JP2991700B2 - Method for producing nickel fine powder - Google Patents

Method for producing nickel fine powder

Info

Publication number
JP2991700B2
JP2991700B2 JP10205878A JP20587898A JP2991700B2 JP 2991700 B2 JP2991700 B2 JP 2991700B2 JP 10205878 A JP10205878 A JP 10205878A JP 20587898 A JP20587898 A JP 20587898A JP 2991700 B2 JP2991700 B2 JP 2991700B2
Authority
JP
Japan
Prior art keywords
sodium hydroxide
nickel
jis
specified
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10205878A
Other languages
Japanese (ja)
Other versions
JPH11152507A (en
Inventor
義治 豊島
隆之 荒木
尚男 林
宏之 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP10205878A priority Critical patent/JP2991700B2/en
Publication of JPH11152507A publication Critical patent/JPH11152507A/en
Application granted granted Critical
Publication of JP2991700B2 publication Critical patent/JP2991700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はニッケル微粉末の製
造方法に関し、より詳しくは、主として積層セラミック
コンデンサの内部電極材料として用いるのに適してお
り、粒度分布がシャープで凝集が少なく、且つペースト
化した際の充填性に優れているニッケル微粉末の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fine nickel powder, and more particularly, it is suitable mainly for use as an internal electrode material of a multilayer ceramic capacitor, has a sharp particle size distribution, has less agglomeration, and is formed into a paste. The present invention relates to a method for producing a fine nickel powder which is excellent in the filling property at the time of making.

【0002】[0002]

【従来の技術】積層セラミックコンデンサは、セラミッ
ク誘電体と内部電極とを交互に層状に重ねて圧着、焼
成、一体化したものである。この内部電極材料として従
来用いられていたPt、Pd等の貴金属の代わりにNi
等の卑金属を用いる技術が開発され、進歩してきてい
る。
2. Description of the Related Art A multilayer ceramic capacitor is obtained by alternately stacking ceramic dielectrics and internal electrodes in layers, pressing, firing, and integrating them. Instead of the noble metals such as Pt and Pd conventionally used as this internal electrode material, Ni
Technologies using base metals such as have been developed and advanced.

【0003】この開発、進歩に伴って、当該材料である
ニッケル粉末の製造方法についても様々な提案がなされ
ている。その代表的な製法としては、特開平8−246
001号公報に開示されているような塩化ニッケル蒸気
の気相水素還元法の如き乾式法も挙げられるが、ニッケ
ルイオンを含む水溶液を特定条件の下、還元剤にて還元
処理してニッケルを析出させる湿式法には、エネルギー
コスト面での経済性等も含めて有利な点が多い。
[0003] With the development and progress, various proposals have been made on a method for producing nickel powder as the material. A typical production method is disclosed in JP-A-8-246.
A dry method such as a gas-phase hydrogen reduction method of nickel chloride vapor as disclosed in Japanese Patent Application Laid-Open No. 001-001 is also available. However, an aqueous solution containing nickel ions is reduced with a reducing agent under specific conditions to deposit nickel. The wet method has many advantages, including economy in terms of energy costs.

【0004】この湿式法の代表例としては、特開平7−
207307号公報、特開平7−278619号公報等
に開示されている方法が挙げられる。前者には、ヒドロ
キシルイオンとアンモニウムイオンとを含有する水溶液
に、水溶性ニッケル(II)塩水溶液を混合してアンモニ
ア・ニッケル錯体を生成させ、その後、還元剤を添加し
てアンモニア・ニッケル錯体を還元することからなる製
造方法が記載されている。又、後者には、特定の濃度の
ニッケル塩水溶液に強アルカリを加え、特定のpHなら
びに温度とした後、特定の温度、濃度を有する還元剤で
特定時間内に反応を終了させることからなる製造方法が
記載されている。これらの製造方法によって得られるニ
ッケル粉末については、一次粒径が前者では0.3〜
1.2μmの範囲内、後者では0.4〜0.6μmの範
囲内であり、また、粒度分布の幅も従来品と同等以上の
ものが得られると記載されている。
A typical example of this wet method is disclosed in
207307 and JP-A-7-278619. In the former, an aqueous solution containing a hydroxyl ion and an ammonium ion is mixed with a water-soluble nickel (II) salt aqueous solution to form an ammonia-nickel complex, and then a reducing agent is added to reduce the ammonia-nickel complex. A manufacturing method is described. In the latter case, a production method comprising adding a strong alkali to a nickel salt aqueous solution having a specific concentration to obtain a specific pH and temperature, and terminating the reaction within a specific time with a reducing agent having a specific temperature and concentration. A method is described. Regarding nickel powder obtained by these production methods, the primary particle size is 0.3 to 0.3 in the former.
It is described as being within a range of 1.2 μm, the latter being within a range of 0.4 to 0.6 μm, and having a width of particle size distribution equal to or greater than that of a conventional product.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
製造方法で得られた粉末はある程度の粒度分布領域に収
まっているものの、特開平7−207307号公報に開
示の方法においては、その明細書第4頁表2に示されて
いるようにD90値は2.13〜3.88μm程度であ
り、特開平7−278619号公報に開示の方法におい
ては、その明細書第3頁表2に示されているようにD90
値は2.58〜2.87μm程度である。従って、上記
の製造方法は、凝集が一層少なく即ちD90値の小さい粉
末を得る方法としては不十分であった。本発明は、積層
セラミックコンデンサの内部電極材料として用いるのに
適した0.1〜0.9μm程度の1次粒子の平均粒径を
有し、低凝集で粒度分布幅が狭く、且つ高タップ密度の
ニッケル微粉末を得るための製造方法を提供することを
目的としている。
However, although the powder obtained by the above-described production method falls within a certain particle size distribution range, the method disclosed in Japanese Patent Application Laid-Open No. 7-207307 discloses a method disclosed in the specification. 4 pp. table D 90 value as shown in 2 is about 2.13~3.88Myuemu, in the method disclosed in JP-a-7-278619, shown in its specification page 3 table 2 D 90 as has been
The value is about 2.58 to 2.87 μm. Thus, the method of manufacturing, aggregation was not sufficient as a method for obtaining a small powder having further reduced i.e. D 90 value. The present invention has an average primary particle diameter of about 0.1 to 0.9 μm, which is suitable for use as an internal electrode material of a multilayer ceramic capacitor, has a low aggregation, a narrow particle size distribution width, and a high tap density. It is an object of the present invention to provide a production method for obtaining a nickel fine powder.

【0006】[0006]

【課題を解決するための手段】1次粒子の平均粒径を制
御しながら、粒度分布が狭く且つタップ密度の高いニッ
ケル粉末を製造するためには、水酸化ニッケル生成工程
や還元反応工程における溶液濃度、溶液温度、反応温
度、添加継続時間、撹拌条件等の種々の製造条件につい
て配慮する必要がある。勿論、かかる製造条件は重要な
要素であるが、これら製造条件の調整だけで目的を達成
するには限界がある。そのことは前記した先行技術に記
載のニッケル粉末の特性値を見ても明らかである。
In order to produce nickel powder having a narrow particle size distribution and a high tap density while controlling the average particle size of the primary particles, it is necessary to use a solution in a nickel hydroxide production step or a reduction reaction step. It is necessary to consider various production conditions such as concentration, solution temperature, reaction temperature, duration of addition, and stirring conditions. Of course, such manufacturing conditions are important factors, but there is a limit to achieving the purpose only by adjusting these manufacturing conditions. This is apparent from the characteristic values of the nickel powder described in the above-mentioned prior art.

