP H088147B2 JP 62173230 A JP62173230 A JP 62173230A JP 17323087 A JP17323087 A JP 17323087A JP H088147 B2 JPH088147 B2 JP H088147B2
Authority
JP
Japan
Prior art keywords
thin film
dielectric layer
aln
dielectric
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62173230A
Other languages
Japanese (ja)
Other versions
JPS6417395A (en
Inventor
富造 松岡
純 桑田
雅博 西川
洋介 藤田
隆夫 任田
惇 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62173230A priority Critical patent/JPH088147B2/en
Publication of JPS6417395A publication Critical patent/JPS6417395A/en
Publication of JPH088147B2 publication Critical patent/JPH088147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は文字図形などの表示に用いる薄膜EL素子に関
するものであり、更に詳しくは発光特性が長期に渡って
安定な薄膜EL素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film EL element used for displaying characters and figures, and more particularly to a thin film EL element having stable light emission characteristics over a long period of time.

薄膜EL素子は薄型で表示の視認性が優れているため、
OA機器などの端末ディスプレイとして最適である。
Thin film EL elements are thin and have excellent display visibility.
It is most suitable as a terminal display for OA equipment.

従来の技術 従来より薄膜EL素子をX−Yマトリックス構成にした
薄膜ELディスプレイパネルが知られている。このパネル
は第1誘電体層/蛍光体層/第2誘電体層の積層薄膜の
両面に水平平行電極群と垂直平行電極群とを互いに直交
するように配置し、それぞれの電極群に接続された給電
線により、切換え装置を通して信号を加えて両電柱の交
点部分の蛍光体層を発光させ(この交点の発光部分面を
絵素と称する)、発光した絵素の組み合わせによって文
字記号,図形等を表示させるものである。
2. Description of the Related Art Conventionally, a thin film EL display panel in which a thin film EL element has an XY matrix structure has been known. This panel has horizontal parallel electrode groups and vertical parallel electrode groups arranged on both sides of a laminated thin film of a first dielectric layer / a phosphor layer / a second dielectric layer so as to be orthogonal to each other, and is connected to each electrode group. A power supply line applies a signal through the switching device to cause the phosphor layer at the intersection of both electric poles to emit light (the light emitting surface of this intersection is called a picture element), and depending on the combination of the picture elements that emit light, a character symbol, a figure Is displayed.

上記薄膜ELディスプレイパネルは、通常ガラス製の透
光性基板上に、スズをドープした酸化インジウムからな
る透明な平行電極群を形成し、その上に第1誘電体層、
蛍光体層、第2誘電体層を順次積層し、さにその上に一
般にAl金属からなる背面平行電極群を前記透明平行電極
群に直交する配置で積層して作成する。
In the thin film EL display panel, a transparent parallel electrode group made of indium oxide doped with tin is formed on a transparent substrate usually made of glass, and a first dielectric layer is formed on the transparent parallel electrode group.
A phosphor layer and a second dielectric layer are sequentially laminated, and a back parallel electrode group generally made of Al metal is laminated on the phosphor layer and the second dielectric layer so as to be orthogonal to the transparent parallel electrode group.

蛍光体層は一般にZnS母体に発光センターとしてMnや
希土類元素等をドープしたもの、あるいはCaSやSrS母体
に発光センターとしてCe,Eu等をドープしたものが用い
られる。
As the phosphor layer, generally, a ZnS matrix doped with Mn or a rare earth element as a light emitting center, or a CaS or SrS matrix doped with Ce, Eu or the like as a light emitting center is used.

第1,第2誘電体層にはY2O3,SiO2,Al2O3,Ta2O5,Sm2O3,
Si3N4,BaTiO3,PbTiO3,BaTa2O6等から選ばれた誘電体薄
膜が用いられる。
For the first and second dielectric layers, Y 2 O 3 , SiO 2 , Al 2 O 3 , Ta 2 O 5 , Sm 2 O 3 ,
A dielectric thin film selected from Si 3 N 4 , BaTiO 3 , PbTiO 3 , BaTa 2 O 6 and the like is used.

