JPH07278619A - Production of nickel powder - Google Patents

Production of nickel powder

Info

Publication number
JPH07278619A
JPH07278619A JP6074976A JP7497694A JPH07278619A JP H07278619 A JPH07278619 A JP H07278619A JP 6074976 A JP6074976 A JP 6074976A JP 7497694 A JP7497694 A JP 7497694A JP H07278619 A JPH07278619 A JP H07278619A
Authority
JP
Japan
Prior art keywords
soln
nickel
added
reducing agent
nickel powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6074976A
Other languages
Japanese (ja)
Inventor
Hisashi Miki
寿 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP6074976A priority Critical patent/JPH07278619A/en
Publication of JPH07278619A publication Critical patent/JPH07278619A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles

Abstract

PURPOSE:To deposit and produce an Ni powder with the primary particles having a small average diameter and having a narrow particle size distribution width by specifying the pH value and temp. of an aq. water-soluble Ni salt soln., then adding a reducing agent to the soln. and subjecting the soln. to a reaction. CONSTITUTION:A water-soluble Ni(II) salt such as nickel chloride is dissolved in water to prepare an aq. Ni salt soln. contg. 1-2mol/l Ni ion, and then a strong alkali such as NaOH is added to control the soln. to >=pH10. A 1% carboxymethylcellulose soln. as a dispersant is added, as required, by about 1/100 of the total amt., the soln. is heated to 55-70 deg.C, a reducing agent such as hydrazine and hydrazine hydrate kept at 0-70 deg.C is added by 2-10mols per mol of Ni ion while agitating the soln. to reduce the Ni ion, the reduction reaction is finished within 40-110min, and Ni is deposited. A fine nickel powder with the primary particles having 0.4-0.6mum average diameter and having a narrow grain size distribution width is obtained in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケル粉末の製造方
法、特に積層セラミックコンデンサの内部電極材料とし
て有用なニッケル粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing nickel powder, and more particularly to a method for producing nickel powder useful as an internal electrode material of a laminated ceramic capacitor.

【0002】[0002]

【従来の技術】近年、積層セラミックコンデンサの小型
化かつ大容量化が急速に進み、そのコスト低減を図るべ
く、内部電極材料としてPt,Pd等の貴金属に代わり
Niなどの卑金属を用い、かつ、誘電体材料として非還
元性誘電体磁器を用いることが行なわれている。他方、
この種の内部電極材料として用いるニッケル粉末の製造
方法としては、例えば、本発明者は特開平5−5161
0において、水溶性ニッケル(II)塩の水溶液に強アル
カリを加えて水酸化ニッケル(II)を生成させ、該水酸
化ニッケル(II)を強アルカリ下にて還元剤で還元する
方法をすでに提案している。そして、具体的には、pH
10〜14、温度55〜70℃、ニッケルイオン濃度
2.0モル/リットル以下の溶液にヒドラジンまたはヒ
ドラジン水加物を添加して、40分以内の反応時間でニ
ッケルイオンを還元するものである。
2. Description of the Related Art In recent years, monolithic ceramic capacitors have been rapidly miniaturized and have a large capacity, and in order to reduce the cost thereof, a base metal such as Ni is used as an internal electrode material instead of a precious metal such as Pt and Pd, It has been practiced to use a non-reducing dielectric ceramic as a dielectric material. On the other hand,
As a method for producing nickel powder used as this kind of internal electrode material, for example, the present inventor has disclosed in Japanese Patent Laid-Open No. 5-5161
At 0, a method has already been proposed in which a strong alkali is added to an aqueous solution of a water-soluble nickel (II) salt to form nickel (II) hydroxide, and the nickel (II) hydroxide is reduced with a reducing agent in a strong alkali. is doing. And specifically, pH
10 to 14, a temperature of 55 to 70 ° C., a hydrazine or hydrazine hydrate is added to a solution of nickel ion concentration of 2.0 mol / liter or less, and nickel ions are reduced within a reaction time of 40 minutes.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記ニ
ッケル粉末の製造方法においては、粒度分布幅が狭く分
散性のよいニッケル粉末としては、1次粒子の平均粒径
が0.3μmのものしか得られなかった。一方、ニッケ
ル粉末は、その具体的使用方法に応じて種々の粒径のも
のが要求されている。
However, in the above-mentioned method for producing nickel powder, as the nickel powder having a narrow particle size distribution width and good dispersibility, only nickel powder having an average primary particle size of 0.3 μm can be obtained. There wasn't. On the other hand, nickel powders are required to have various particle sizes depending on the specific method of use.