【0007】本発明者らは上記課題を解決するために鋭
意研究を重ねた結果、水酸化ナトリウム水溶液と硫酸ニ
ッケル水溶液とを混合して水酸化ニッケルを生成させ、
次いで該水酸化ニッケルを還元してニッケル粉末を製造
する方法において、該水酸化ナトリウム水溶液中に微量
の不純物が存在すると、最終生成ニッケル粉末の1次粒
子の平均粒径、凝集性、粒度分布幅、及びタップ密度が
影響されること、その微量の不純物の濃度を調整するこ
とにより目的とする特定の1次粒子の平均粒径を有し、
低凝集で粒度分布幅が狭く、且つ高タップ密度のニッケ
ル微粉末を得ることができること、また、その微量の不
純物の濃度の調整法として、JIS K1203で規定
する液体かせいソーダと、JIS K 8576で規定
する水酸化ナトリウム及びJIS K 1202で規定
する固形かせいソーダの一方又は両方とを混合して用い
ることが簡便であることを見出し、本発明を完成した。
The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, mixed an aqueous solution of sodium hydroxide and an aqueous solution of nickel sulfate to produce nickel hydroxide.
Then, in the method for producing nickel powder by reducing the nickel hydroxide, if a small amount of impurities are present in the aqueous sodium hydroxide solution, the average particle size, aggregability, and particle size distribution of the primary particles of the final nickel powder produced , And that the tap density is affected, by adjusting the concentration of the trace amount of impurities, the average particle diameter of the specific primary particles of interest,
It is possible to obtain a nickel fine powder having a low agglomeration, a narrow particle size distribution width, and a high tap density. In addition, as a method for adjusting the concentration of a trace amount of impurities, a liquid caustic soda specified by JIS K1203 and a JIS K 8576 The present inventors have found that it is convenient to use a mixture of the specified sodium hydroxide and one or both of solid soda specified in JIS K1202, and completed the present invention.

【0008】即ち、本発明のニッケル微粉末の製造方法
は、JIS K 1203で規定する液体かせいソーダ
を水酸化ナトリウム水溶液中の全水酸化ナトリウム分の
75〜85重量%を占める量で含有し且つJIS K
8576で規定する水酸化ナトリウム及びJIS K
1202で規定する固形かせいソーダの一方又は両方を
合計で水酸化ナトリウム水溶液中の全水酸化ナトリウム
分の25〜15重量%を占める量で含有する水酸化ナト
リウム水溶液と、硫酸ニッケル水溶液とを混合して水酸
化ニッケルを生成させ、次いで該水酸化ニッケルをヒド
ラジンで還元し、生成ニッケルを回収することを特徴と
する。
That is, the method for producing a nickel fine powder of the present invention comprises a liquid soda specified in JIS K 1203 in an amount occupying 75 to 85% by weight of the total sodium hydroxide in an aqueous sodium hydroxide solution. JIS K
Sodium hydroxide and JIS K specified in 8576
A sodium hydroxide aqueous solution containing one or both of the solid sodium hydroxide soda specified in 1202 in an amount occupying 25 to 15% by weight of the total sodium hydroxide in the sodium hydroxide aqueous solution and a nickel sulfate aqueous solution are mixed. To produce nickel hydroxide, and then reduce the nickel hydroxide with hydrazine to recover the produced nickel.

【0009】本発明の製造方法において、1次粒子の平
均粒径を制御しながら、低凝集で粒度分布が狭く且つタ
ップ密度の高いニッケル微粉末を製造することができる
理由、メカニズムについては現時点では明確には究明さ
れていない。しかし、本発明で用いる上記3種類の水酸
化ナトリウム原料には、それぞれ異なる濃度でFe3+
Ca2+、Al3+等の陽イオンや、CO3 2- 、Cl- 等の
陰イオンが含まれており、これらの陽イオンは水酸化ニ
ッケル生成反応や還元反応時の核生成に、また、これら
の陰イオンは当該反応速度に各々大きな影響を及ぼすも
のと思われる。
In the production method of the present invention, the reason why a fine nickel powder having a low agglomeration, a narrow particle size distribution and a high tap density can be produced while controlling the average particle diameter of the primary particles is described at present. Not clearly determined. However, the three kinds of sodium hydroxide raw materials used in the present invention have different concentrations of Fe 3+ ,
It contains cations such as Ca 2+ and Al 3+ and anions such as CO 3 2- and Cl , and these cations are used for nucleation during nickel hydroxide formation reaction and reduction reaction, and These anions are thought to have a large effect on the reaction rate.

【0010】本発明で用いるJIS K 8576で規
定する水酸化ナトリウムの品質(規格値)は次の通りで
ある。 純度 96.0%以上 塩化物(Cl) 0.005%以下 りん酸塩(PO4 ) 0.001%以下 けい酸塩(SiO2 として) 0.01%以下 硫酸塩(SO4 ) 0.002%以下 窒素化合物(Nとして) 0.001%以下 カリウム(K) 0.05%以下 マグネシウム(Mg) 5ppm以下 カルシウム(Ca) 0.002%以下 亜鉛(Zn) 0.001%以下 アルミニウム(Al) 0.002%以下 鉛(Pb) 5ppm以下 鉄(Fe) 5ppm以下 ニッケル(Ni) 0.001%以下 炭酸ナトリウム(Na2 CO3 ) 1.5%以下
The quality (standard value) of sodium hydroxide specified in JIS K 8576 used in the present invention is as follows. Purity 96.0% or more Chloride (Cl) 0.005% or less Phosphate (PO 4 ) 0.001% or less Silicate (as SiO 2 ) 0.01% or less Sulfate (SO 4 ) 0.002 % Or less Nitrogen compound (as N) 0.001% or less Potassium (K) 0.05% or less Magnesium (Mg) 5ppm or less Calcium (Ca) 0.002% or less Zinc (Zn) 0.001% or less Aluminum (Al) 0.002% or less Lead (Pb) 5ppm or less Iron (Fe) 5ppm or less Nickel (Ni) 0.001% or less Sodium carbonate (Na 2 CO 3 ) 1.5% or less

【0011】本発明で用いるJIS K 1202で規
定する固形かせいソーダの品質は次表に示す通りであ
る。
The quality of the solid soda specified in JIS K 1202 used in the present invention is as shown in the following table.