誘電体層は蛍光体層の中を流れる電流を制御する電流
リミッターとしての働きを持ち、ELディスプレイパネル
の電気的ブレークダウンを防止し、耐電圧信頼性を保つ
ために重要である。
The dielectric layer functions as a current limiter that controls the current flowing in the phosphor layer, is important for preventing electrical breakdown of the EL display panel and maintaining the withstand voltage reliability.

更に誘電体層は輝度−電圧特性(B/V特性)の経時変
化に対して大きな影響力を持ち、B/V特性が駆動時間と
共に変化すると画像が乱れたり、コントラスト特性が悪
くなるので、できる限りその経時変化が少くなるような
誘電体薄膜を選ばなくてはならない。
Furthermore, the dielectric layer has a great influence on the temporal change of the brightness-voltage characteristic (B / V characteristic), and if the B / V characteristic changes with the driving time, the image is disturbed and the contrast characteristic deteriorates. As far as possible, it is necessary to select a dielectric thin film whose change with time is small.

発明が解決しようとする問題点 マトリックス状電極を有する薄膜EL素子を、一斉反転
方式により線順次駆動(特公昭55−27354参照)し、一
走査期間で2回の発光を行わせる場合、透明電極と背面
電極に挟まれた各絵素においては絵素が配置された場所
によって、正極性のパルスが印加されてから逆方向のパ
ルスが印加されるまでの時間と、逆極性のパルスが印加
されてから正極性のパルスが印加されるまでの時間が異
る。このように正,逆パルスの位相が異なる駆動性によ
り、従来技術により薄膜EL素子を長時間駆動した場合、
表示情報に応じて発光させた絵素では、発光させなかっ
た絵素と比較して、発光開始電圧が10V前後変動すると
いう問題点があった。
Problems to be Solved by the Invention When a thin film EL element having a matrix-like electrode is line-sequentially driven by a simultaneous inversion method (see Japanese Patent Publication No. 55-27354), and light is emitted twice in one scanning period, a transparent electrode is used. In each picture element sandwiched between the back electrode and the back electrode, the time from the application of the positive pulse to the application of the reverse pulse and the application of the reverse polarity pulse depend on the location of the picture element. The time from the start of application of the positive pulse differs. When the thin film EL element is driven for a long time by the conventional technique due to the drivability in which the phases of the positive and reverse pulses are different as described above,
The picture element that emits light according to the display information has a problem that the light emission starting voltage fluctuates by about 10 V as compared with the picture element that does not emit light.

本発明の目的は、前記問題点を解決し、位相が異なる
交流パルスや正,逆方向の振幅が異なる交流パルスで駆
動しても、長時間に渡り、安定したB/V特性を持つ薄膜E
L素子を提供することにある。また同時に薄膜相互の付
着力が高く、かつ耐電圧特性の優れた薄膜EL素子を提供
することも目的としている。
An object of the present invention is to solve the above-mentioned problems, and to drive a thin film E having stable B / V characteristics for a long time even when driven by AC pulses having different phases or AC pulses having different amplitudes in the forward and reverse directions.
It is to provide an L element. At the same time, another object of the present invention is to provide a thin film EL device having high adhesion between thin films and excellent withstand voltage characteristics.

問題点を解決するための手段 本発明は透孔性基板上に、透明電極,第1誘電体層,E
L蛍光体層,第2誘電体層、および背面電柱を順次積層
してなる薄膜EL素子において、前記第1誘電体層および
前記第2誘電体層を前記発光体層側をAlNとしたAl2O3
AlNの2層形複合誘電体層とする。
Means for Solving the Problems The present invention provides a transparent electrode, a first dielectric layer, E on a porous substrate.
In a thin film EL device in which an L phosphor layer, a second dielectric layer, and a back pole are sequentially laminated, Al 2 in which the first dielectric layer and the second dielectric layer are AlN on the light emitting layer side O 3 and
A two-layer composite dielectric layer of AlN is used.