【0004】そこで、本発明の目的は、1次粒子の平均
粒径が0.4〜0.6μmの範囲内にあって粒度分布幅
が狭いニッケル粉末の製造方法を提供することにある。
Therefore, an object of the present invention is to provide a method for producing a nickel powder having an average primary particle size within the range of 0.4 to 0.6 μm and a narrow particle size distribution width.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明のニッケル粉末の製造方法は、水溶性ニッケ
ル塩に還元剤を加えてニッケルを析出させるニッケル粉
末の製造方法において、Ni2+濃度1〜2モル/リット
ルのニッケル塩水溶液に強アルカリを加えてpHを10
以上とし、かつ、該ニッケル塩水溶液の温度を55〜7
0℃とした後、温度0〜70℃の、かつ、ニッケルイオ
ン1モルに対して2〜10モルの還元剤を加えて、還元
反応を40〜110分で完了させることを特徴とする。
To achieve the above object, according to an aspect of method for producing a nickel powder of the present invention is a method of manufacturing a nickel powder precipitating nickel and a reducing agent added to the water-soluble nickel salts, Ni 2+ A strong alkali was added to a nickel salt aqueous solution having a concentration of 1 to 2 mol / liter to adjust the pH to 10
The temperature of the nickel salt aqueous solution is 55 to 7
After the temperature is set to 0 ° C., a reducing agent having a temperature of 0 to 70 ° C. and 2 to 10 mol with respect to 1 mol of nickel ion is added to complete the reduction reaction in 40 to 110 minutes.

【0006】そして、還元剤としては、ヒドラジンまた
はヒドラジン水化物が好ましい。
As the reducing agent, hydrazine or hydrazine hydrate is preferable.

【0007】[0007]

【作用】還元反応により生成されるニッケル粉末の1次
粒子の粒径およびその粒度分布は、一般に、その反応速
度、したがって、還元剤の添加開始から反応系中のニッ
ケルイオンがすべてニッケルに還元されるまでの時間に
依存する。本発明の強アルカリのニッケル塩水溶液に還
元剤を添加してニッケル金属を析出させる反応系におい
て、還元反応が40〜110分の範囲内で完了するよう
に、ニッケル塩水溶液については、Ni2+濃度を1〜2
モル/リットルの範囲内、pHを10以上、温度を55
〜70℃の範囲内、さらに、還元剤については、還元剤
の量をニッケルイオン1モルに対して2〜10モルの範
囲内、温度を0〜70℃の範囲内で調節する。これによ
り、1次粒子径が0.4〜0.6μmの範囲内にあり、
かつ、粒度分布幅が狭いニッケル粉末が得られる。
The particle size and particle size distribution of the primary particles of the nickel powder produced by the reduction reaction are generally the reaction rate, and therefore, all the nickel ions in the reaction system are reduced to nickel from the start of addition of the reducing agent. It depends on the time it takes. In the reaction system of the present invention in which a reducing agent is added to the strong alkaline nickel salt aqueous solution to deposit nickel metal, the nickel salt aqueous solution may be Ni 2+ so that the reduction reaction is completed within the range of 40 to 110 minutes. Concentration 1-2
Within the range of mol / liter, pH is 10 or more, temperature is 55
The amount of the reducing agent is adjusted within the range of 2 to 10 mol, and the temperature is adjusted within the range of 0 to 70 ° C. with respect to 1 mol of the nickel ion. Thereby, the primary particle diameter is in the range of 0.4 to 0.6 μm,
Moreover, a nickel powder having a narrow particle size distribution width can be obtained.