【0012】本発明で用いるJIS K 1203で規
定する液体かせいソーダの品質は次の通りである。水酸
化ナトリウム(NaOH)含有量45%の液体かせいソ
ーダについては次表に示す通りである。 水酸化ナトリウム(NaOH)含有量45%以外の液体
かせいソーダについての各成分は、上表の数値を基に水
酸化ナトリウム(NaOH)含有量に比例した数値以下
である。
The quality of the liquid skein soda specified in JIS K 1203 used in the present invention is as follows. The liquid soda having a sodium hydroxide (NaOH) content of 45% is as shown in the following table. Each component of the liquid soda except for the sodium hydroxide (NaOH) content of 45% is not more than the value proportional to the sodium hydroxide (NaOH) content based on the values in the above table.

【0013】従って、これらの不純物とも呼ぶべきイオ
ンの濃度を調整すれば、製造されるニッケル粉末の特性
も自ずと制御できると考えられる。例えば、水酸化ナト
リウム源として、経済面を重視してJIS K 120
3で規定する液体かせいソーダのみを用いた場合には、
含まれる不純物イオン濃度が高く且つ濃度がばらつくた
め、各反応の度に大きめの核が増え、発生量がばらつく
と同時に、反応速度が大きく振れ、仕上がったニッケル
粉末の1次粒子の平均粒径は大きめで粒度が不揃いにな
りやすい。
Therefore, it is considered that the characteristics of the produced nickel powder can be controlled by adjusting the concentration of the ions, which are also called impurities. For example, as a sodium hydroxide source, JIS K 120
When only the liquid skein soda specified in 3 is used,
Since the concentration of impurity ions contained is high and the concentration varies, larger nuclei increase in each reaction, the amount of generation varies, and at the same time, the reaction speed fluctuates greatly. The average particle size of the primary particles of the finished nickel powder is Large and easy to have irregular particle size.

【0014】一方、ニッケル粉末の特性、殊に粒度分布
を向上させるために、水酸化ナトリウム源としてJIS
K 8576で規定する水酸化ナトリウム又はJIS
K1202で規定する固形かせいソーダを用いた場合
には、含まれる不純物イオン濃度が低いので、細かめの
核が発生し、反応速度は安定するため、仕上がったニッ
ケル粉末の1次粒子の平均粒径は小さく、粒度分布の狭
いものが得られる。しかし、経済面で実用的ではない
上、1次粒子の平均粒径の大き目のニッケル粉末を得る
ことができない。
On the other hand, in order to improve the characteristics of the nickel powder, especially the particle size distribution, JIS is used as a sodium hydroxide source.
Sodium hydroxide or JIS specified in K 8576
When the solid caustic soda specified in K1202 is used, the concentration of impurity ions contained therein is low, so fine nuclei are generated, and the reaction rate is stabilized. Therefore, the average particle size of the primary particles of the finished nickel powder Is small and a narrow particle size distribution can be obtained. However, it is not economically practical and it is not possible to obtain a nickel powder having a large average primary particle size.

【0015】本発明者らはこうした傾向を把握し、水酸
化ナトリウム源としてJIS K1203で規定する液
体かせいソーダと、JIS K 8576で規定する水
酸化ナトリウム及びJIS K 1202で規定する固
形かせいソーダの一方又は両方とを併用した水溶液を用
いることにより、不純物イオンの影響を小さくしなが
ら、経済面を配慮しつつ目的のニッケル粉末が得られる
ことを見出したのである。
The present inventors have grasped such a tendency, and as a sodium hydroxide source, one of liquid sodium hydroxide soda specified by JIS K1203 and sodium hydroxide soda specified by JIS K8576 and solid sodium hydroxide soda specified by JIS K1202. Alternatively, they have found that by using an aqueous solution in which both are used, it is possible to obtain the desired nickel powder while reducing the influence of impurity ions and considering the economic aspect.

【0016】[0016]

【発明の実施の形態】本発明の第一の実施態様として、
JIS K 1203で規定する液体かせいソーダを水
酸化ナトリウム水溶液中の全水酸化ナトリウム分の75
〜85重量%を占める量で含有し且つJIS K 85
76で規定する水酸化ナトリウムを水酸化ナトリウム水
溶液中の全水酸化ナトリウム分の25〜15重量%を占
める量で含有する水酸化ナトリウム水溶液を用いる。こ
の場合には、得られるニッケル粉末の1次粒子の平均粒
径は0.1〜0.3μm程度になる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a first embodiment of the present invention,
The liquid sodium hydroxide specified in JIS K 1203 is converted to 75% of the total sodium hydroxide in the aqueous sodium hydroxide solution.
8585% by weight and JIS K85
An aqueous sodium hydroxide solution containing sodium hydroxide specified in 76 in an amount occupying 25 to 15% by weight of the total sodium hydroxide in the aqueous sodium hydroxide solution is used. In this case, the average particle size of the primary particles of the obtained nickel powder is about 0.1 to 0.3 μm.

【0017】このような実施態様において、JIS K
1203で規定する液体かせいソーダが水酸化ナトリ
ウム水溶液中の全水酸化ナトリウム分の75重量%未
満、即ちJIS K 8576で規定する水酸化ナトリ
ウムが水酸化ナトリウム水溶液中の全水酸化ナトリウム
分の25重量%を超える場合には、不純物イオン濃度が
低過ぎるので、1次粒子の平均粒径が0.1μmよりも
小さくて凝集が大きいニッケル粉末となる上、コスト面
でも不経済である。又、逆に、JIS K 1203で
規定する液体かせいソーダが水酸化ナトリウム水溶液中
の全水酸化ナトリウム分の85重量%を超える、即ちJ
IS K 8576で規定する水酸化ナトリウムが水酸
化ナトリウム水溶液中の全水酸化ナトリウム分の15重
量%未満の場合には、不純物イオン濃度が高過ぎ、反応
速度が不安定になり、その結果ニッケル粉末の粒度分布
の幅が広くなったり、タップ密度が小さくなるなどの弊
害が生じる。
In such an embodiment, JIS K
The liquid sodium hydroxide specified in 1203 is less than 75% by weight of the total sodium hydroxide in the aqueous sodium hydroxide solution, that is, the sodium hydroxide specified in JIS K 8576 is 25% by weight of the total sodium hydroxide in the aqueous sodium hydroxide solution. %, The impurity ion concentration is too low, resulting in nickel powder having an average primary particle size of less than 0.1 μm and large aggregation, and is uneconomical in terms of cost. Conversely, the liquid soda specified in JIS K 1203 exceeds 85% by weight of the total sodium hydroxide in the aqueous sodium hydroxide solution,
If the sodium hydroxide specified in IS K 8576 is less than 15% by weight of the total sodium hydroxide in the aqueous sodium hydroxide solution, the impurity ion concentration is too high, and the reaction rate becomes unstable. The width of the particle size distribution becomes wide, and the tap density becomes small.