作用 発光開始電圧の変動は、EL蛍光体層と誘電体層と誘電
体層との界面に、種々の深さのトラップ準位が新たに形
成されたためと考えられる。EL蛍光体層に接し、重要な
界面を形成する誘電体薄膜をAlNにすることによって、
新たなトラップ準位の形成が抑制され、長時間に渡って
安定したB/V特性を示すようになったと考えられる。
It is considered that the fluctuation of the light-emission start voltage is due to the formation of new trap levels at various depths at the interface between the EL phosphor layer, the dielectric layer, and the dielectric layer. By making AlN the dielectric thin film that contacts the EL phosphor layer and forms an important interface,
It is considered that the formation of new trap levels was suppressed and stable B / V characteristics were exhibited for a long time.

AlNは酸化インジウム主成分の透明電極やAl電極との
密着性に難があるので更にAlNにAl2O3薄膜を重ねたAlN
とAl2O3複合誘電体層で第1および第2誘電体層を形成
することによってすべての薄膜間の密着性が優れ、なお
かつ複合誘電体層にすることによるピンホール等の膜欠
陥の低減で耐電圧特性も優れた薄膜EL素子を作成でき
た。
Since AlN has difficulty in adhering to a transparent electrode mainly composed of indium oxide or an Al electrode, AlN in which an Al 2 O 3 thin film is further stacked on AlN
Adhesion between all thin films is excellent by forming the first and second dielectric layers with Al 2 O 3 composite dielectric layer and reduction of film defects such as pinholes by using the composite dielectric layer Thus, a thin film EL element with excellent withstand voltage characteristics could be created.

実 施 例 第1図は本発明にかかる薄膜EL素子の断面構造を示
す。図において、1はガラス基板であり、その上に合金
ターゲートを用いてインジウム、スズ混晶酸化物薄膜
(以下ITO薄膜と略称する)を直流スパッター法で形成
し、ホトリソグラフィ技術によりストライプ状に加工
し、透明電極2とした。その上に第1誘電体層3とし
て、Al2O3薄膜とAlN薄膜5の複合膜を形成した。Al2O
3およびAlN薄膜の膜厚は各々1000Åである。作成は両者
ともAl金属ターゲットを用いた高周波マグネトロン活性
スパッタ法を用いた。Al2O3薄膜は活性電子ビーム加熱
蒸着法(EB蒸着法)で作成することもできるが、上記の
ようにAl金属ターゲットを用いて、単にスパッタガスを
O2からN2へと切り換えることによって、ワンポンプダウ
ンでAl2O3とAlN薄膜の積層膜を作成できる活性スパッタ
法が便利である。まずAl2O3薄膜の作成条件を説明す
る。金属Alをターゲットにして、O2+Ar雰囲気中で活性
スパッタを行った。O2とArの流量比は1:3程度が適当で
ある。O2をより多くしてもかまわないが、スパッタレイ
トを遅くしないために上記分割のArを含む方が製造上有
利である。スパッタ圧力は4〜7×10-3Torr、基板温度
は150〜400℃、パワー密度は2〜3W/cm2で本発明のEL素
子に適したAl2O3薄膜を作成できる。次にAlNの作成はひ
きつづき同じAl金属ターゲットを用い50%以下のArを含
むN2雰囲気中で活性スパッタを行った。Arを50%より多
く含む雰囲気では窒化反応が十分でないこともあるの
で、上記のように50%以下にした方がよい。スパッタガ
ス圧は6×10-3〜6×10-2Torr,基板温度は200〜500
℃,パワー密度は2−3W/cm2で所望のAlN薄膜を作成で
きる。
Example 1 FIG. 1 shows a cross-sectional structure of a thin film EL device according to the present invention. In the figure, 1 is a glass substrate, on which an indium-tin mixed crystal oxide thin film (hereinafter abbreviated as ITO thin film) is formed by an alloy targate by a DC sputtering method and processed into a stripe shape by a photolithography technique. Then, the transparent electrode 2 was obtained. A composite film of an Al 2 O 3 thin film 4 and an AlN thin film 5 was formed thereon as a first dielectric layer 3. Al 2 O
The film thickness of the 3 and AlN thin films is 1000Å each. Both were prepared by high frequency magnetron active sputtering method using Al metal target. The Al 2 O 3 thin film can be formed by the active electron beam heating vapor deposition method (EB vapor deposition method), but using the Al metal target as described above, simply sputtering gas is used.
It is convenient to use the active sputtering method, which can create a laminated film of Al 2 O 3 and AlN thin film by one pump down by switching from O 2 to N 2 . First, the conditions for forming the Al 2 O 3 thin film will be described. Active sputtering was carried out in an O 2 + Ar atmosphere, targeting metallic Al. A suitable flow ratio of O 2 and Ar is about 1: 3. Although a larger amount of O 2 may be used, it is advantageous in terms of production to include the above-mentioned divided Ar in order not to delay the sputter rate. The sputtering pressure is 4 to 7 × 10 −3 Torr, the substrate temperature is 150 to 400 ° C., and the power density is 2 to 3 W / cm 2 , and an Al 2 O 3 thin film suitable for the EL device of the present invention can be formed. Next, for the production of AlN, active sputtering was continuously performed using the same Al metal target in an N 2 atmosphere containing 50% or less of Ar. Since the nitriding reaction may not be sufficient in an atmosphere containing more than 50% of Ar, it is preferable to set the content to 50% or less as described above. Sputtering gas pressure is 6 × 10 -3 to 6 × 10 -2 Torr, substrate temperature is 200 to 500
The desired AlN thin film can be formed at ℃ and power density of 2-3 W / cm 2 .