【0008】[0008]

【実施例】以下、本発明のニッケル粉末の製造方法につ
いて、その実施例を説明する。ニッケル粉末は、表1に
示す試料No.1〜8の8種類の反応条件下で作製し
た。即ち、まず、反応槽に水溶性ニッケル(II)塩であ
る塩化ニッケルの水溶液を添加した。その後、この溶液
に水酸化ナトリウム水溶液を加えてpHを10以上に調
節し、さらに分散剤として1%カルボキシメチルセルロ
ース溶液を全量の1/100加え、40〜70℃範囲内
の一定温度に加熱した。次に、攪拌機を130rpmの
速度で回転させてこの混合溶液を攪拌しながら、Ni2+
イオンチェッカーでニッケルイオンが検出されなくなる
までヒドラジン水化物を加えニッケルを析出させた。次
いで、析出したニッケルを濾別し、純水にて洗浄液のp
Hが7〜8になるまで洗浄した後、90℃で乾燥してニ
ッケル粉末を得た。なお、表1において、*印を付した
試料は本発明の範囲外のものであり、それ以外はすべて
本発明の範囲内のものである。
EXAMPLES Examples of the method for producing nickel powder of the present invention will be described below. The nickel powder is the sample No. 1 shown in Table 1. It was prepared under 8 kinds of reaction conditions of 1 to 8. That is, first, an aqueous solution of nickel chloride, which is a water-soluble nickel (II) salt, was added to the reaction tank. Thereafter, an aqueous sodium hydroxide solution was added to this solution to adjust the pH to 10 or more, and 1% carboxymethylcellulose solution was added as a dispersant to 1/100 of the total amount, and the mixture was heated to a constant temperature within the range of 40 to 70 ° C. Next, while stirring this mixed solution by rotating the stirrer at a speed of 130 rpm, Ni 2+
Hydrazine hydrate was added to precipitate nickel until nickel ions were not detected by the ion checker. Next, the deposited nickel is filtered off and pure water is washed with p
After washing until H became 7 to 8, it was dried at 90 ° C. to obtain nickel powder. In Table 1, the samples marked with * are outside the scope of the present invention, and all other samples are within the scope of the present invention.

【0009】[0009]

【表1】 [Table 1]

【0010】その後、得られたニッケル粉末について、
粒度分布および1次粒子径(平均粒径)を求めた。粒度
分布としては、確率分布10%(D10)、確率分布5
0%(D50)、確率分布90%(D90)をそれぞれ
求めた。また、1次粒子の平均粒径は2次電子像写真か
ら求めた。表2にこれらの結果を示す。
Then, with respect to the obtained nickel powder,
The particle size distribution and the primary particle size (average particle size) were determined. As the particle size distribution, probability distribution 10% (D10), probability distribution 5
0% (D50) and probability distribution 90% (D90) were obtained. The average particle size of the primary particles was obtained from the secondary electron image photograph. Table 2 shows these results.

【0011】[0011]

【表2】 [Table 2]

【0012】表2より明らかな通り、本発明の製造方法
により得られたニッケル粉末の1次粒子径(平均粒径)
は0.4〜0.6μmであり、試料No.8に示す従来
の0.3μm品と比較してより粗いニッケル粉末を得る
ことができる。また、得られたニッケル粉末の粒度分布
も、従来の0.3μm品と同等以上のシャープさを有す
るものが得られる。
As is clear from Table 2, the primary particle diameter (average particle diameter) of the nickel powder obtained by the manufacturing method of the present invention.
Is 0.4 to 0.6 μm, and the sample No. A coarser nickel powder can be obtained as compared with the conventional 0.3 μm product shown in FIG. In addition, the particle size distribution of the obtained nickel powder has a sharpness equal to or higher than that of the conventional 0.3 μm product.

【0013】また、試料No.7に示すように、Ni2+
濃度を0.5モル/リットル、温度を40℃として、反
応時間が110分を超えると、1次粒子径が0.3〜
1.0μmとばらつきが大きく、粒度分布幅が広いニッ
ケル粉末しか得ることができない。
Sample No. As shown in 7, Ni 2+
If the reaction time exceeds 110 minutes at a concentration of 0.5 mol / liter and a temperature of 40 ° C., the primary particle diameter is 0.3 to
Only nickel powder having a wide variation of 1.0 μm and a wide particle size distribution can be obtained.