【0018】本発明の第二の実施態様として、JIS
K 1203で規定する液体かせいソーダを水酸化ナト
リウム水溶液中の全水酸化ナトリウム分の75〜85重
量%を占める量で含有し且つJIS K 1202で規
定する固形かせいソーダを水酸化ナトリウム水溶液中の
全水酸化ナトリウム分の25〜15重量%を占める量で
含有する水酸化ナトリウム水溶液を用いる。この場合に
は、得られるニッケル粉末の1次粒子の平均粒径は0.
7〜0.9μm程度になる。
As a second embodiment of the present invention, JIS
Liquid sodium hydroxide specified in K1203 is contained in an amount occupying 75 to 85% by weight of the total sodium hydroxide in the aqueous sodium hydroxide solution, and solid sodium hydroxide specified in JIS K1202 is contained in the aqueous sodium hydroxide solution. An aqueous sodium hydroxide solution containing 25 to 15% by weight of sodium hydroxide is used. In this case, the average particle size of the primary particles of the obtained nickel powder is 0.1.
It is about 7 to 0.9 μm.

【0019】このような実施態様において、JIS K
1203で規定する液体かせいソーダが水酸化ナトリ
ウム水溶液中の全水酸化ナトリウム分の75重量%未
満、即ちJIS K 1202で規定する固形かせいソ
ーダが水酸化ナトリウム水溶液中の全水酸化ナトリウム
分の25重量%を超える場合には、不純物イオン濃度が
低過ぎるので、1次粒子の平均粒径が小さくて凝集が大
きいニッケル粉末となる上、コスト面でも不経済であ
る。又、逆に、JIS K 1203で規定する液体か
せいソーダが水酸化ナトリウム水溶液中の全水酸化ナト
リウム分の85重量%を超える、即ちJIS K 12
02で規定する固形かせいソーダが水酸化ナトリウム水
溶液中の全水酸化ナトリウム分の15重量%未満の場合
には、不純物イオン濃度が高過ぎ、1次粒子の平均粒径
が0.9μmより大きくなる上、反応速度が不安定にな
り、その結果ニッケル粉末の粒度分布の幅が広くなった
り、タップ密度が小さくなるなどの弊害が生じる。
In such an embodiment, JIS K
The liquid sodium hydroxide specified in 1203 is less than 75% by weight of the total sodium hydroxide in the aqueous sodium hydroxide solution, that is, the solid sodium hydroxide specified in JIS K 1202 is 25% by weight of the total sodium hydroxide in the aqueous sodium hydroxide solution. %, The impurity ion concentration is too low, resulting in a nickel powder having a small average particle size of primary particles and large aggregation, and is uneconomical in terms of cost. Conversely, the liquid soda specified in JIS K 1203 exceeds 85% by weight of the total sodium hydroxide in the aqueous sodium hydroxide solution, that is, JIS K 123.
When the amount of the solid sodium hydroxide specified in 02 is less than 15% by weight of the total sodium hydroxide in the aqueous sodium hydroxide solution, the impurity ion concentration is too high, and the average primary particle size is larger than 0.9 μm. In addition, the reaction rate becomes unstable, and as a result, adverse effects such as an increase in the width of the particle size distribution of the nickel powder and a decrease in the tap density are caused.

【0020】本発明の第三の実施態様として、JIS
K 1203で規定する液体かせいソーダを水酸化ナト
リウム水溶液中の全水酸化ナトリウム分の75〜85重
量%を占める量で含有し且つJIS K 8576で規
定する水酸化ナトリウム及びJIS K 1202で規
定する固形かせいソーダの両方を合計で水酸化ナトリウ
ム水溶液中の全水酸化ナトリウム分の25〜15重量%
を占める量で含有する水酸化ナトリウム水溶液を用い
る。この場合には、得られるニッケル粉末の1次粒子の
平均粒径は0.1〜0.9μm程度になる。
As a third embodiment of the present invention, JIS
Liquid sodium hydroxide specified in K1203 is contained in an amount occupying 75 to 85% by weight of the total sodium hydroxide in the aqueous sodium hydroxide solution, and sodium hydroxide specified in JIS K8576 and solid specified in JIS K1202 25-15% by weight of total sodium hydroxide in sodium hydroxide aqueous solution
Aqueous solution containing sodium hydroxide in an amount occupying the same. In this case, the average particle size of the primary particles of the obtained nickel powder is about 0.1 to 0.9 μm.

【0021】このような実施態様において、JIS K
1203で規定する液体かせいソーダが水酸化ナトリ
ウム水溶液中の全水酸化ナトリウム分の75重量%未
満、即ちJIS K 8576で規定する水酸化ナトリ
ウムとJIS K 1202で規定する固形かせいソー
ダの合計が水酸化ナトリウム水溶液中の全水酸化ナトリ
ウム分の25重量%を超える場合には、不純物イオン濃
度が低過ぎるので、1次粒子の平均粒径が0.1μmよ
りも小さくて凝集が大きいニッケル粉末となる上、コス
ト面でも不経済である。又、逆に、JIS K 120
3で規定する液体かせいソーダが水酸化ナトリウム水溶
液中の全水酸化ナトリウム分の85重量%を超える、即
ちJIS K 8576で規定する水酸化ナトリウムと
JIS K1202で規定する固形かせいソーダの合計
が水酸化ナトリウム水溶液中の全水酸化ナトリウム分の
15重量%未満の場合には、不純物イオン濃度が高過
ぎ、1次粒子の平均粒径が0.9μmより大きくなる
上、反応速度が不安定になり、その結果ニッケル粉末の
粒度分布の幅が広くなったり、タップ密度が小さくなる
などの弊害が生じる。
In such an embodiment, JIS K
The liquid caustic soda specified in 1203 is less than 75% by weight of the total sodium hydroxide in the aqueous sodium hydroxide solution. If the total sodium hydroxide content in the sodium aqueous solution exceeds 25% by weight, the concentration of impurity ions is too low, so that the average particle size of the primary particles is smaller than 0.1 μm and the agglomeration becomes large. It is uneconomical in terms of cost. Conversely, JIS K 120
The liquid soda specified in No. 3 exceeds 85% by weight of the total sodium hydroxide in the aqueous sodium hydroxide solution, that is, the sum of sodium hydroxide specified in JIS K 8576 and the solid determined soda specified in JIS K1202 is hydroxylated. If the total sodium hydroxide content in the sodium aqueous solution is less than 15% by weight, the impurity ion concentration is too high, the average particle size of the primary particles becomes larger than 0.9 μm, and the reaction rate becomes unstable, As a result, adverse effects such as an increase in the width of the particle size distribution of the nickel powder and a decrease in the tap density are caused.

【0022】本発明の製造方法においては、水酸化ニッ
ケル生成工程や還元反応工程での諸条件も重要である。
まず、水酸化ニッケル生成工程については、水酸化ナト
リウム水溶液と硫酸ニッケル水溶液とを混合する際の両
者の混合比は化学当量で水酸化ナトリウム:硫酸ニッケ
ル=1.66〜1.84:1であることが好ましく、
1.70〜1.80:1であることが更に好ましい。そ
の混合比が1.66:1よりも小さい(水酸化ナトリウ
ムの相対量が少ない)場合には、水酸化ニッケルの生成
に長時間を要したり、目標とする1次粒子の平均粒径の
ニッケル粉末が得られ難かったり、1次粒子の粒度分布
の幅が広くなったりする傾向がある。逆にその混合比が
1.84:1を超える場合には、増加するコストに見合
った効果が得られない。
In the production method of the present invention, various conditions in the nickel hydroxide production step and the reduction reaction step are also important.
First, in the nickel hydroxide producing step, the mixing ratio of the aqueous sodium hydroxide solution and the aqueous nickel sulfate solution is a chemical equivalent of sodium hydroxide: nickel sulfate = 1.66 to 1.84: 1. Preferably,
More preferably, the ratio is 1.70 to 1.80: 1. When the mixing ratio is smaller than 1.66: 1 (the relative amount of sodium hydroxide is small), it takes a long time to produce nickel hydroxide, or the average primary particle There is a tendency that it is difficult to obtain a nickel powder and the width of the particle size distribution of the primary particles is wide. On the other hand, if the mixing ratio exceeds 1.84: 1, the effect corresponding to the increased cost cannot be obtained.

