JPH0761803A - Production of fullerene and carbon nanotube - Google Patents

Production of fullerene and carbon nanotube

Info

Publication number
JPH0761803A
JPH0761803A JP5211662A JP21166293A JPH0761803A JP H0761803 A JPH0761803 A JP H0761803A JP 5211662 A JP5211662 A JP 5211662A JP 21166293 A JP21166293 A JP 21166293A JP H0761803 A JPH0761803 A JP H0761803A
Authority
JP
Japan
Prior art keywords
carbon
fullerene
carbon nanotubes
powder
thermal plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5211662A
Other languages
Japanese (ja)
Other versions
JP2546511B2 (en
Inventor
Yusuke Tanaka
雄介 田中
Yoshinari Matsumoto
良成 松本
Tadayasu Mizutani
惟恭 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5211662A priority Critical patent/JP2546511B2/en
Publication of JPH0761803A publication Critical patent/JPH0761803A/en
Application granted granted Critical
Publication of JP2546511B2 publication Critical patent/JP2546511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To synthesize fullerene and carbon nanotubes with good mass productivity. CONSTITUTION:This method for synthesizing fullerene and carbon nanotubes comprises making Ar gas flow through the interior of a reactional tube 1 made of quartz glass, making a high-frequency electric current flow through an induction coil 3 wound around the periphery thereof under >=100Torr pressure, producing a thermal plasma 4, feeding powder 6 of carbon into the thermal plasma 4, evaporating and recombining the powder. Since the thermal plasma 4 produced by the high-frequency induction has a wide plasma region at a high temperature, a large amount of the carbon powder 6 can instantaneously be evaporated to synthesize large amounts of the fullerene and carbon nanotubes in a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭素のみからなるクラス
タ分子であるフラーレン及びカーボンナノチューブを量
産性良く合成する方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a method for synthesizing fullerene and carbon nanotubes, which are cluster molecules consisting of carbon only, with high productivity.

【0002】[0002]

【従来の技術】1985年にクロト(Kuroto)に
より、炭素のみからなるサッカーボール状のクラスタ分
子C6 0 、C7 0 の存在が確認された。その後C7 6
7 8等の同様のクラスタ分子も見つかり、これら一連
の球殻状炭素分子はフラーレンと呼ばれるようになっ
た。1990年にはスモーリ(Smolley)らによ
って、炭素電極間でのアーク放電を利用したフラーレン
の合成方法が開発された。また、1991年には飯島ら
によって、チューブ状の構造を持った炭素骨格(カーボ
ンナノチューブ)が発見された。その後の研究でこれら
のフラーレンやカーボンナノチューブは半導体、超伝導
体等の特性を有することが発見され、将来の応用が期待
されている。スモーリらによって最初に報告されたフラ
ーレンの合成装置は、直径6mmの炭素棒を使用し、1
0〜20Vで100〜150Aの電流を通じて炭素棒の
周囲を水冷しながら、ヘリウムのアーク放電条件で合成
するものであった。生成した粉末固体中に存在するフラ
ーレンの割合は約10%であると報告されている。また
カーボンナノチューブは同様の合成装置の負の炭素電極
上で得ることができる。
2. Description of the Related Art In 1985, the existence of soccer ball-shaped cluster molecules C 60 and C 70 consisting only of carbon was confirmed by Kuroto. Then C 7 6 ,
Also found similar cluster molecules such as C 7 8, the series of spherical shell carbon molecules became known as fullerenes. In 1990, Smolley et al. Developed a method for synthesizing fullerenes using arc discharge between carbon electrodes. In 1991, Iijima et al. Discovered a carbon skeleton (carbon nanotube) having a tubular structure. Subsequent studies have discovered that these fullerenes and carbon nanotubes have characteristics such as semiconductors and superconductors, and are expected to be applied in the future. The fullerene synthesizer, first reported by Smolli et al., Used carbon rods with a diameter of 6 mm.
It was synthesized under the arc discharge condition of helium while cooling the periphery of the carbon rod with water by passing a current of 100 to 150 A at 0 to 20V. The percentage of fullerenes present in the powder solids produced is reported to be about 10%. Carbon nanotubes can also be obtained on the negative carbon electrode of a similar synthesizer.