【0014】なお、使用材料としては、上記実施例に限
定されるものではない。即ち,水溶性のニッケル塩(I
I)としては、塩化ニッケル以外に、硫酸ニッケル、硝
酸ニッケル等のニッケルの強酸塩を適宜用いることがで
きる。また、pHを10以上とする強アルカリとして
は、水酸化ナトリウム以外に水酸化カリウムを用いるこ
とができる。そして、還元剤としては、ヒドラジン以外
にヒドラジン水化物等のヒドラジン化合物を適宜用いる
ことができる。
The material used is not limited to the above embodiment. That is, a water-soluble nickel salt (I
As I), a strong acid salt of nickel such as nickel sulfate or nickel nitrate can be appropriately used in addition to nickel chloride. As the strong alkali having a pH of 10 or more, potassium hydroxide can be used in addition to sodium hydroxide. Then, as the reducing agent, a hydrazine compound such as hydrazine hydrate can be appropriately used in addition to hydrazine.

【0015】[0015]

【発明の効果】以上の説明で明らかなように、本発明の
ニッケル粉末の製造方法によれば、水溶性ニッケル塩水
溶液のNi2+濃度、pHおよび温度、さらに、還元剤の
温度と量を所定範囲内で調節し、反応速度をコントロー
ルして還元反応を40〜110分の範囲内で完了させる
ことにより、1次粒子の平均粒径が0.4〜0.6μm
の範囲内にあって粒度分布幅が狭いニッケル粉末を得る
ことができる。
As is clear from the above description, according to the method for producing nickel powder of the present invention, the Ni 2+ concentration, pH and temperature of the water-soluble nickel salt aqueous solution, and the temperature and amount of the reducing agent can be adjusted. The average particle diameter of the primary particles is 0.4 to 0.6 μm by adjusting the reaction rate within a predetermined range and controlling the reaction rate to complete the reduction reaction within the range of 40 to 110 minutes.
It is possible to obtain a nickel powder having a narrow particle size distribution width within the range.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水溶性ニッケル塩に還元剤を加えてニッ
ケルを析出させるニッケル粉末の製造方法において、 Ni2+濃度1〜2モル/リットルのニッケル塩水溶液に
強アルカリを加えてpHを10以上とし、かつ、該ニッ
ケル塩水溶液の温度を55〜70℃とした後、温度0〜
70℃の、かつ、ニッケルイオン1モルに対して2〜1
0モルの還元剤を加えて、還元反応を40〜110分で
完了させることを特徴とするニッケル粉末の製造方法。
1. A method for producing a nickel powder in which a reducing agent is added to a water-soluble nickel salt to precipitate nickel, wherein a strong alkali is added to a nickel salt aqueous solution having a Ni 2+ concentration of 1 to 2 mol / liter to adjust the pH to 10 or more. And, after the temperature of the nickel salt aqueous solution is 55 to 70 ° C., the temperature is 0 to
2-1 at 70 ° C and 1 mol of nickel ion
A method for producing a nickel powder, which comprises adding 0 mol of a reducing agent and completing the reduction reaction in 40 to 110 minutes.
【請求項2】 還元剤は、ヒドラジンまたはヒドラジン
水化物であることを特徴とする請求項1記載のニッケル
粉末の製造方法。
2. The method for producing nickel powder according to claim 1, wherein the reducing agent is hydrazine or hydrazine hydrate.
JP6074976A 1994-04-13 1994-04-13 Production of nickel powder Pending JPH07278619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6074976A JPH07278619A (en) 1994-04-13 1994-04-13 Production of nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6074976A JPH07278619A (en) 1994-04-13 1994-04-13 Production of nickel powder

Publications (1)

Publication Number Publication Date
JPH07278619A true JPH07278619A (en) 1995-10-24

Family

ID=13562837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6074976A Pending JPH07278619A (en) 1994-04-13 1994-04-13 Production of nickel powder

Country Status (1)