【0023】また、水酸化ナトリウム水溶液と硫酸ニッ
ケル水溶液とを混合する際には、水酸化ナトリウム水溶
液と硫酸ニッケル水溶液とを一気に混合することも可能
であるが、この場合にはゼリー状となる傾向があって後
処理が面倒である。従って、水酸化ナトリウム水溶液に
硫酸ニッケル水溶液を徐々に添加するか、又は硫酸ニッ
ケル水溶液に水酸化ナトリウム水溶液を徐々に添加する
ことが好ましい。
When the aqueous sodium hydroxide solution and the aqueous nickel sulfate solution are mixed, it is possible to mix the aqueous sodium hydroxide solution and the aqueous nickel sulfate solution at once, but in this case, the aqueous solution tends to be jelly-like. And post-processing is troublesome. Therefore, it is preferable to gradually add an aqueous solution of nickel sulfate to an aqueous solution of sodium hydroxide, or to add an aqueous solution of sodium hydroxide to an aqueous solution of nickel sulfate.

【0024】次に、還元反応工程については、水酸化ニ
ッケルをヒドラジンで還元する際の両者の混合比は化学
当量で水酸化ニッケル:ヒドラジン=1:9.5〜1
0.5であることが好ましく、1:9.7〜10.3で
あることが更に好ましい。その混合比が1:9.50よ
りも大きい(ヒドラジンの相対量が少ない)場合には、
還元反応に支障をきたし、1次粒子の粒度分布の幅が広
くなったりする傾向がある。逆にその混合比が1:1
0.50より小さい場合には、反応が早く進み、1次粒
子の平均粒径が小さくなる上、増加するコストに見合っ
た効果が得られない傾向がある。
Next, in the reduction reaction step, when the nickel hydroxide is reduced with hydrazine, the mixing ratio of the two is a chemical equivalent of nickel hydroxide: hydrazine = 1: 9.5-1.
It is preferably 0.5, more preferably 1: 9.7 to 10.3. When the mixing ratio is larger than 1: 9.50 (the relative amount of hydrazine is small),
The reduction reaction is hindered, and the size distribution of the primary particles tends to be wide. Conversely, the mixing ratio is 1: 1
When it is smaller than 0.50, the reaction proceeds rapidly, the average particle size of the primary particles becomes small, and the effect corresponding to the increased cost tends to be not obtained.

【0025】又、水酸化ニッケル生成工程及び還元反応
工程での温度条件については、55〜70℃で実施する
ことが好ましく、55〜65℃で実施することが更に好
ましい。該温度が55℃未満の場合には、各々の反応の
進行に支障をきたすため、目標とする1次粒子の平均粒
径が得られ難かったり、1次粒子の粒度分布の幅が広く
なったりする傾向がある。逆に、該温度が70℃を超え
る場合には、増加するコストに見合った効果が得られな
い。
The temperature conditions in the nickel hydroxide production step and the reduction reaction step are preferably carried out at 55 to 70 ° C., more preferably at 55 to 65 ° C. When the temperature is lower than 55 ° C., the progress of each reaction is hindered, so that it is difficult to obtain the target average particle size of the primary particles, or the width of the particle size distribution of the primary particles becomes wide. Tend to. Conversely, if the temperature exceeds 70 ° C., an effect corresponding to the increased cost cannot be obtained.

【0026】以上に説明した本発明の製造方法によれ
ば、目的とする1次粒子の平均粒径が0.1〜0.9μ
mであり、この範囲内であれば1次粒子の平均粒径によ
らずD90値が2.1μm以下であり、且つタップ密度が
3.5g/cc以上であるニッケル微粉末を得ることが
できる。このようなニッケル微粉末は積層セラミックコ
ンデンサの内部電極材料として用いるのに極めて好適で
ある。
According to the production method of the present invention described above, the target primary particles have an average particle size of 0.1 to 0.9 μm.
a m, D 90 value regardless of the average particle size of the primary particles This range is less than or equal to 2.1 .mu.m, and the tap density is possible to obtain a nickel powder is 3.5 g / cc or more it can. Such nickel fine powder is extremely suitable for use as an internal electrode material of a multilayer ceramic capacitor.

【0027】[0027]

【実施例】以下、実施例によって本発明を具体的に説明
するが、本発明はかかる事例に限定されるものではな
い。 実施例1 JIS K 1203で規定する液体かせいソーダ(N
aOH濃度45重量%品)を純水で濃度25重量%に希
釈した水溶液1728gに、JIS K 8576で規
定する水酸化ナトリウム(NaOH品位97%)108
gを溶解して、13.5mol/lの水溶液を調製し
た。
The present invention will be described below in detail with reference to examples, but the present invention is not limited to such examples. Example 1 A liquid caustic soda (N) specified in JIS K 1203
sodium hydroxide (NaOH grade 97%) specified by JIS K 8576 was added to 1,728 g of an aqueous solution obtained by diluting an aOH concentration of 45% by weight) with pure water to a concentration of 25% by weight.
g was dissolved to prepare a 13.5 mol / l aqueous solution.

【0028】硫酸ニッケル(NiSO4 ・6H2 O品位
22.2重量%品)を純水に溶解して調製した1.7m
ol/lの水溶液2.27リットルを上記の水酸化ナト
リウム水溶液1リットルに、液温を60℃に保持しなが
ら、50分間にわたって連続的に添加して水酸化ニッケ
ルのスラリーを得た。該水酸化ニッケルスラリーに、液
温を60℃に保持しながら、濃度20mol/lの抱水
ヒドラジン0.96リットルを一括添加し、撹拌してニ
ッケル微粒子を生成させた。得られたニッケル微粒子を
純水で充分に洗浄し、濾過した後、常法に従って乾燥・
篩分処理を行ってニッケル微粉末を得た。
1.7 m prepared by dissolving nickel sulfate (NiSO 4 .6H 2 O grade 22.2% by weight) in pure water.
2.27 liters of an aqueous solution of ol / l were continuously added to 1 liter of the above-mentioned sodium hydroxide aqueous solution over a period of 50 minutes while maintaining the liquid temperature at 60 ° C. to obtain a nickel hydroxide slurry. While maintaining the liquid temperature at 60 ° C., 0.96 liter of hydrazine hydrate having a concentration of 20 mol / l was added to the nickel hydroxide slurry at a time, followed by stirring to produce nickel fine particles. The obtained nickel fine particles are sufficiently washed with pure water, filtered, dried and dried according to a conventional method.
A sieving treatment was performed to obtain a fine nickel powder.