以上説明した条件で各々1000Åの厚さのAl2O3とAlN薄
膜を順次積層した後その上にEB蒸着方でZnS:Mn蛍光体薄
膜6を4000Åの厚さに形成した。発光センサのMnの含量
は0.8原子%にした。
Under the conditions described above, Al 2 O 3 and AlN thin films each having a thickness of 1000 Å were sequentially laminated, and then ZnS: Mn phosphor thin film 6 was formed to a thickness of 4000 Å by EB evaporation. The Mn content of the luminescence sensor was 0.8 atomic%.

薄膜形成後輝度アップのため真空雰囲気中で550℃,1
時間の熱処理を行った。
After forming a thin film, 550 ℃, 1 in a vacuum atmosphere to increase brightness
Heat treatment was performed for an hour.

つぎに第2誘電体層7を螢光体層6の上に形成した。
第1誘電体層3と全く同じ手法で、単にAl2O3とAlH薄膜
の作成順序を逆にして形成し、螢光体層6にAlN薄膜が
接するように配置した。第1誘電体層の場合と同様各々
1000Åの膜厚で、2000Åの複合誘電体層にした。
Next, the second dielectric layer 7 was formed on the phosphor layer 6.
In exactly the same manner as the first dielectric layer 3, simply formed by reversing the order of creating Al 2 O 3 and AlH films were arranged so that the AlN thin film is in contact with the fluorescent body layer 6. Similar to the case of the first dielectric layer
The film thickness was 1000Å, and the composite dielectric layer was 2000Å.

最後にAl背面電極8をAl薄膜をEB蒸着法で付けた後、
ホトリソグラフィ技術でITO電極と直交するストライプ
状に加工して薄膜EL素子を完成した。
Finally, after attaching the Al thin film to the Al back electrode 8 by the EB vapor deposition method,
A thin film EL device was completed by processing it into a stripe shape orthogonal to the ITO electrode using photolithography technology.

本発明の一実施例にかかる上記薄膜EL素子と、従来よ
く用いられてきた誘電体薄膜Y2O3,Ta2O5,およびAl2O3
第1と第2誘電体層に使用した素子(第1,第2誘電体層
の厚さは各々2000Å)に、第2図に示したように位相の
異なる交流パルス電圧を印加した。印加電圧VHは薄膜EL
素子の発光しきい電圧Vthに更に30Vプラスした電圧とし
た。本発明の一実施例である上記膜厚構成のEL素子は発
光しきい電圧は160VであるのでVHは190V印加した。一般
に発光しきい電圧は各薄膜の膜厚と、特に誘電体薄膜の
誘電率に大きく依存し、膜厚は薄い程、誘電率は大きい
程発光しきい電圧は低くなる。
The thin film EL device according to one embodiment of the present invention and the conventionally used dielectric thin films Y 2 O 3 , Ta 2 O 5 , and Al 2 O 3 were used for the first and second dielectric layers. As shown in FIG. 2, AC pulse voltages having different phases were applied to the device (thickness of each of the first and second dielectric layers was 2000Å). Applied voltage V H is thin film EL
The light emission threshold voltage V th of the device was further increased by 30 V. Since the EL element having the above-mentioned film thickness configuration, which is an embodiment of the present invention, has a light emission threshold voltage of 160V, VH of 190V was applied. In general, the light emission threshold voltage largely depends on the film thickness of each thin film, and particularly on the dielectric constant of the dielectric thin film. The thinner the film thickness and the larger the dielectric constant, the lower the light emission threshold voltage.

第2図のような交流パルスを各薄膜EL素子に印加し、
時間と共に発光しきい電圧の変動を調べた。その結果を
第3図に示した。Y2O3,Ta2O5およびAl2O3を誘電体に用
いた従来の素子では100時間で約7%発光しきい電圧が
低下したのに対し(第3図a,b,c)、本発明の薄膜EL素
子では0.8%以下であった(第3図d)。本発明のEL素
子は更にそれ以後5000時間では、ほとんど発光しきい電
圧の低下は見られなかった。位相の異なる交流パルス電
圧の印加によって発光しきい電圧が移動するのは、螢光
体層と誘電体層の界面の界面トラップ準位の分布や密度
が駆動時間と共に変化したためと考えられ、この変化が
ZnSとAlNとの界面では非常に抑えられ、安定化したと言
える。AlN薄膜がZnS:Mn螢光体薄膜の両表面に接して界
面を作っておれば原理的によく、単にAlN薄膜で第1,第
2誘電体を形成してもよい。しかしその場合、AlN薄膜
はITOやAl電極との付着力が十分でなく、時として製造
時にそれら薄膜との界面で剥離を生じることがあった。
これを防止し、かつ一層耐電圧特性を高める方法として
実施例で挙げたように第1および第2誘電体層をAlNとA
l2O3薄膜の複合誘電体層とした。これによって上記発光
しきい電圧の変動と薄膜間の剥離という製造上の不安定
要素を無くし、かつ耐電圧特性の優れたEL素子を得た。
Applying AC pulse as shown in Fig. 2 to each thin film EL device,
The variation of the emission threshold voltage with time was examined. The results are shown in FIG. In the conventional device using Y 2 O 3 , Ta 2 O 5 and Al 2 O 3 as the dielectric, the emission threshold voltage decreased by about 7% in 100 hours (Fig. 3, a, b, c). In the thin film EL device of the present invention, it was 0.8% or less (Fig. 3d). The EL device of the present invention showed almost no decrease in the light emission threshold voltage after 5000 hours. The reason why the emission threshold voltage is shifted by the application of AC pulse voltage with different phases is considered to be that the distribution and density of the interface trap levels at the interface between the fluorescent layer and the dielectric layer changed with the driving time. But
It can be said that the interface between ZnS and AlN was very suppressed and stabilized. It is theoretically sufficient if the AlN thin film is in contact with both surfaces of the ZnS: Mn phosphor thin film to form an interface, and the AlN thin film may simply form the first and second dielectrics. However, in that case, the AlN thin film did not have sufficient adhesion to the ITO or Al electrode, and sometimes peeling occurred at the interface with these thin films during manufacturing.
As a method of preventing this and further improving the withstand voltage characteristic, the first and second dielectric layers are made of AlN and A as described in the examples.
The composite dielectric layer was an l 2 O 3 thin film. As a result, an EL element excellent in withstand voltage characteristics was obtained by eliminating the unstable element in manufacturing such as the variation of the light emission threshold voltage and the peeling between the thin films.

すなわち第1,第2誘電体層として各々2000Åの厚さの
AlNの場合に比較し、1000ÅのAlNと1000ÅのAl2O3薄膜
の複合膜にした方が絶縁破壊,ピンホールの密度は1/10
0に減少し、誘電体薄膜自身の絶縁破壊強度も6MV/cmか
ら12MV/cmへと2倍に改善された。複合誘電体層の厚さ
は螢光体層の厚さによって調節しなくてはならないが、
AlNとAl2O3全体の中でAlNはZnS:Mnとの界面特性を決定
する重要な約割りを果すために少くとも500Åの厚さを
占めればよいことが実験的に調べられた。従って第1お
よび第2誘電体薄膜はZnS:Mnと接した少くとも500ÅのA
lNとEL素子の必要な耐電圧を考慮して適当な厚さのAl2O
3を組合せればよい。
That is, each of the first and second dielectric layers has a thickness of 2000 Å
Compared with the case of AlN, a composite film of 1000 Å AlN and 1000 Å Al 2 O 3 thin film has a dielectric breakdown and pinhole density is 1/10.
The dielectric breakdown strength of the dielectric thin film itself was doubled from 6 MV / cm to 12 MV / cm. The thickness of the composite dielectric layer must be adjusted according to the thickness of the fluorescent layer,
It has been experimentally investigated that AlN occupies a thickness of at least 500Å in order to play an important part in determining the interface characteristics with ZnS: Mn in AlN and Al 2 O 3 as a whole. Therefore, the first and second dielectric thin films should have an A of at least 500Å in contact with ZnS: Mn.
Al 2 O of appropriate thickness considering lN and necessary withstand voltage of EL element
You can combine three .

EL発光体層6はMn以外のたとえば希土類元素の活性物
質を含むZnS螢光体や、CaSやSrSにCeやEuの活性物質を
含んだものに対しても本発明のEL構成は効果があった。
これは界面準位が螢光体の母体と誘電体の種拘でほぼ決
まること、おびCaSやSrS母体が特に螢光体としてZnSに
似ているためと考えられる。
The EL structure of the present invention is also effective for the EL light-emitting layer 6 even for ZnS phosphors containing, for example, an active substance of a rare earth element other than Mn, or for those containing an active substance of Ce or Eu in CaS or SrS. It was
It is considered that this is because the interface state is almost determined by the species of the phosphor matrix and the dielectric, and that the CaS and SrS matrices are similar to ZnS as the phosphor.

発明の効果 以上のように本発明によれば、耐電圧特性に優れ、か
つ長時間の駆動によっても発光しきい電圧の変動が極め
て少い薄膜EL素子を歩留りやく製造でき、コンピュータ
端末などの薄形、高品位ディスプレイなどに広く利用で
き、実用的価値は大きい。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to manufacture a thin film EL element which is excellent in withstand voltage characteristics and has a very small variation in the threshold voltage for light emission even when driven for a long time. It can be widely used for shapes and high-quality displays, and has great practical value.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明にかかる薄膜EL素子の構成を示す断面
図、第2図は薄膜EL素子の駆動電圧波形を示す図、第3
図は発光しきい電圧の経時変化を示す図である。 1……ガラス基板、2……透明電極、3……第1誘電体
層、4……Al2O3薄膜、5……AlN薄膜、6……螢光体
層、7……第2誘電体層、8……Al背面電極。
FIG. 1 is a sectional view showing the structure of a thin film EL element according to the present invention, FIG. 2 is a diagram showing a driving voltage waveform of the thin film EL element, and FIG.
The figure is a diagram showing changes with time in the light emission threshold voltage. 1 ... Glass substrate, 2 ... Transparent electrode, 3 ... First dielectric layer, 4 ... Al 2 O 3 thin film, 5 ... AlN thin film, 6 ... Fluorescent material layer, 7 ... Second dielectric Body layer, 8 ... Al back electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 洋介 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 任田 隆夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 阿部 惇 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭62−85089(JP,A) 特開 昭61−237396(JP,A) 特開 昭63−174298(JP,A) 特開 昭63−119196(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yosuke Fujita 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Takao Nita, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Atsushi Abe 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP 62-85089 (JP, A) JP 61-237396 (JP, A) JP Sho 63-174298 (JP, A) JP-A 63-119196 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】透光性基板上に、透明電極,第1誘電体
層,蛍光体層,第2誘電体層および背面電柱を順次積層
してなる薄膜EL素子において、前記第1誘電体層と第2
誘電体層を前記蛍光体層に接する側を常にAlNとしたAl2
O3とAlNの2層積層複合膜にしたことを特徴とする薄膜E
L素子。
1. A thin-film EL device in which a transparent electrode, a first dielectric layer, a phosphor layer, a second dielectric layer and a back pole are sequentially laminated on a translucent substrate, wherein the first dielectric layer. And the second
Al 2 whose dielectric layer is always AlN on the side in contact with the phosphor layer
Thin film E characterized by being a two-layer laminated composite film of O 3 and AlN
L element.
JP62173230A 1987-07-10 1987-07-10 Thin film EL device Expired - Lifetime JPH088147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62173230A JPH088147B2 (en) 1987-07-10 1987-07-10 Thin film EL device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62173230A JPH088147B2 (en) 1987-07-10 1987-07-10 Thin film EL device

Publications (2)

Publication Number Publication Date
JPS6417395A JPS6417395A (en) 1989-01-20
JPH088147B2 true JPH088147B2 (en) 1996-01-29

Family

ID=15956558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62173230A Expired - Lifetime JPH088147B2 (en) 1987-07-10 1987-07-10 Thin film EL device

Country Status (1)

Country Link
JP (1) JPH088147B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410392A (en) * 1990-04-26 1992-01-14 Fuji Xerox Co Ltd Thin film electroluminescent element
ATE406081T1 (en) 2002-12-20 2008-09-15 Ifire Ip Corp PASSIVATED ALUMINUM NITRIDE PHOSPHORUS FOR ELECTROLUMINESCENCE DISPLAYS

Also Published As

Publication number Publication date
JPS6417395A (en) 1989-01-20

Similar Documents

Publication Publication Date Title
JPH088147B2 (en) Thin film EL device
JP2502560B2 (en) Method for forming dielectric film
JPS5829880A (en) Electric field luminescent element
JPH01232695A (en) Thin film electroluminescent element
JPH07118386B2 (en) Method of manufacturing thin film EL device
JPH0824071B2 (en) Thin film electroluminescent device
JPH01227395A (en) Manufacture of thin film el element
JPH0516158B2 (en)
JPH07118388B2 (en) Thin film EL device and method of manufacturing the same
JPH056141A (en) El display device
JPS6343880B2 (en)
JPS6366897A (en) Thin film el device and manufacture of the same
JPH07118390B2 (en) Thin film EL device
JPS6147096A (en) Method of producing thin film el element
JPH07118389B2 (en) Thin film EL device
JPS62147693A (en) Thin film el device
JPS63116392A (en) Thin film el panel
JPH01206596A (en) Film type electroluminescence element
JPS63126192A (en) Manufacture of thin film el device
JPS63252392A (en) Thin film el device
JPH01243394A (en) Thin-film el device
JPS60202687A (en) Thin film electroluminescent element
JPS63119195A (en) Thin film el panel
JPH0687430B2 (en) Thin film EL device
JPH0317996A (en) Thin film el element