Country Link
JP (1) JPH07278619A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120576A (en) * 1997-09-11 2000-09-19 Mitsui Mining And Smelting Co., Ltd. Method for preparing nickel fine powder
WO2001034327A1 (en) * 1999-11-10 2001-05-17 Mitsui Mining And Smelting Co., Ltd. Nickel powder, method for preparation thereof and conductive paste
WO2001036131A1 (en) * 1999-11-12 2001-05-25 Mitsui Mining And Smelting Co., Ltd. Nickel powder and conductive paste
KR100399716B1 (en) * 2001-06-07 2003-09-29 한국과학기술연구원 The Manufacturing Method Of Fine Powder Of Nickel
KR100486604B1 (en) * 2002-10-30 2005-05-03 (주)창성 Method for manufacturing nano-scale copper powders by wet reducing process
CN1299863C (en) * 2005-03-31 2007-02-14 上海交通大学 Method for preparing hollow or clad nickel alloy spherical powder
CN100402205C (en) * 2006-08-07 2008-07-16 黄德欢 Process for preparing nano-nickel powder
CN100431750C (en) * 2005-12-30 2008-11-12 中山大学 Liquid phase preparation process of nano nickle powder
CN102554259A (en) * 2012-02-07 2012-07-11 宇辰新能源材料科技无锡有限公司 Method for preparing spherical submicron nickel powder with controllable particle size
WO2012114637A1 (en) * 2011-02-25 2012-08-30 株式会社村田製作所 Nickel powder production method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120576A (en) * 1997-09-11 2000-09-19 Mitsui Mining And Smelting Co., Ltd. Method for preparing nickel fine powder
WO2001034327A1 (en) * 1999-11-10 2001-05-17 Mitsui Mining And Smelting Co., Ltd. Nickel powder, method for preparation thereof and conductive paste
WO2001036131A1 (en) * 1999-11-12 2001-05-25 Mitsui Mining And Smelting Co., Ltd. Nickel powder and conductive paste
KR100399716B1 (en) * 2001-06-07 2003-09-29 한국과학기술연구원 The Manufacturing Method Of Fine Powder Of Nickel
KR100486604B1 (en) * 2002-10-30 2005-05-03 (주)창성 Method for manufacturing nano-scale copper powders by wet reducing process
CN1299863C (en) * 2005-03-31 2007-02-14 上海交通大学 Method for preparing hollow or clad nickel alloy spherical powder
CN100431750C (en) * 2005-12-30 2008-11-12 中山大学 Liquid phase preparation process of nano nickle powder
CN100402205C (en) * 2006-08-07 2008-07-16 黄德欢 Process for preparing nano-nickel powder
WO2012114637A1 (en) * 2011-02-25 2012-08-30 株式会社村田製作所 Nickel powder production method
CN103391824A (en) * 2011-02-25 2013-11-13 株式会社村田制作所 Nickel powder production method
JPWO2012114637A1 (en) * 2011-02-25 2014-07-07 株式会社村田製作所 Method for producing nickel powder
TWI449582B (en) * 2011-02-25 2014-08-21 Murata Manufacturing Co Method for manufacturing nickel powder
JP5590212B2 (en) * 2011-02-25 2014-09-17 株式会社村田製作所 Method for producing nickel powder
CN102554259A (en) * 2012-02-07 2012-07-11 宇辰新能源材料科技无锡有限公司 Method for preparing spherical submicron nickel powder with controllable particle size

Similar Documents

Publication Publication Date Title
EP0985474B1 (en) Method for producing metal powder by reduction of metallic salt.
JP3669624B2 (en) Method for producing barium titanate powder
JPH07278619A (en) Production of nickel powder
US5801318A (en) Method of manufacturing copper powder having excellent dispersibility and small particle diameter deviation
JP2003503300A (en) Method for producing cobalt hydroxide or cobalt mixed hydroxide of high density and large particle size and product produced by this method
JPH09241709A (en) Production of copper powder
JP2900650B2 (en) Method for producing nickel fine powder
JP4100244B2 (en) Nickel powder and method for producing the same
JP3646818B2 (en) Bismuth oxycarbonate powder and method for producing the same
JP2000313906A (en) Nickel fine powder and its production
JP2991700B2 (en) Method for producing nickel fine powder
JP4079983B1 (en) Method for producing fine particle platinum powder
US5514202A (en) Method for producing fine silver-palladium alloy powder
JP3173440B2 (en) Method for producing tin oxide powder
JPH06336601A (en) Production of nickel powder
JP2018104724A (en) Production method of silver-coated copper powder
JPH06340427A (en) Production of nickel hydroxide for non-sintered alkaline battery
JPH11189812A (en) Manufacture of granular silver powder
JP4552324B2 (en) Method for producing cobalt oxide particles by neutralization method
JP2017206751A (en) Manufacturing method of nickel powder
JP3112015B1 (en) Method for producing nickel powder
JP3794462B2 (en) Method for producing barium titanate powder
JPH07207307A (en) Production of nickel powder
JPH10513430A (en) Cobalt (II) oxide containing cobalt metal, method for producing the same and use thereof
JP6491595B2 (en) Method for producing platinum palladium rhodium alloy powder