【0029】実施例2 JIS K 1203で規定する液体かせいソーダ(N
aOH濃度45重量%品)を純水で濃度25重量%に希
釈した水溶液1728gに、JIS K 8576で規
定する水酸化ナトリウム(NaOH品位97%)76g
及びJIS K1202で規定する固形かせいソーダ
(NaOH品位96%)32gを溶解して13.5mo
l/lの水溶液を調製し、その水酸化ナトリウム水溶液
1リットルを用いた以外は、実施例1と同様の条件でニ
ッケル微粉末を得た。
Example 2 Liquid soda (N) specified in JIS K1203
(aOH concentration: 45% by weight) diluted with pure water to a concentration of 25% by weight to 1728 g of an aqueous solution, and 76 g of sodium hydroxide (NaOH grade: 97%) specified by JIS K 8576
And 32 g of solid caustic soda (NaOH grade 96%) specified in JIS K1202 and dissolved in 13.5 mo
A 1 / l aqueous solution was prepared and nickel fine powder was obtained under the same conditions as in Example 1 except that 1 liter of the aqueous sodium hydroxide solution was used.

【0030】実施例3 JIS K 1203で規定する液体かせいソーダ(N
aOH濃度45重量%品)を純水で濃度25重量%に希
釈した水溶液1728gに、JIS K 1202で規
定する固形かせいソーダ(NaOH品位96%)108
gを溶解して13.5mol/lの水溶液を調製し、そ
の水酸化ナトリウム水溶液1リットルを用いた以外は、
実施例1と同様の条件でニッケル微粉末を得た。
Example 3 A liquid caustic soda (N) specified in JIS K1203
Aqueous solid soda (NaOH grade 96%) 108 specified in JIS K 1202 was added to 1,728 g of an aqueous solution obtained by diluting an aOH concentration of 45% by weight with pure water to a concentration of 25% by weight.
g was dissolved to prepare a 13.5 mol / l aqueous solution, and 1 liter of the aqueous sodium hydroxide solution was used.
Under the same conditions as in Example 1, nickel fine powder was obtained.

【0031】比較例1 JIS K 1203で規定する液体かせいソーダ(N
aOH濃度45重量%品)を純水で希釈して得た13.
5mol/lの水溶液1リットルを用いた以外は、実施
例1と同様の条件でニッケル微粉末を得た。
Comparative Example 1 Liquid soda (N) specified in JIS K 1203
(aOH concentration of 45% by weight) was diluted with pure water.
A nickel fine powder was obtained under the same conditions as in Example 1 except that 1 liter of a 5 mol / l aqueous solution was used.

【0032】比較例2 JIS K 8576で規定する水酸化ナトリウム(N
aOH品位97%)を純水で希釈して得た13.5mo
l/lの水溶液1リットルを用いた以外は、実施例1と
同様の条件でニッケル微粉末を得た。
Comparative Example 2 Sodium hydroxide (N) specified in JIS K 8576
aOH grade 97%) diluted with pure water to obtain 13.5mo
A nickel fine powder was obtained under the same conditions as in Example 1 except that 1 liter of a 1 / l aqueous solution was used.

【0033】比較例3 JIS K 1202で規定する固形かせいソーダ(N
aOH品位96%)を純水で希釈して得た13.5mo
l/lの水溶液1リットルを用いた以外は、実施例1と
同様の条件でニッケル微粉末を得た。
Comparative Example 3 Solid soda (N) specified in JIS K1202
aOH grade 96%) diluted with pure water to obtain 13.5 mo
A nickel fine powder was obtained under the same conditions as in Example 1 except that 1 liter of a 1 / l aqueous solution was used.

【0034】比較例4 JIS K 1203で規定する液体かせいソーダ(N
aOH濃度45重量%品)を純水で濃度25重量%に希
釈した水溶液1512gに、JIS K 8576で規
定する水酸化ナトリウム(NaOH品位97%)162
gを溶解して、13.5mol/lの水溶液を調製し、
その水酸化ナトリウム水溶液1リットルを用いた以外
は、実施例1と同様の条件でニッケル微粉末を得た。
Comparative Example 4 Liquid soda (N) specified in JIS K 1203
sodium hydroxide (NaOH grade 97%) 162 specified in JIS K 8576 to 1512 g of an aqueous solution obtained by diluting an aOH concentration of 45% by weight) with pure water to a concentration of 25% by weight.
g to prepare a 13.5 mol / l aqueous solution,
A nickel fine powder was obtained under the same conditions as in Example 1 except that 1 liter of the aqueous sodium hydroxide solution was used.

【0035】比較例5 JIS K 1203で規定する液体かせいソーダ(N
aOH濃度45重量%品)を純水で濃度25重量%に希
釈した水溶液1512gに、JIS K 1202で規
定する固形かせいソーダ(NaOH品位96%)162
gを溶解して13.5mol/lの水溶液を調製し、そ
の水酸化ナトリウム水溶液1リットルを用いた以外は、
実施例1と同様の条件でニッケル微粉末を得た。
Comparative Example 5 Liquid soda (N) specified in JIS K1203
Aqueous soda (NaOH grade 96%) 162 specified in JIS K 1202 was added to 1512 g of an aqueous solution obtained by diluting an aOH concentration of 45% by weight with pure water to a concentration of 25% by weight.
g was dissolved to prepare a 13.5 mol / l aqueous solution, and 1 liter of the aqueous sodium hydroxide solution was used.
Under the same conditions as in Example 1, nickel fine powder was obtained.

【0036】比較例6 JIS K 1203で規定する液体かせいソーダ(N
aOH濃度45重量%品)を純水で濃度25重量%に希
釈した水溶液1944gに、JIS K 8576で規
定する水酸化ナトリウム(NaOH品位97%)38g
及びJIS K1202で規定する固形かせいソーダ
(NaOH品位96%)16gを溶解して13.5mo
l/lの水溶液を調製し、その水酸化ナトリウム水溶液
1リットルを用いた以外は、実施例1と同様の条件でニ
ッケル微粉末を得た。
Comparative Example 6 Liquid caustic soda (N) specified in JIS K 1203
38 g of sodium hydroxide (NaOH grade 97%) specified by JIS K 8576 was added to 1944 g of an aqueous solution obtained by diluting an aOH concentration of 45% by weight) with pure water to a concentration of 25% by weight.
And 16 g of solid caustic soda (NaOH grade 96%) specified in JIS K1202 and dissolved in 13.5 mo
A 1 / l aqueous solution was prepared and nickel fine powder was obtained under the same conditions as in Example 1 except that 1 liter of the aqueous sodium hydroxide solution was used.