【0003】[0003]

【発明が解決しようとする課題】直流アーク放電を用い
る従来の方法では炭素の蒸発量を上げることが困難で、
さらに生成した種々のクラスタは装置全体に飛散するた
め、フラーレンやカーボンナノチューブの生成量は1分
間で最大0.1g程度で、量産性に欠け製造コストが高
かった。
It is difficult to increase the amount of carbon vaporized by the conventional method using DC arc discharge,
Further, since various clusters produced are scattered throughout the apparatus, the production amount of fullerenes and carbon nanotubes is about 0.1 g at maximum in 1 minute, and the mass production is poor and the production cost is high.

【0004】[0004]

【課題を解決するための手段】本発明の合成装置では高
周波誘導コイルを用いて熱プラズマを発生させ、その中
にカーボンの粉末を送り込み、蒸発、再結合させてフラ
ーレン及びカーボンナノチューブを合成する。熱プラズ
マとはイオン、電子、中性粒子の温度が熱的に平衡状態
にあるプラズマのことで、約100Torr以上の圧力
のもとで発生し、その温度は5000〜20000Kも
の高温になる。約100Torr以下の圧力ではイオ
ン、電子、中性粒子の温度が非平衡な低温プラズマとな
り、その温度は100〜1000K程度である。熱プラ
ズマの発生方法には直流アーク放電を用いる方法と高周
波放電を用いる方法がある。高周波誘導コイルによって
発生する熱プラズマはICP(Inductively
Coupled Plasma)と呼ばれ、アーク放
電による熱プラズマと比べてプラズマ領域が広く、電極
から不純物が混入しないという特徴を持つ。このICP
を用いると多量のカーボン粉末を瞬時に蒸発させること
が可能である。1分間に5g以上のフラーレンやカーボ
ンナノチューブを合成することが可能で、量産性は極め
て良く、製造コストも安価である。
In the synthesizing apparatus of the present invention, thermal plasma is generated using a high frequency induction coil, carbon powder is fed into it, and vaporized and recombined to synthesize fullerenes and carbon nanotubes. The thermal plasma is a plasma in which the temperatures of ions, electrons, and neutral particles are in a thermal equilibrium state, and is generated under a pressure of about 100 Torr or more, and the temperature becomes as high as 5000 to 20000K. At a pressure of about 100 Torr or less, the temperature of ions, electrons, and neutral particles becomes a non-equilibrium low-temperature plasma, and the temperature is about 100 to 1000K. Methods of generating thermal plasma include a method using DC arc discharge and a method using high frequency discharge. The thermal plasma generated by the high frequency induction coil is ICP (Inductively).
It is called a Coupled Plasma) and has a characteristic that a plasma region is wider than that of thermal plasma generated by arc discharge and that impurities are not mixed from electrodes. This ICP
With, it is possible to instantly evaporate a large amount of carbon powder. It is possible to synthesize 5 g or more of fullerene or carbon nanotube per minute, mass productivity is extremely good, and manufacturing cost is low.

【0005】[0005]

【実施例】図1は本発明の装置の一例を示す概略図であ
る。内径44mm、長さ200mmの石英ガラスの二重
管で出来た反応管1の内部を高真空にして酸素や水分を
完全に除いた後、Arガスを30l/minの流量で上
から下に流す。内部の圧力を400Torrにして反応
管に巻き付けた誘導コイル3に20kV、10A、4M
Hzの高周波電流を流すと反応管の中心部にICP4が
発生する。この時ICPの中心部の温度は約10000
Kに達するため、実験中は反応管の二重管の間に冷却水
を常時流す。このICPの中にフィーダー5から平均粒
径が2〜3μmのカーボン粉末6を1分間に10gの割
合で送り込み、トラップ8で反応したカーボン粉末9を
回収した。回収した粉末の収量をはかったところ、供給
したカーボン粉末の80%以上が回収できていた。回収
したカーボン粉末からフラーレンをベンゼンで抽出した
ところ、粉末中のフラーレンの収率は5%以上だった。
また電子顕微鏡による観察で、粉末中にカーボンナノチ
ューブが検出された。反応後のカーボン粉末中でのフラ
ーレンとカーボンナノチューブの収率は合わせて5〜1
0%である。反応管内部の圧力を100Torr〜76
0Torrの間で変化させて実験したところ、いずれの
圧力でもフラーレンやカーボンナノチューブが生成し
た。図2に圧力と、フラーレンとカーボンナノチューブ
を合わせた収率との関係を示す。この図から圧力が高い
方が収率も若干高くなることが分かる。次に圧力を76
0Torrにしてカーボン粉末の供給量を10g/mi
n〜100g/minの間で変えたところ、供給量が多
い方が収率は低下するが、収量は増加した。図3に供給
量と収率、収量との関係を示す。760Torrでカー
ボン粉末の供給量を100g/minにした場合のフラ
ーレンとカーボンナノチューブの収量は約6gである。
1 is a schematic view showing an example of the apparatus of the present invention. The inside of the reaction tube 1 made of a quartz glass double tube having an inner diameter of 44 mm and a length of 200 mm is evacuated to a high vacuum to completely remove oxygen and moisture, and then Ar gas is flown from the top to the bottom at a flow rate of 30 l / min. . 20kV, 10A, 4M on the induction coil 3 wound around the reaction tube with the internal pressure set to 400 Torr.
When a high frequency current of Hz is applied, ICP4 is generated at the center of the reaction tube. At this time, the temperature at the center of the ICP is about 10,000.
In order to reach K, cooling water is constantly flowed between the double tubes of the reaction tube during the experiment. Carbon powder 6 having an average particle diameter of 2 to 3 μm was fed into this ICP at a rate of 10 g per minute, and the carbon powder 9 reacted in the trap 8 was collected. When the yield of the recovered powder was measured, 80% or more of the supplied carbon powder could be recovered. When fullerenes were extracted from the recovered carbon powder with benzene, the yield of fullerenes in the powder was 5% or more.
In addition, carbon nanotubes were detected in the powder by observation with an electron microscope. The yield of fullerene and carbon nanotubes in the carbon powder after the reaction is 5 to 1 in total.
It is 0%. The pressure inside the reaction tube is 100 Torr to 76
When the experiment was performed by changing the pressure between 0 Torr, fullerenes and carbon nanotubes were formed at any pressure. FIG. 2 shows the relationship between the pressure and the combined yield of fullerene and carbon nanotubes. From this figure, it can be seen that the higher the pressure, the slightly higher the yield. Then the pressure is 76
The supply amount of carbon powder is set to 0 Torr and is 10 g / mi.
When the amount was changed from n to 100 g / min, the larger the amount supplied, the lower the yield, but the yield increased. FIG. 3 shows the relationship between the supply amount, the yield, and the yield. The yield of fullerene and carbon nanotubes is about 6 g when the supply amount of carbon powder is 100 g / min at 760 Torr.

【0006】[0006]

【発明の効果】以上説明したように本発明は従来からあ
る炭素電極間でのアーク放電を用いる方法と異なり、プ
ラズマ領域が広く、中心付近で約10000Kの高温を
持つICP中で外部から送り込んだカーボン粉末を短時
間に大量に蒸発させるため、フラーレンやカーボンナノ
チューブを高速で大量に合成する事が可能である。
As described above, the present invention is different from the conventional method of using the arc discharge between the carbon electrodes, and is fed from the outside in an ICP having a wide plasma region and a high temperature of about 10000K near the center. Since a large amount of carbon powder is evaporated in a short time, it is possible to synthesize a large amount of fullerenes and carbon nanotubes at high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるICPを用いたフラーレン及びカ
ーボンナノチューブの合成装置の一例を示す装置の概略
図である。
FIG. 1 is a schematic view of an apparatus showing an example of an apparatus for synthesizing fullerenes and carbon nanotubes using ICP according to the present invention.

【図2】フラーレン及びカーボンナノチューブの収率と
圧力との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the yield of fullerene and carbon nanotubes and pressure.

【図3】カーボン粉末の供給量と、フラーレン及びカー
ボンナノチューブの収率及び収量との関係を示す図であ
る。
FIG. 3 is a diagram showing the relationship between the supply amount of carbon powder and the yields of fullerenes and carbon nanotubes.

【符号の説明】 1 反応管 2 真空ポンプ 3 誘導コイル 4 ICP 5 フィーダー 6 カーボン粉末 7 チャンバー 8 トラップ 9 反応したカーボン粉末[Explanation of reference symbols] 1 reaction tube 2 vacuum pump 3 induction coil 4 ICP 5 feeder 6 carbon powder 7 chamber 8 trap 9 reacted carbon powder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高周波誘導コイルによって発生した熱プ
ラズマ中にカーボンの粉末を送り込み、蒸発、再結合さ
せてフラーレン及びカーボンナノチューブを合成する事
を特徴とするフラーレン及びカーボンナノチューブの合
成方法
1. A method for synthesizing fullerenes and carbon nanotubes, which comprises synthesizing fullerenes and carbon nanotubes by feeding carbon powder into thermal plasma generated by a high frequency induction coil, vaporizing and recombining carbon powder.
JP5211662A 1993-08-26 1993-08-26 Method for synthesizing fullerene and carbon nanotube Expired - Lifetime JP2546511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5211662A JP2546511B2 (en) 1993-08-26 1993-08-26 Method for synthesizing fullerene and carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5211662A JP2546511B2 (en) 1993-08-26 1993-08-26 Method for synthesizing fullerene and carbon nanotube

Publications (2)

Publication Number Publication Date
JPH0761803A true JPH0761803A (en) 1995-03-07
JP2546511B2 JP2546511B2 (en) 1996-10-23

Family

ID=16609520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5211662A Expired - Lifetime JP2546511B2 (en) 1993-08-26 1993-08-26 Method for synthesizing fullerene and carbon nanotube

Country Status (1)

Country Link
JP (1) JP2546511B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065821A1 (en) * 1998-06-19 1999-12-23 The Research Foundation Of State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
KR20000066907A (en) * 1999-04-21 2000-11-15 장진 Fabrication method of carbon nanotube
US6303094B1 (en) 1997-03-21 2001-10-16 Japan Fine Ceramics Center Process for producing carbon nanotubes, process for producing carbon nanotube film, and structure provided with carbon nanotube film
CN1093507C (en) * 2001-07-22 2002-10-30 太原理工大学 Preparation of carbon nanometer pipe material and its equipment
KR100385633B1 (en) * 2000-09-08 2003-05-27 학교법인 포항공과대학교 Method of preparing a carbon nanotube under a vapor-phase condition
WO2003057621A1 (en) * 2002-01-08 2003-07-17 Japan Science And Technology Agency Method of manufacturing densely fitted multi-layer carbon nano-tube
WO2003057620A1 (en) 2002-01-08 2003-07-17 Japan Science And Technology Agency Sharp end, multi-layer carbon nano-tube radial aggregate and method of manufacturing the aggregate
JP2007096136A (en) * 2005-09-29 2007-04-12 Univ Nagoya Photovoltaic element using carbon nanostructure
EP1874685A1 (en) * 2005-03-14 2008-01-09 National Research Council Of Canada Method and apparatus for the continuous production and functionalization of single-waled carbon nanotubes using a high frequency plasma torch
US7846414B2 (en) * 2002-11-15 2010-12-07 Mcgill University Method for producing carbon nanotubes using a DC non-transferred thermal plasma torch
JP2016124763A (en) * 2015-01-06 2016-07-11 ▲蒋▼世傑 High-frequency plasma synthesis method
US9406985B2 (en) 2009-01-13 2016-08-02 Nokia Technologies Oy High efficiency energy conversion and storage systems using carbon nanostructured materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231105A (en) * 2003-01-31 2004-08-19 Nissin Kogyo Co Ltd Cup seal and hydraulic master cylinder
US8454923B2 (en) 2009-06-10 2013-06-04 Carbon Solutions, Inc. Continuous extraction technique for the purification of carbon nanomaterials

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303094B1 (en) 1997-03-21 2001-10-16 Japan Fine Ceramics Center Process for producing carbon nanotubes, process for producing carbon nanotube film, and structure provided with carbon nanotube film
US6863942B2 (en) 1998-06-19 2005-03-08 The Research Foundation Of State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
WO1999065821A1 (en) * 1998-06-19 1999-12-23 The Research Foundation Of State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
KR20000066907A (en) * 1999-04-21 2000-11-15 장진 Fabrication method of carbon nanotube
KR100385633B1 (en) * 2000-09-08 2003-05-27 학교법인 포항공과대학교 Method of preparing a carbon nanotube under a vapor-phase condition
CN1093507C (en) * 2001-07-22 2002-10-30 太原理工大学 Preparation of carbon nanometer pipe material and its equipment
US6967043B2 (en) 2002-01-08 2005-11-22 Japan Science And Technology Agency Method of manufacturing the densely fitted multi-layer carbon nano-tube
WO2003057620A1 (en) 2002-01-08 2003-07-17 Japan Science And Technology Agency Sharp end, multi-layer carbon nano-tube radial aggregate and method of manufacturing the aggregate
WO2003057621A1 (en) * 2002-01-08 2003-07-17 Japan Science And Technology Agency Method of manufacturing densely fitted multi-layer carbon nano-tube
US7261941B2 (en) 2002-01-08 2007-08-28 Japan Science And Technology Agency Sharp end, multi-layer carbon nano-tube radial aggregate and method of manufacturing the aggregate
KR100935867B1 (en) * 2002-01-08 2010-01-07 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Method of manufacturing sharp end, multi-layer carbon nano-tube radial aggregate
US7846414B2 (en) * 2002-11-15 2010-12-07 Mcgill University Method for producing carbon nanotubes using a DC non-transferred thermal plasma torch
EP1874685A1 (en) * 2005-03-14 2008-01-09 National Research Council Of Canada Method and apparatus for the continuous production and functionalization of single-waled carbon nanotubes using a high frequency plasma torch
EP1874685A4 (en) * 2005-03-14 2011-07-13 Ca Nat Research Council Method and apparatus for the continuous production and functionalization of single-waled carbon nanotubes using a high frequency plasma torch
US8834827B2 (en) 2005-03-14 2014-09-16 National Research Council Of Canada Method and apparatus for the continuous production and functionalization of single-walled carbon nanotubes using a high frequency plasma torch
JP2007096136A (en) * 2005-09-29 2007-04-12 Univ Nagoya Photovoltaic element using carbon nanostructure
US9406985B2 (en) 2009-01-13 2016-08-02 Nokia Technologies Oy High efficiency energy conversion and storage systems using carbon nanostructured materials
JP2016124763A (en) * 2015-01-06 2016-07-11 ▲蒋▼世傑 High-frequency plasma synthesis method

Also Published As

Publication number Publication date
JP2546511B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
JP2546511B2 (en) Method for synthesizing fullerene and carbon nanotube
US6884404B2 (en) Method of manufacturing carbon nanotubes and/or fullerenes, and manufacturing apparatus for the same
JP3606232B2 (en) Carbon structure manufacturing apparatus and manufacturing method
JPH09188509A (en) Production of monolayer carbon manotube
JP2541434B2 (en) Carbon nano tube manufacturing method
KR20210016610A (en) Apparatus and method for manufacturing carbon nanotubes
JP3986711B2 (en) Method for producing single-walled carbon nanotube
JP3657574B2 (en) Manufacturing method of carbon nanowire
JP2845675B2 (en) Method for producing carbon nanotube
Harbec et al. Carbon nanotubes from the dissociation of C2Cl4 using a dc thermal plasma torch
JPH06279015A (en) Production of ultrafine silicon particle
KR100468845B1 (en) Method of fabricating carbon nano tube
Kim et al. The preparation of carbon nanotubes by dc arc discharge using a carbon cathode coated with catalyst
JP2003252614A (en) Method for manufacturing hollow carbon nanocapsule
Zhang et al. The effect of different kinds of inert gases and their pressures on the preparation of carbon nanotubes by carbon arc method
JP2003034515A (en) Method for manufacturing double-layer carbon nanotube
JP4665113B2 (en) Fine particle production method and fine particle production apparatus
JP3016275B2 (en) Fullerene synthesis equipment
JPH11263610A (en) Production of carbon nanotube
JP2005263523A (en) Meso-size fine particles and method for manufacturing the same
JPH05201715A (en) Metal containing carbon cluster and production thereof
US10822236B2 (en) Method of manufacturing carbon nanotubes using electric arc discharge
Raniszewski Magnetic field in arc discharge systems for carbon nanotubes synthesis
JP4657474B2 (en) Raw material for carbon cluster production
JP3650076B2 (en) Manufacturing method of single-walled carbon nanotube

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960618