【0037】ニッケル微粉末の特性値測定及びSEM写
真 上記の実施例1〜3及び比較例1〜6で得た各々のニッ
ケル微粉末について、電子顕微鏡写真によりフェレ径
(1次粒子の平均粒径)を求め、マイクロトラックによ
りD90値を求め、タップデンサーによるタップ密度を測
定した。その測定値は下記の表に示す通りであった。ま
た、実施例2で得たニッケル微粉末のSEM写真(倍率
8000倍)は図1に示す通りであり、比較例5で得た
ニッケル微粉末のSEM写真(倍率8000倍)は図2
に示す通りであった。
Measurement of characteristic value of nickel fine powder and SEM photograph For each of the nickel fine powders obtained in Examples 1 to 3 and Comparative Examples 1 to 6, the Feret diameter (average particle diameter of primary particles) was determined by an electron micrograph. ) is obtained, obtains a D 90 value by Microtrac, was measured tap density by tap Denser. The measured values were as shown in the table below. The SEM photograph (8000 times magnification) of the nickel fine powder obtained in Example 2 is as shown in FIG. 1, and the SEM photograph (8000 times magnification) of the nickel fine powder obtained in Comparative Example 5 is shown in FIG.
As shown in FIG.

【0038】 [0038]

【0039】上記の表に示すデータからも明らかなよう
に、実施例1〜3で得た本発明のニッケル微粉末は、1
次粒子の平均粒径が0.2〜0.8μmであり、D90
が2.1μm以下であり、且つタップ密度が3.5g/
cc以上であり、また、図1〜2のSEM写真からも明
らかなように、本発明のニッケル微粉末は低凝集で粒度
分布幅が狭い。一方、比較例1〜6で得たニッケル微粉
末は、D90値が2.1μmを超えており、且つタップ密
度が3.5g/cc未満である。
As is clear from the data shown in the above table, the nickel fine powder of the present invention obtained in Examples 1 to 3 was 1
An average particle size of the next particle is 0.2 to 0.8 [mu] m, and a D 90 value of 2.1μm or less, and a tap density of 3.5 g /
cc or more, and as is clear from the SEM photographs of FIGS. 1 and 2, the nickel fine powder of the present invention has low aggregation and a narrow particle size distribution width. On the other hand, the nickel powder obtained in Comparative Examples 1 to 6, exceeds the D 90 value is 2.1 .mu.m, and a tap density of less than 3.5 g / cc.

【0040】[0040]

【発明の効果】本発明の製造方法によって得られるニッ
ケル微粉末は、1次粒子の平均粒径が0.1〜0.9μ
mであり、D90値が2.1μm以下であり、且つタップ
密度が3.5g/cc以上であり、即ち、低凝集で粒度
分布幅が狭く、且つ高タップ密度のニッケル微粉末であ
り、積層セラミックコンデンサの内部電極材料として用
いるのに極めて好適である。
The nickel fine powder obtained by the production method of the present invention has an average primary particle diameter of 0.1 to 0.9 μm.
m, and not more than D 90 value is 2.1 .mu.m, and have a tap density of 3.5 g / cc or more, i.e., narrow particle size distribution width at a low aggregation, a and nickel fine powder of high tap density, It is extremely suitable for use as an internal electrode material of a multilayer ceramic capacitor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例2で得たニッケル微粉末のSEM写真
である。
FIG. 1 is an SEM photograph of the nickel fine powder obtained in Example 2.

【図2】 比較例5で得たニッケル微粉末のSEM写真
である。
FIG. 2 is an SEM photograph of the nickel fine powder obtained in Comparative Example 5.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 19/00 C22C 1/04 B H01G 4/12 361 Q // B22F 5/00 C22B 3/00 T C22C 1/04 23/04 B22F 5/00 H (56)参考文献 特開 平6−290985(JP,A) 特開 平6−336601(JP,A) 特公 昭41−4567(JP,B1) (58)調査した分野(Int.Cl.6,DB名) B22F 9/24 B22F 1/00 C22B 3/44 C22B 5/00 C22B 23/00 C22C 19/00 H01G 4/12 361 B22F 5/00 C22C 1/04 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C22C 19/00 C22C 1/04 B H01G 4/12 361 Q // B22F 5/00 C22B 3/00 T C22C 1/04 23 / 04 B22F 5/00 H (56) References JP-A-6-290985 (JP, A) JP-A-6-336601 (JP, A) JP-B-41-4567 (JP, B1) (58) Fields investigated (Int.Cl. 6 , DB name) B22F 9/24 B22F 1/00 C22B 3/44 C22B 5/00 C22B 23/00 C22C 19/00 H01G 4/12 361 B22F 5/00 C22C 1/04

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】JIS K 1203で規定する液体かせ
いソーダを水酸化ナトリウム水溶液中の全水酸化ナトリ
ウム分の75〜85重量%を占める量で含有し且つJI
SK 8576で規定する水酸化ナトリウム及びJIS
K 1202で規定する固形かせいソーダの一方又は
両方を合計で水酸化ナトリウム水溶液中の全水酸化ナト
リウム分の25〜15重量%を占める量で含有する水酸
化ナトリウム水溶液と、硫酸ニッケル水溶液とを混合し
て水酸化ニッケルを生成させ、次いで該水酸化ニッケル
をヒドラジンで還元し、生成ニッケルを回収することを
特徴とするニッケル微粉末の製造方法。
1. A liquid caustic soda as defined by JIS K 1203 is contained in an amount occupying 75 to 85% by weight of the total sodium hydroxide in an aqueous sodium hydroxide solution.
Sodium hydroxide and JIS specified in SK 8576
A mixture of a sodium hydroxide aqueous solution containing one or both of solid soda specified in K1202 in an amount occupying 25 to 15% by weight of the total sodium hydroxide in the sodium hydroxide aqueous solution, and a nickel sulfate aqueous solution Producing nickel hydroxide, and then reducing the nickel hydroxide with hydrazine to recover the produced nickel.
【請求項2】JIS K 1203で規定する液体かせ
いソーダを水酸化ナトリウム水溶液中の全水酸化ナトリ
ウム分の75〜85重量%を占める量で含有し且つJI
SK 8576で規定する水酸化ナトリウムを水酸化ナ
トリウム水溶液中の全水酸化ナトリウム分の25〜15
重量%を占める量で含有する水酸化ナトリウム水溶液を
用いることを特徴とする請求項1記載の製造方法。
2. A liquid caustic soda specified by JIS K 1203 in an amount occupying 75 to 85% by weight of the total sodium hydroxide in an aqueous sodium hydroxide solution and JIS
The sodium hydroxide specified in SK 8576 is converted to 25 to 15 of the total sodium hydroxide in the aqueous sodium hydroxide solution.
2. The method according to claim 1, wherein an aqueous sodium hydroxide solution is used in an amount occupying the weight%.
【請求項3】JIS K 1203で規定する液体かせ
いソーダを水酸化ナトリウム水溶液中の全水酸化ナトリ
ウム分の75〜85重量%を占める量で含有し且つJI
SK 1202で規定する固形かせいソーダを水酸化ナ
トリウム水溶液中の全水酸化ナトリウム分の25〜15
重量%を占める量で含有する水酸化ナトリウム水溶液を
用いることを特徴とする請求項1記載の製造方法。
3. A liquid caustic soda specified in JIS K 1203 in an amount occupying 75 to 85% by weight of the total sodium hydroxide in an aqueous sodium hydroxide solution, and JIS
The solid caustic soda specified in SK 1202 is converted to 25 to 15 of the total sodium hydroxide in the aqueous sodium hydroxide solution.
2. The method according to claim 1, wherein an aqueous sodium hydroxide solution is used in an amount occupying the weight%.
【請求項4】JIS K 1203で規定する液体かせ
いソーダを水酸化ナトリウム水溶液中の全水酸化ナトリ
ウム分の75〜85重量%を占める量で含有し且つJI
SK 8576で規定する水酸化ナトリウム及びJIS
K 1202で規定する固形かせいソーダの両方を合
計で水酸化ナトリウム水溶液中の全水酸化ナトリウム分
の25〜15重量%を占める量で含有する水酸化ナトリ
ウム水溶液を用いることを特徴とする請求項1記載の製
造方法。
4. A liquid caustic soda as defined by JIS K 1203 in an amount occupying 75 to 85% by weight of the total sodium hydroxide in an aqueous sodium hydroxide solution and JIS
Sodium hydroxide and JIS specified in SK 8576
An aqueous sodium hydroxide solution containing both the solid sodium hydroxide specified by K1202 in a total amount of 25 to 15% by weight of the total sodium hydroxide in the aqueous sodium hydroxide solution is used. The manufacturing method as described.
【請求項5】水酸化ナトリウム水溶液と硫酸ニッケル水
溶液とを混合する際の両者の混合比は化学当量で水酸化
ナトリウム:硫酸ニッケル=1.66〜1.84:1で
あることを特徴とする請求項1〜4の何れかに記載の製
造方法。
5. The mixing ratio of the aqueous sodium hydroxide solution and the aqueous nickel sulfate solution is a chemical equivalent of sodium hydroxide: nickel sulfate = 1.66 to 1.84: 1. The method according to claim 1.
【請求項6】水酸化ナトリウム水溶液と硫酸ニッケル水
溶液とを混合する際に、水酸化ナトリウム水溶液及び硫
酸ニッケル水溶液の一方を他方に徐々に添加することを
特徴とする請求項1〜5の何れかに記載の製造方法。
6. The method according to claim 1, wherein when mixing the aqueous sodium hydroxide solution and the aqueous nickel sulfate solution, one of the aqueous sodium hydroxide solution and the aqueous nickel sulfate solution is gradually added to the other. The production method described in 1.
【請求項7】水酸化ニッケルをヒドラジンで還元する際
の両者の混合比は化学当量で水酸化ニッケル:ヒドラジ
ン=1:9.5〜10.5であることを特徴とする請求
項1〜6の何れかに記載の製造方法。
7. The method according to claim 1, wherein the mixing ratio of nickel hydroxide and hydrazine in the reduction of hydrazine is a chemical equivalent of nickel hydroxide: hydrazine = 1: 9.5 to 10.5. The production method according to any one of the above.
【請求項8】1次粒子の平均粒径が0.1〜0.9μm
であり、D90値が2.1μm以下であり且つタップ密度
が3.5g/cc以上であるニッケル微粉末を製造する
ことを特徴とする請求項1〜7の何れかに記載の製造方
法。
8. The primary particles have an average particle size of 0.1 to 0.9 μm.
, And the production method according to any one of claims 1 to 7, characterized in that and tap density D 90 value is not more than 2.1μm to produce a nickel powder is 3.5 g / cc or more.
JP10205878A 1997-09-11 1998-07-06 Method for producing nickel fine powder Expired - Fee Related JP2991700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10205878A JP2991700B2 (en) 1997-09-11 1998-07-06 Method for producing nickel fine powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-247125 1997-09-11
JP24712597 1997-09-11
JP10205878A JP2991700B2 (en) 1997-09-11 1998-07-06 Method for producing nickel fine powder

Publications (2)

Publication Number Publication Date
JPH11152507A JPH11152507A (en) 1999-06-08
JP2991700B2 true JP2991700B2 (en) 1999-12-20

Family

ID=26515309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10205878A Expired - Fee Related JP2991700B2 (en) 1997-09-11 1998-07-06 Method for producing nickel fine powder

Country Status (1)

Country Link
JP (1) JP2991700B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1248814C (en) * 1999-08-31 2006-04-05 东邦钛株式会社 Nickel powder for monolithic ceramic capacitor
TW467780B (en) 1999-11-10 2001-12-11 Mitsui Mining & Smelting Co Nickel powder, a production thereof and conductive paste
WO2001036131A1 (en) * 1999-11-12 2001-05-25 Mitsui Mining And Smelting Co., Ltd. Nickel powder and conductive paste
JP3957444B2 (en) * 1999-11-22 2007-08-15 三井金属鉱業株式会社 Nickel powder, manufacturing method thereof, and paste for forming electronic component electrodes
CN1265921C (en) * 2004-12-28 2006-07-26 成都开飞高能化学工业有限公司 Wet manufacturing method for high vibrancy solid ultra micro sphere metal nickel powder
CN100391663C (en) * 2006-04-10 2008-06-04 李小毛 Process for preparing nano nickel powder
JP2007197836A (en) * 2007-03-06 2007-08-09 Mitsui Mining & Smelting Co Ltd Nickel powder
KR101044726B1 (en) * 2009-01-06 2011-06-28 충남대학교산학협력단 A method for producing ultrafine nickel powder by chemical reduction
JP5063624B2 (en) * 2009-02-12 2012-10-31 株式会社ノリタケカンパニーリミテド Method for producing nickel fine particles

Also Published As

Publication number Publication date
JPH11152507A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
KR100480864B1 (en) Method for preparing nickel fine powder
JP5032005B2 (en) High crystal silver powder and method for producing the high crystal silver powder
KR100522066B1 (en) Tantalum Powder, Method for Producing Same Powder and Sintered Anodes Obtained From It
EP0985474B1 (en) Method for producing metal powder by reduction of metallic salt.
KR101236253B1 (en) Method of producing copper powder and copper powder
WO1999059919A1 (en) Method for producing barium titanate powder
JP2991700B2 (en) Method for producing nickel fine powder
JP5892048B2 (en) Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery and method for producing the same
WO2007065154A2 (en) Method of manufacturing silver platelets
JPH09256007A (en) Production of copper powder
WO2013157587A1 (en) Manganese(iii, iv) oxide and method for producing same
JP2012172170A (en) Method for producing metal particles
JP4100244B2 (en) Nickel powder and method for producing the same
JP3073732B1 (en) Nickel fine powder and method for producing the same
JP2900650B2 (en) Method for producing nickel fine powder
JP5376109B2 (en) Method for producing silver fine particles
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
JPH07278619A (en) Production of nickel powder
JPH02294415A (en) Production of fine copper powder
US5514202A (en) Method for producing fine silver-palladium alloy powder
JP3395254B2 (en) Method for producing nickel hydroxide for non-sintered alkaline storage batteries
JP2018104724A (en) Production method of silver-coated copper powder
JP3343283B2 (en) Silver-palladium coprecipitated powder and method for producing the same
JP2855331B2 (en) Stabilized red phosphorus and method for producing the same
JPH0249364B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990928

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees