JPH0645846B2 - Manufacturing method of wear resistant high permeability alloy. - Google Patents

Manufacturing method of wear resistant high permeability alloy.

Info

Publication number
JPH0645846B2
JPH0645846B2 JP26269489A JP26269489A JPH0645846B2 JP H0645846 B2 JPH0645846 B2 JP H0645846B2 JP 26269489 A JP26269489 A JP 26269489A JP 26269489 A JP26269489 A JP 26269489A JP H0645846 B2 JPH0645846 B2 JP H0645846B2
Authority
JP
Japan
Prior art keywords
less
alloy
temperature
permeability
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26269489A
Other languages
Japanese (ja)
Other versions
JPH02138448A (en
Inventor
量 増本
雄悦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
Original Assignee
THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP60014556A external-priority patent/JPS61174349A/en
Application filed by THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS filed Critical THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
Priority to JP26269489A priority Critical patent/JPH0645846B2/en
Publication of JPH02138448A publication Critical patent/JPH02138448A/en
Publication of JPH0645846B2 publication Critical patent/JPH0645846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Ni,Nb,TaおよびFeを主成分とし、副成分とし
てCr,Mo,Ge,Au,Co,V,W,Cu,Mn,Al,Si,Ti,Zr,Hf,Sn,Sb,
Ga,In,Tl,Zn,Cd,希土類元素、白金族元素、Be,Ag,Sr,
Ba,B の1種または2種以上を含有する耐摩耗性高透磁
率合金の製造法に関するもので、その目的とするところ
は、鍛造加工が容易で、実効透磁率が大きく、飽和磁束
密度が4000G以上で、{110}<112>+{311}<112>
の再結晶集合組織を有して耐摩耗性が良好な磁性合金を
得るにある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is based on Ni, Nb, Ta and Fe as main components, and Cr, Mo, Ge, Au, Co, V, W, Cu, Mn as sub-components. , Al, Si, Ti, Zr, Hf, Sn, Sb,
Ga, In, Tl, Zn, Cd, rare earth elements, platinum group elements, Be, Ag, Sr,
The present invention relates to a method for producing a wear-resistant high-permeability alloy containing one or more of Ba and B. Its purpose is to facilitate forging, have a large effective permeability, and a saturated magnetic flux density. Over 4000G, {110} <112> + {311} <112>
In order to obtain a magnetic alloy having a recrystallization texture of 1 and having good wear resistance.

(従来の技術) テープレコーダーなどの磁気記録再生ヘッドは交流磁界
において作動するものであるから、これに用いられる磁
性合金は高周波磁界における実効透磁率が大きいことが
必要とされ、また磁気テープが接触して摺動するため耐
摩耗性が良好であることが望まれている。現在、耐摩耗
性にすぐれた磁気ヘッド用磁性合金としてはセンダスト
(Fe−Si-Al系合金)およびMn−Znフェライト(MnO-ZnO
-Fe2O3)があるが、これらは非常に硬く脆いため、鍛
造、圧延加工が不可能で、ヘッドコアの製造には研削、
研磨の方法が用いられており、従ってその成品は高価で
ある。またセンダストは飽和磁束密度は大きいが薄板に
できないので高周波磁界における実効透磁率が比較的小
さい。またフェライトは実効透磁率は大きいが、飽和磁
束密度が約4000Gで小さいのが欠点である。他方パーマ
ロイ(Ni−Fe系合金)は飽和磁束密度は大きいが、実効
透磁率は小さく、また鍛造、圧延加工および打抜きは容
易で量産性にすぐれているが、摩耗しやすいのが大きな
欠点であり、これを改善することが強く望まれている。
(Prior Art) Since a magnetic recording / reproducing head such as a tape recorder operates in an alternating magnetic field, it is necessary that the magnetic alloy used for this has a large effective magnetic permeability in a high frequency magnetic field. Therefore, it is desired that the wear resistance is good because it slides. Currently, as a magnetic alloy for a magnetic head having excellent wear resistance, Sendust (Fe-Si-Al alloy) and Mn-Zn ferrite (MnO-ZnO) are used.
-Fe 2 O 3 ), but these are extremely hard and brittle, so they cannot be forged and rolled.
Polishing methods have been used and the products are therefore expensive. In addition, sendust has a high saturation magnetic flux density but cannot be made into a thin plate, so that the effective magnetic permeability in a high frequency magnetic field is relatively small. Ferrite has a large effective magnetic permeability, but its saturation magnetic flux density is about 4000 G, which is a drawback. On the other hand, permalloy (Ni-Fe alloy) has a high saturation magnetic flux density, but a low effective permeability, and it is easy to forge, roll, and punch and has excellent mass productivity, but it has a major drawback that it is easily worn. ,, there is a strong desire to improve this.

(発明が解決しようとする問題点) 本発明者らは、先にNi−Fe−Nb系およびNi−Fe−Ta系合
金は鍛造加工が容易で硬度および透磁率が大きいことか
ら、磁気ヘッド用磁性合金として好適であることを見い
出し、これを特許出願した(特公昭47-29690号および特
公昭51-536号)。
(Problems to be Solved by the Invention) The inventors of the present invention have previously proposed that Ni-Fe-Nb-based and Ni-Fe-Ta-based alloys are easy to forge and have high hardness and magnetic permeability, so that they are used for magnetic heads. We found that it is suitable as a magnetic alloy and applied for a patent (Japanese Patent Publication No. 47-29690 and Japanese Patent Publication No. 51-536).

その後本発明者らは、磁気ヘッド用磁性合金としてNi−
Fe−Nb系およびNi−Fe−Ta系合金の薄板を生産して来た
が、磁気テープの摺動による薄板の摩耗量は、薄板の製
造工程における加工法および熱処理法によって著しく増
減して耐摩耗性が損なわれる大きな問題であることか
ら、この原因を解明するためこれら合金の摩耗について
系統的な研究を行った。その結果、Ni−Fe−Nb系および
Ni−Fe−Ta系合金の摩耗は硬度によって一義的に決定さ
れるものでなく、薄板の製造方法に依存する再結晶集合
組織と緊密な関係があることが明らかとなった。
After that, the present inventors used Ni- as a magnetic alloy for a magnetic head.
Although Fe-Nb and Ni-Fe-Ta alloy thin plates have been produced, the amount of wear of the thin plates due to the sliding of the magnetic tape significantly increases and decreases depending on the processing method and heat treatment method in the thin plate manufacturing process. Since it is a big problem that the wear property is impaired, the wear of these alloys was systematically studied in order to clarify the cause. As a result, the Ni-Fe-Nb system and
It was revealed that the wear of Ni-Fe-Ta alloys is not uniquely determined by hardness, and has a close relationship with the recrystallization texture depending on the thin plate manufacturing method.

(問題点を解決するための手段) 一般に摩耗現象は合金の結晶方位によって大きな差異が
あり、結晶異方性が存在することが知られているが、本
発明者らはNi−Fe−Nb系およびNi−Fe−Ta系合金におい
ては、{100}<001>結晶方位は摩耗し易しく、{11
0}<112>とこの<112>方向を軸として多少回転した
{311}<112>結晶方位が耐摩耗性にすぐれていること
を見い出した。すなわち、Ni−Fe−Nb系およびNi−Fe−
Ta系合金は{110}<112>+{311}<112>の再結晶集
合組織を形成させることによって耐摩耗性が著しく向上
することを見い出したのである。
(Means for Solving Problems) Generally, it is known that the wear phenomenon has a large difference depending on the crystal orientation of the alloy, and that crystal anisotropy exists, but the present inventors have studied the Ni-Fe-Nb system. In Ni-Fe-Ta alloys, the {100} <001> crystal orientation is easily worn, and {11}
It has been found that 0} <112> and the {311} <112> crystal orientation that is slightly rotated around this <112> direction are excellent in wear resistance. That is, Ni-Fe-Nb system and Ni-Fe-
It was found that Ta-based alloys have significantly improved wear resistance by forming a {110} <112> + {311} <112> recrystallized texture.

本発明者らはこの知見に基づいて、Ni−Fe−Nb系および
Ni−Fe−Ta系合金の{110}<112>+{311}<112>再
結晶集合組織を形成させるための研究を幾多遂行した。
すなわち、Ni−Fe二元系合金は冷間圧延加工すると{11
0}<112>+{112}<111>の加工集合組織を生じる
が、これを高温加熱すると{100}<001>再結晶集合組
織が発達することが知られている。
Based on this finding, the present inventors have studied the Ni-Fe-Nb system and
Numerous studies have been conducted to form {110} <112> + {311} <112> recrystallized textures of Ni-Fe-Ta alloys.
In other words, the Ni-Fe binary alloy is {11
A processed texture of 0} <112> + {112} <111> is generated, and it is known that when this is heated at high temperature, a {100} <001> recrystallized texture develops.

しかし、これにNbおよび/またはTaを添加すると積層欠
陥エネルギーが低下し、冷間加工率50%以上を施した
後、 900℃以上の高温度で加熱することによって{11
0}<112>+{311}<112>再結晶集合組織を効果的に
形成させ、耐摩耗性を著しく向上できることを見い出し
た。
However, when Nb and / or Ta is added to this, the stacking fault energy decreases, and after cold working rate of 50% or more, it is heated by a high temperature of 900 ° C or more {11
It has been found that 0} <112> + {311} <112> recrystallized texture can be effectively formed and wear resistance can be remarkably improved.

また、Ni−Fe系合金にNbおよび/またはTaを添加するこ
とによって比電気抵抗は増大し、結晶粒が微細になるの
で、交流磁界における渦電流損失が減少し、このため実
効透磁率は増大する。要するにNbおよび/またはTaの添
加効果により、{110}<112>+{311}<112>再結晶
集合組織が発達するとともに実効透磁率が増大し、耐摩
耗性のすぐれた高透磁率合金が得られるのである。
In addition, by adding Nb and / or Ta to the Ni-Fe alloy, the specific electrical resistance increases and the crystal grains become finer, so the eddy current loss in the AC magnetic field decreases, and therefore the effective permeability increases. To do. In short, due to the addition effect of Nb and / or Ta, the {110} <112> + {311} <112> recrystallized texture develops and the effective magnetic permeability increases, resulting in a high-permeability alloy with excellent wear resistance. You can get it.

(作 用) 本発明の合金を造るには、Ni60〜90%、NbおよびTaの合
計 0.5〜20%(但し、Nb 14 %以下、NbおよびTa
は0%を含まず)および残部Feを主成分とし、副成分と
してCr,Mo,Ge,Auの7%以下、Co,Vの10%以下、Wの15
%以下、Cu,Mnの25%以下、 Al,Si,Ti,Zr,Hf,Sn,Sb,G
a,In,Tl,Zn,Cd,希土類元素、白金族元素の5%以
下、Be,Ag,Sr,Ba の3%以下、B1%以下の1種ある
いは2種以上の合計0.01〜30%の所定量を更に添加す
る。かくして得た混合物を充分に撹拌して組成的に均一
な溶融合金を造る。また、鍛造性及び加工性を改善する
ため、必要に応じて脱酸剤としてC,Ca,Mg等を小量(各
0.5 %以下)添加する。
(Operation) To make the alloy of the present invention, Ni60 to 90%, Nb and Ta total 0.5 to 20% (however, Nb 14% or less, Nb and Ta are used).
Is not included 0%) and the balance is Fe as a main component, and Cr, Mo, Ge, Au are 7% or less, Co, V are 10% or less, and W is 15% as auxiliary components.
% Or less, 25% or less of Cu, Mn, Al, Si, Ti, Zr, Hf, Sn, Sb, G
a, In, Tl, Zn, Cd, rare earth element, platinum group element 5% or less, Be, Ag, Sr, Ba 3% or less, B1% or less one kind or two kinds or more of 0.01 to 30% in total. A predetermined amount is further added. The mixture thus obtained is thoroughly stirred to produce a compositionally uniform molten alloy. In addition, in order to improve forgeability and workability, small amounts of C, Ca, Mg, etc. as deoxidizing agents (each
0.5% or less) Add.

次にこれを適当な形および大きさの鋳型に注入して健全
な鋳塊を得、さらにこれに1000℃〜1200℃の高温におい
て鋳造あるいは熱間加工を施して適当な形状のもの、例
えば棒あるいは板となし、必要ならば焼鈍する。次いで
これに冷間圧延などの方法によって加工率50%以上の冷
間加工を施し、目的の形状のもの、例えば厚さ 0.1mmの
薄板を造る。次にその薄板から例えば45mm、内径33mmの
環状板を打抜き、これを水素中その他の適当な非酸化性
雰囲気(水素,アルゴン,窒素など)中あるいは真空中
で 900℃以上融点以下の温度で適当時間加熱し、ついで
規則−不規則格子変態点(約 600℃)以上の温度から 1
00℃/秒〜1℃/時の組成に対応した適当な速度で冷却
するかあるいはこれをさらに規則−不規則格子変態点
(約 600℃)以下の温度で適当時間再加熱し、冷却す
る。このようにして実効透磁率3000以上、飽和磁束密度
4000G以上を有し、且つ{110}<112>+{311}<112
>の再結晶集合組織をもった耐摩耗性高透磁率合金が得
られる。
Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then cast or hot-worked at a high temperature of 1000 ° C to 1200 ° C and has an appropriate shape, such as a rod. Alternatively, it is made into a plate and annealed if necessary. Next, this is subjected to cold working at a working rate of 50% or more by a method such as cold rolling to produce a thin plate having a target shape, for example, a thickness of 0.1 mm. Then, for example, an annular plate with a diameter of 45 mm and an inner diameter of 33 mm is punched out from the thin plate, and this is suitable in hydrogen or other suitable non-oxidizing atmosphere (hydrogen, argon, nitrogen, etc.) or in vacuum at a temperature of 900 ° C or higher and melting point or lower. After heating for 1 hour, from the temperature above the ordered-disordered lattice transformation point (about 600 ℃) to 1
It is cooled at an appropriate rate corresponding to the composition of 00 ° C./sec to 1 ° C./hour, or is reheated at a temperature below the ordered-disordered lattice transformation point (about 600 ° C.) for an appropriate time and cooled. In this way, effective magnetic permeability of 3000 or more, saturation magnetic flux density
4,000G or more and {110} <112> + {311} <112
A wear-resistant high-permeability alloy having a recrystallization texture of> can be obtained.

次に本発明を図面につき説明する。The present invention will now be described with reference to the drawings.

第1図は79%Ni−Fe−Nb−Ta系合金(但し、Nb:Ta−
1:1)について加工率90%の冷間圧延し、1100℃で加
熱した後、 800℃/時の速度で冷却した場合の再結晶集
合組織および諸特性とNbおよびTa量との関係を示したも
のである。
Fig. 1 shows 79% Ni-Fe-Nb-Ta alloy (however, Nb: Ta-
1: 1) shows the relationship between recrystallization texture and various properties and Nb and Ta contents when cold-rolled at a working rate of 90%, heated at 1100 ° C, and then cooled at a rate of 800 ° C / hour. It is a thing.

Ni−Fe−Nb−Ta系合金は冷間圧延加工すると{110}<1
12>+{112}<111>の加工集合組織が生じるが、これ
を高温加熱すると{100}<001>と{110}<112>+
{311}<112>の再結晶集合組織が生成する。しかし、
これにNbおよびTaを添加すると{100}<001>再結晶集
合組織の生成が抑制され、{110}<112>+{311}<1
12>の再結晶集合組織が発達し、それとともに摩耗量は
減少する。また実効透磁率はNbおよびTaの添加によって
増大するが、NbおよびTaの合計0.5 %以下ではその効果
が少なく、また20%以上では鍛造加工が困難となり好ま
しくない。
Ni-Fe-Nb-Ta alloys are {110} <1 when cold-rolled.
A processed texture of 12> + {112} <111> occurs, but when heated at high temperature, {100} <001> and {110} <112> +
A recrystallized texture of {311} <112> is generated. But,
Addition of Nb and Ta to this suppresses the formation of {100} <001> recrystallized texture, and {110} <112> + {311} <1
The 12> recrystallized texture develops, and the amount of wear decreases with it. Further, the effective magnetic permeability increases with the addition of Nb and Ta, but if the total of Nb and Ta is 0.5% or less, its effect is small, and if it is 20% or more, forging is difficult, which is not preferable.

第2図は79%Ni−Fe−5%Nb−5%Ta合金について、11
00℃で加熱した場合の再結晶集合組織および諸特性と冷
間加工率との関係を示したもので、冷間加工率の増加は
{110}<112>+{311}<112>の再結晶集合組織の発
達をもたらし、耐摩耗性を向上させ、実効透磁率を高め
るが加工率50%以上において特に著しい。
Figure 2 shows the results for the 79% Ni-Fe-5% Nb-5% Ta alloy.
The relationship between the cold workability and the recrystallization texture and properties when heated at 00 ° C is shown. The increase of the cold workability is {110} <112> + {311} <112>. It leads to the development of crystal texture, improves wear resistance, and enhances the effective magnetic permeability, but it is particularly remarkable when the processing rate is 50% or more.

第3図は79%Ni−Fe−5%Nb−5%Ta合金を冷間加工率
85%で圧延した後の加熱温度と再結晶集合組織および諸
特性との関係を示したもので、加熱温度の上昇とともに
{112}<111>成分が減少し{110}<112>+{311}
<112>が発達して耐摩耗性が向上し、また実効透磁率
は増大するが、特に 900℃以上において著しい。
Figure 3 shows the cold working rate of 79% Ni-Fe-5% Nb-5% Ta alloy.
It shows the relationship between the heating temperature after rolling at 85% and the recrystallization texture and various properties. The {112} <111> component decreases with increasing heating temperature, and {110} <112> + {311 }
<112> develops, wear resistance improves, and effective permeability increases, but it is particularly remarkable at 900 ° C or higher.

第4図は合金番号64(80.3 %Ni−Fe−2%Nb−2%Ta-3
%Ge合金)、合金番号52(79.5 %Ni−Fe−5 %Nb−3 %T
a−2 %Mo合金)、合金番号21(79%Ni−Fe−5 %Nb−5
%Ta合金)について実効透磁率と冷却速度との関係およ
びこれらをさらに再加熱処理を施した場合の実効透磁率
(×印)を示したものである。合金の組成に対応した最
適冷却速度、最適再加熱温度および再加熱時間が存在す
ることが判る。
Fig. 4 shows alloy number 64 (80.3% Ni-Fe-2% Nb-2% Ta-3
% Ge alloy), alloy number 52 (79.5% Ni-Fe-5% Nb-3% T
a-2% Mo alloy), alloy number 21 (79% Ni-Fe-5% Nb-5
% Ta alloy) shows the relationship between the effective magnetic permeability and the cooling rate, and the effective magnetic permeability (x mark) when these are further reheated. It can be seen that there is an optimum cooling rate, optimum reheating temperature and reheating time corresponding to the composition of the alloy.

第5図は79%Ni−Fe−5%Nb−5%Ta合金にCr,Mo,Ge,A
u あるいはCoを添加した場合の磁気ヘッドの摩耗量及び
実効透磁率の特性図で、Cr,Mo,Ge,Au あるいはCoを添加
すると、何れも実効透磁率は高くなり、摩耗量は減少す
るが、Cr,Mo,GeあるいはAuの7 %以上では飽和磁束密度
が4000G 以下となり好ましくない。またCo10%以上では
残留磁気が大きくなり、帯磁ノイズが増大するので、好
ましくない。
Figure 5 shows 79% Ni-Fe-5% Nb-5% Ta alloy with Cr, Mo, Ge, A.
In the characteristic diagram of the wear amount and effective magnetic permeability of the magnetic head when u or Co is added, when Cr, Mo, Ge, Au or Co is added, the effective magnetic permeability becomes higher and the wear amount decreases. If the content of Cr, Mo, Ge or Au is 7% or more, the saturation magnetic flux density is 4000 G or less, which is not preferable. On the other hand, if the Co content is 10% or more, the remanence becomes large, and magnetic noise increases, which is not preferable.

第6図は同じく79%Ni−Fe−5%Nb−5%Ta合金にV,W,
CuあるいはMnを添加した場合の磁気ヘッドの摩耗量及び
実効透磁率の特性図で、V,W,Cu,TaあるいはMnを添加す
ると、何れも実効透磁率は高くなり、摩耗量は減少する
が、V を10%以上、Wを15%以上、CuあるいはMnを25%
以上添加すると飽和磁束密度が4000G 以下となり好まし
くない。
Fig. 6 also shows V, W, 79% Ni-Fe-5% Nb-5% Ta alloy.
In the characteristic diagram of the wear amount and effective magnetic permeability of the magnetic head when Cu or Mn is added, when V, W, Cu, Ta or Mn is added, the effective magnetic permeability is increased and the wear amount is reduced. , V 10% or more, W 15% or more, Cu or Mn 25%
The above additions are not preferable because the saturation magnetic flux density becomes 4000 G or less.

第7図は同じく79%Ni−Fe−5%Nb−5%Ta合金にAl,S
i,Ti,Zr,Hf,Sn,Sb,Ga,InあるいはTlを添加した場合の特
性図で、Al,Si,Ti,Zr,Hf,Sn,Sb,Ga,In あるいはTlを添
加すると、何れも実効透磁率は高くなり、摩耗量は減少
するが、Si,Ti,Zr,Hf,Ga,InあるいはT15 %以上では飽
和磁束密度は4000G 以下となり、Al,Sn あるいはSbが5
%以上では鍛造加工が困難となり好ましくない。
Figure 7 shows the same 79% Ni-Fe-5% Nb-5% Ta alloy with Al, S.
i, Ti, Zr, Hf, Sn, Sb, Ga, In or Tl is a characteristic diagram when Al, Si, Ti, Zr, Hf, Sn, Sb, Ga, In or Tl is added. Also increases the effective permeability and reduces the amount of wear, but when Si, Ti, Zr, Hf, Ga, In or T15% or more, the saturation magnetic flux density is 4000 G or less, and Al, Sn or Sb is 5% or less.
% Is not preferable because forging is difficult.

第8図は同じく79%Ni−Fe−5%Nb−5%Ta合金にZn,C
d,La,Pt,Be,Ag,Sr,Ba あるいはBを添加した場合の特性
図で、Zn,Cd,La,Pt,Be,Ag,Sr,Ba あるいはBを添加する
と、何れも実効透磁率は高くなり、摩耗量は減少する
が、Zn,Cd,La,Pt を5%以上、Be,Sr,Baを3%以上添加
すると飽和磁束密度が4000G以下となり、Agを3%以上
あるいはBを1%以上添加すると鍛造加工が困難となり
好ましくない。
Fig. 8 shows the same 79% Ni-Fe-5% Nb-5% Ta alloy with Zn, C.
In the characteristic diagram when d, La, Pt, Be, Ag, Sr, Ba or B is added, effective magnetic permeability is obtained when Zn, Cd, La, Pt, Be, Ag, Sr, Ba or B is added. Increase, the wear amount decreases, but when Zn, Cd, La, Pt is added 5% or more and Be, Sr, Ba is added 3% or more, the saturation magnetic flux density becomes 4000 G or less, and Ag is 3% or more or B is added. If 1% or more is added, forging is difficult, which is not preferable.

本発明において、冷間加工は{110}<112>+{112}
<111>の冷間加工集合組織を形成し、これを基として
{110}<112>+{311}<112>の再結晶集合組織を発
達させるために必要で、第1図および第2図に見られる
ようにNbおよびTaの合計0.5%以上において、特に加工率
50%以上の冷間加工を施した場合に{110}<112>+
{311}<112>の再結晶集合組織の発達が顕著で、耐摩
耗性は著るしく向上し、その実効透磁率も高い。また上
記の冷間加工に次いで行われる加熱は、組織の均一化、
加工歪の除去とともに、{110}<112>+{311}<112
>の再結晶集合組織を発達させ、高い実効透磁率とすぐ
れた耐摩耗性を得るために必要であるが、第3図に見ら
れるように特に 900℃以上の加熱によって実効透磁率お
よび耐摩耗性は顕著に向上する。
In the present invention, cold working is {110} <112> + {112}
It is necessary to form a cold worked texture of <111> and to develop a recrystallized texture of {110} <112> + {311} <112> on the basis of this. As shown in Fig. 4, the processing rate is particularly high when the total of Nb and Ta is 0.5% or more.
{110} <112> + when subjected to 50% or more cold working
The recrystallized texture of {311} <112> is remarkably developed, wear resistance is remarkably improved, and its effective magnetic permeability is also high. In addition, the heating that is performed after the cold working described above is performed to homogenize the structure,
With removal of machining strain, {110} <112> + {311} <112
> Is required to develop a recrystallized texture and to obtain high effective magnetic permeability and excellent wear resistance, but as shown in Fig. 3, the effective magnetic permeability and wear resistance are especially due to heating above 900 ° C. Sex is significantly improved.

尚、上記の冷間加工と、次いで行われる 900℃以上融点
以下の加熱を繰り返し行うことは、{110}<112>+
{311}<112>の再結晶集合組織の集積度を高め、耐摩
耗性を向上させるために有効である。この場合は最終冷
間加工の加工率が50%以下でも{110}<112>+{31
1}<112>再結晶集合組織が得られるが、本発明の技術
的思想に包含されるものである。したがって、本発明の
冷間加工率は、全製造工程における冷間加工を総計した
加工率を意味し、最終冷間加工率のみを意味するもので
はない。
In addition, repeating the above cold working and the subsequent heating at 900 ° C. or higher and the melting point or lower is {110} <112> +
It is effective for increasing the degree of accumulation of {311} <112> recrystallized texture and improving wear resistance. In this case, even if the final cold working rate is 50% or less, {110} <112> + {31
1} <112> recrystallization texture is obtained, which is included in the technical idea of the present invention. Therefore, the cold working rate of the present invention means a working rate obtained by summing up the cold working in all manufacturing steps, and does not mean only the final cold working rate.

上記の 900℃以上融点以下の温度から規則−不規則格子
変態点(約 600℃)以上の温度までの冷却は、急冷して
も除冷しても得られる磁性には大した変りはないが、第
4図に見られるようにこの変態点以下の冷却速度は磁性
に大きな影響を及ぼす。すなわちこの変態点以下の温度
より 100℃/秒〜1℃/時の組成に対応した適当な速度
で常温迄冷却することにより、地の規則度が適度に調整
され、すぐれた磁性が得られる。そして上記の冷却速度
の内 100℃/秒に近い速度で急冷すると、規則度が小さ
くなり、これ以上速く冷却すると規則化が進まず、規則
度はさらに小さくなり磁性は劣化する。しかし、その規
則度の小さい合金をその変態点以下の200 〜 600℃に組
成に対応して、1分間以上 100時間以下再加熱し冷却す
ると、規則化が進んで適度な規則度となり磁性は向上す
る。他方、上記の変態点以上の温度から、例えば1℃/
時以下の速度で除冷すると、規則化は進みすぎ、磁性は
低下する。
Cooling from the temperature above 900 ° C and below the melting point to the temperature above the ordered-irregular lattice transformation point (about 600 ° C) does not change much in the magnetic properties obtained by rapid cooling or cooling. As shown in FIG. 4, the cooling rate below this transformation point has a great influence on magnetism. That is, by cooling from a temperature below this transformation point to room temperature at an appropriate rate corresponding to a composition of 100 ° C./sec to 1 ° C./hour, the regularity of the ground is appropriately adjusted and excellent magnetism is obtained. Then, if the material is rapidly cooled at a rate close to 100 ° C./second among the above cooling rates, the order becomes small, and if it is cooled faster than this, ordering does not proceed and the order becomes smaller and magnetism deteriorates. However, if an alloy with a low degree of ordering is reheated to 200 to 600 ° C below the transformation point for 1 minute or more and 100 hours or less depending on the composition, the ordering proceeds to an appropriate degree of ordering and the magnetism improves. To do. On the other hand, from the temperature above the transformation point, for example, 1 ° C /
If it is cooled at a rate of less than an hour, the ordering will proceed too much and the magnetism will decrease.

尚、上記の熱処理を水素が存在する雰囲気中で施すこと
は、実効透磁率を高めるのに特に効果があるので好まし
い。
Incidentally, it is preferable to perform the above heat treatment in an atmosphere in which hydrogen is present, because it is particularly effective in increasing the effective magnetic permeability.

(実施例) 次に本発明を実施例につき説明する。(Example) Next, this invention is demonstrated about an Example.

実施例1 合金番号52(組成Ni=79.5%,Nb=5%,Ta=3%,Mo
=2%,Fe=残部)の合金の製造 原料は実施例1と同じ純度でニッケル,鉄,ニオブ,タ
ンタル99.8%純度のモリブデンおよびニオブ65%,タン
タル5%を含むフエロニオブ合金を用いた。試料を造る
には、原料を全重量800gでアルミナ坩堝に入れ、真空中
で高周波誘導電気炉によって溶かした後、よく撹拌して
均質な溶融合金とした。次にこれを直径25mm、高さ170m
m の孔をもつ鋳型に注入し、得られた鋳塊を約1100℃で
鍛造して厚さ7mmの板とした。さらに1000℃を超え1200
℃以下の温度で適当な厚さまで熱間圧延し、ついで常温
で種々な加工率で冷間圧延を施して 0.1mmの薄板とし、
それから外径45mm、内径33mmの環状板を打ち抜いた。試
料に種々の熱処理を施して磁気特性および磁気ヘツドの
コアとして使用した場合湿度80%、温度40℃においてCr
O2磁気テープによる 200時間走行後の摩耗量の測定を行
い、第1表に示すような特性が得られた。
Example 1 Alloy No. 52 (Composition Ni = 79.5%, Nb = 5%, Ta = 3%, Mo
= 2%, Fe = balance) Alloy used as raw material was a ferro niobium alloy having the same purity as in Example 1, nickel, iron, niobium, tantalum 99.8% purity molybdenum and niobium 65%, tantalum 5%. To prepare a sample, the raw material was put into an alumina crucible with a total weight of 800 g, melted in a high-frequency induction electric furnace in a vacuum, and then stirred well to form a homogeneous molten alloy. Next, this is 25mm in diameter and 170m in height
It was poured into a mold having m 2 holes, and the obtained ingot was forged at about 1100 ° C. to obtain a plate having a thickness of 7 mm. Further over 1000 ℃ 1200
Hot-rolled to a suitable thickness at a temperature of ℃ or less, then cold-rolled at room temperature at various processing rates to form a 0.1 mm thin plate,
Then, an annular plate with an outer diameter of 45 mm and an inner diameter of 33 mm was punched out. When the sample is subjected to various heat treatments and used as the magnetic properties and as the core of the magnetic head, the humidity is 80% and the temperature is 40 ° C.
The amount of wear was measured after running for 200 hours using an O 2 magnetic tape, and the characteristics shown in Table 1 were obtained.

なお代表的な合金の特性は第2表に示すとおりである。The properties of typical alloys are shown in Table 2.

本発明において、50%以上の冷間加工の処理前に、1000
℃を超え1200℃以下の温度で熱間圧延すると、次いで施
される加工率50%以上の冷間加工ならびに 900℃以上の
温度における熱処理によりもたらされる{110}<112>
+{311}<112>の再結晶集合組織の生成および耐摩耗
性に強く影響する。
In the present invention, before the cold working treatment of 50% or more, 1000
Hot-rolling at a temperature above ℃ and below 1200 ℃ results in {100} <112> {100} <112>
+ {311} <112> recrystallized texture formation and wear resistance.

実施例2 79% Ni-Fe-5%Nb-5%Ta合金を本願実施例1に準じて製
造し、約1000℃で鍛造して厚さ7mmの板とした。さらに
種々な加熱温度で厚さ1.0 mmまで熱間圧延加工し、次い
で常温で冷間圧延加工を施して0.1 mmの薄板(冷間加工
率90%)とした。この薄板を1100℃の水素中で2時間加
熱後 800℃/hrの速度で常温まで冷却した場合の熱間圧
延加工の温度と再結晶集合組織および摩耗量との関係を
第9図に示した。熱間圧延加工の温度が1000℃以下では
{112}<111>が残留し摩耗量が大きいが、1000℃を超
え1200℃以下の温度では{110}<112>+{311}<112
>が発達し摩耗量が特に小さくなる。すなわち、本発明
では熱間圧延加工の温度によって、最終的に得られる合
金の耐摩耗性が大きく影響されるのである。
Example 2 A 79% Ni-Fe-5% Nb-5% Ta alloy was manufactured according to Example 1 of the present application, and forged at about 1000 ° C to obtain a plate having a thickness of 7 mm. Further, hot rolling was performed at various heating temperatures to a thickness of 1.0 mm, and then cold rolling was performed at room temperature to obtain a 0.1 mm thin plate (cold working rate 90%). Fig. 9 shows the relationship between the temperature of hot rolling, the recrystallization texture and the amount of wear when this thin plate was heated in hydrogen at 1100 ° C for 2 hours and then cooled to room temperature at a rate of 800 ° C / hr. . When the hot rolling temperature is 1000 ° C or less, {112} <111> remains and the amount of wear is large, but at temperatures over 1000 ° C and 1200 ° C or less, {110} <112> + {311} <112
> Develops and the wear amount becomes particularly small. That is, in the present invention, the wear resistance of the finally obtained alloy is greatly influenced by the temperature of hot rolling.

上記のように本発明合金は加工が容易で、耐摩耗性にす
ぐれ、4000G以上の飽和磁束密度、3000以上の高い実効
透磁率、低保磁力を有しているので、磁気記録再生ヘッ
ドのコアおよびケース用磁性合金として好適であるばか
りでなく、耐摩耗性および高透磁率を必要とする一般の
電磁器機の磁性材料としても好適である。
As described above, the alloy of the present invention is easy to process, has excellent wear resistance, has a saturation magnetic flux density of 4000 G or more, a high effective magnetic permeability of 3000 or more, and a low coercive force. It is suitable not only as a magnetic alloy for a case but also as a magnetic material for a general electromagnetic machine that requires wear resistance and high magnetic permeability.

次に本発明において合金の組成を主成分としてNi60〜90
%、NbおよびTaの合計 0.5〜20%(但し、Nb14%以
下、NbおよびTaは0%を含まず)および残部Feと限
定し、これに副成分として添加する元素をCr,Mo,Ge,Au
を7%以下、Co,Vを10%以下、Wを15%以下、Cu,Mnを
25%以下、 Al,Si,Ti,Zr,Hf,Sn,Sb,Ga,In,Tl,Zn,Cd,
希土類元素、白金族元素を5%以下、Be,Ag,Sr,Baを3
%以下、Bを1%以下の1種または2種以上の合計で0.
01〜30%と限定した理由は各実施例、第3表および図面
中第5図ないし第8図で明らかなように、この組成範囲
の実効透磁率は3000以上、飽和磁束密度4000G以上で、
且つ{110}<112>+{311}<112>の再結晶集合組織
を有し、耐摩耗性がすぐれているが、この組成範囲をは
ずれると磁気特性あるいは耐摩耗性が劣化するからであ
る。
Next, in the present invention, the composition of the alloy as the main component Ni60 ~ 90
%, Nb and Ta in total of 0.5 to 20% (however, Nb 14% or less, Nb and Ta do not include 0%) and the balance Fe, and the elements added as auxiliary components to these are Cr, Mo, Ge, Au
7% or less, Co, V 10% or less, W 15% or less, Cu, Mn
25% or less, Al, Si, Ti, Zr, Hf, Sn, Sb, Ga, In, Tl, Zn, Cd,
5% or less of rare earth elements and platinum group elements, 3 for Be, Ag, Sr, Ba
% Or less, B is 1% or less, or 0 or more in total of 1 or more.
The reason for limiting the content to 01 to 30% is clear in each Example, Table 3 and FIGS. 5 to 8 in the drawings, that the effective magnetic permeability in this composition range is 3000 or more and the saturation magnetic flux density is 4000 G or more,
Also, it has a recrystallized texture of {110} <112> + {311} <112> and has excellent wear resistance, but if it deviates from this composition range, magnetic characteristics or wear resistance deteriorates. .

すなわち、NbおよびTaの合計 0.5%以下では{110}<1
12>+{311}<112>の再結晶集合組織が充分発達しな
いので耐摩耗性が悪く、NbおよびTaの合計20%以上およ
びNb14%以上では鍛造加工が困難となり、また、飽和磁
束密度4000G以下になるからである。
That is, when the total of Nb and Ta is less than 0.5%, {110} <1
The 12> + {311} <112> recrystallized texture does not develop sufficiently, resulting in poor wear resistance. Forging with a total Nb and Ta content of 20% or more and Nb of 14% or more is difficult, and the saturation magnetic flux density is 4000 G or more. This is because

そしてNi60〜90%、NbおよびTaの合計 0.5〜20%(但
し、Nb14%以下、NbおよびTaは0%を含まず)お
よび残部Feの組成範囲の合金は、実効透磁率3000以上、
飽和磁束密度4000G以上で、耐摩耗性がすぐれ、且つ加
工性が良好であるが、これにさらにCr,Mo,Ge,Au,W,V,
Cu,Mn,A l,Zr,Si,Ti,Hf,Ga,In,Tl,Zn,Cd,希土類元
素、白金族元素、Be,Ag,Sr,Ba,B等を添加すると特に実
効透磁率を高める効果があり、Coを添加すると特に飽和
磁束密度を高める効果があり、Au,Mn,Ti,Co,希土類元
素、白金族元素、Be,Sr,Ba,Bを添加すると鍛造、加工を
良好にする効果があり、 Al,Sn,Sb,Au,Ag,Ti,Zn,Cd,Be
およびVの添加は{110}<112>+{311}<112>の再
結晶集合組織を発達させ、耐摩耗性を向上する効果があ
る。
And, the alloy of Ni 60 to 90%, the total of 0.5 to 20% of Nb and Ta (however, Nb 14% or less, Nb and Ta do not include 0%) and the balance Fe composition range has an effective magnetic permeability of 3000 or more,
With a saturation magnetic flux density of 4000 G or more, it has excellent wear resistance and good workability. In addition to this, Cr, Mo, Ge, Au, W, V,
Addition of Cu, Mn, Al, Zr, Si, Ti, Hf, Ga, In, Tl, Zn, Cd, rare earth elements, platinum group elements, Be, Ag, Sr, Ba, B, etc. It has the effect of increasing Co, and especially adding Co has the effect of increasing the saturation magnetic flux density. Adding Au, Mn, Ti, Co, rare earth elements, platinum group elements, Be, Sr, Ba, B improves forging and processing. Has the effect of Al, Sn, Sb, Au, Ag, Ti, Zn, Cd, Be
The addition of V and V has the effect of developing a recrystallized texture of {110} <112> + {311} <112> and improving wear resistance.

(発明の効果) 要するに本発明合金は鍛造加工が容易で{110}<112>
+{311}<112>の再結晶集合組織を形成させることに
よって耐摩耗性がすぐれ、飽和磁束密度が4000G以上
で、実効透磁率が高いので、磁気記録再生ヘッド用磁性
合金として好適であるばかりでなく、耐摩耗性および高
透磁率を必要とする一般の電磁器機の磁性材料としても
好適である。
(Effect of the Invention) In short, the alloy of the present invention is easy to forge {110} <112>
By forming a recrystallized texture of + {311} <112>, the wear resistance is excellent, the saturation magnetic flux density is 4000 G or more, and the effective magnetic permeability is high, making it suitable as a magnetic alloy for magnetic recording / reproducing heads. Not only that, it is also suitable as a magnetic material for a general electromagnetic machine that requires wear resistance and high magnetic permeability.

【図面の簡単な説明】[Brief description of drawings]

第1図は79%Ni-Fe-Nb-Ta 系合金の諸特性とNbおよびTa
量(但し、Nb:Ta=1:1)との関係を示す特性図、 第2図は79%Ni-Fe-5%Nb-5%Ta合金の再結晶集合組織
および諸特性と冷間加工率との関係を示す特性図、 第3図は79%Ni-Fe-5%Nb-5%Ta合金の再結晶集合組織
および諸特性と加熱温度との関係を示す特性図、 第4図は80.3%Ni-Fe-2%Nb-2%Ta-3%Ge合金(合金番
号64)、79.5%Ni-Fe-5%Nb-3%Ta-2%Mo合金(52)、お
よび79%Ni-Fe-5%Nb-5%Ta合金(21)の実効透磁率と冷
却速度、再加熱温度および再加熱時間との関係を示す特
性図、 第5図は79%Ni-Fe-5%Nb-5%Ta合金にCr,Mo,Ge,Au あ
るいはCoを添加した場合の諸特性と各元素の添加量との
関係を示す特性図、 第6図は79%Ni-Fe-5%Nb-5%Ta合金にV,W,Cuあるいは
Mnを添加した場合の諸特性と各元素の添加量との関係を
示す特性図、 第7図は79%Ni-Fe-5%Nb-5%Ta合金に Al,Si,Ti,Z
r,Hf,Sn,Sb,In あるいは Tlを添加した場合の諸特性と
各元素の添加量との関係を示す特性図、 第8図は79%Ni-Fe-5%Nb-5%Ta合金にZn,Cd,La,Pt,B
e,Ag,Sr,Ba あるいは Bを添加した場合の諸特性と各元
素の添加量との関係を示す特性図、 第9図は 79% Ni-Fe-5% Nb-5 % Ta 合金を実施例2によ
り製造した時の熱間圧延加工温度と再結晶集合組織の集
積度および摩耗量との関係を示す特性図である。
Figure 1 shows the characteristics of 79% Ni-Fe-Nb-Ta alloy and Nb and Ta.
Fig. 2 is a characteristic diagram showing the relationship with the amount (however, Nb: Ta = 1: 1). Fig. 2 shows the recrystallization texture and properties of 79% Ni-Fe-5% Nb-5% Ta alloy and cold working. Fig. 3 is a characteristic diagram showing the relationship with the heating rate, Fig. 3 is a characteristic diagram showing the relationship between the recrystallization texture and various properties of 79% Ni-Fe-5% Nb-5% Ta alloy, and Fig. 4 80.3% Ni-Fe-2% Nb-2% Ta-3% Ge alloy (alloy No. 64), 79.5% Ni-Fe-5% Nb-3% Ta-2% Mo alloy (52), and 79% Ni -Fe-5% Nb-5% Ta alloy (21) characteristic diagram showing the relationship between effective permeability and cooling rate, reheating temperature and reheating time. Fig. 5 shows 79% Ni-Fe-5% Nb -Characteristic diagram showing the relationship between various characteristics and the addition amount of each element when Cr, Mo, Ge, Au or Co is added to -5% Ta alloy. Fig. 6 shows 79% Ni-Fe-5% Nb- V, W, Cu or 5% Ta alloy
Fig. 7 is a characteristic diagram showing the relationship between various properties when Mn is added and the amount of each element added. Fig. 7 shows Al, Si, Ti, Z on 79% Ni-Fe-5% Nb-5% Ta alloy.
Fig. 8 is a characteristic chart showing the relationship between various characteristics when r, Hf, Sn, Sb, In or Tl is added and the amount of each element added. Fig. 8 shows 79% Ni-Fe-5% Nb-5% Ta alloy. Zn, Cd, La, Pt, B
Fig. 9 is a characteristic diagram showing the relationship between various properties when e, Ag, Sr, Ba or B is added and the amount of each element added. Fig. 9 shows 79% Ni-Fe-5% Nb-5% Ta alloy. FIG. 6 is a characteristic diagram showing the relationship between the hot rolling processing temperature and the degree of accumulation of recrystallized texture and the amount of wear when manufactured according to Example 2.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量比にてNi 60 〜90%、NbおよびTaの合
計 0.5〜20%(但し、Nb 14 %以下、NbおよびTaは0%
を含まず)および残部Feを主成分とし、副成分としてC
r,Mo,Ge,Auをそれぞれ7%以下、Co,Vをそれぞれ1
0%以下、Wを15%以下、Cu,Mnをそれぞれ25%以下、
Al,Si,Ti,Zr,Hf,Sn,Sb,Ga,In,Tl,Zn,Cd,希
土類元素、白金族元素をそれぞれ5%以下、Be,Ag,S
r,Baをそれぞれ3%以下、Bを1%以下の1種または
2種以上の合計0.01〜30%、少量の不純物とからなる合
金を1000℃を超え1200℃以下の温度で熱間加工した後冷
却し、次に加工率50%以上の冷間加工を施した後、900
℃以上の融点以下の温度で加熱し、ついで規則−不規則
格子変態点以上、融点以下の温度から100 ℃/秒〜1℃
/時の組成に対応した適当な速度で常温まで冷却するこ
とにより、1 KHzにおける実効透磁率3000以上、飽和磁
束密度4000G以上で、且つ{110 }<112>+{311 }<
112>の再結晶集合組織をもった合金を得ることを特徴
とする耐摩耗性高透磁率合金の製造法。
1. A weight ratio of Ni 60 to 90%, total of Nb and Ta 0.5 to 20% (however, Nb 14% or less, Nb and Ta 0%).
Is not included) and the balance Fe as a main component, and C as a sub-component.
7% or less for r, Mo, Ge and Au, 1 for Co and V
0% or less, W 15% or less, Cu and Mn 25% or less,
Al, Si, Ti, Zr, Hf, Sn, Sb, Ga, In, Tl, Zn, Cd, rare earth elements, platinum group elements are 5% or less respectively, Be, Ag, S
Alloys consisting of 1% or less of B and 3% or less of B and 1% or less of total of 0.01 to 30% and a small amount of impurities and hot-worked at a temperature of more than 1000 ° C and less than 1200 ° C. 900% after post-cooling and then cold working with a working rate of 50% or more
It is heated at a temperature not lower than the melting point and not lower than the melting point, and then from the temperature not lower than the regular-irregular lattice transformation point and not higher than the melting point, 100 ° C / sec to 1 ° C
By cooling to room temperature at an appropriate rate corresponding to the composition per hour, the effective magnetic permeability at 1 KHz is 3000 or more, the saturation magnetic flux density is 4000 G or more, and {110} <112> + {311} <
A method for producing a wear-resistant high-permeability alloy, characterized in that an alloy having a recrystallization texture of 112> is obtained.
【請求項2】重量比にてNi 60 〜90%、NbおよびTaの合
計 0.5〜20%(但し、Nb 14 %以下、NbおよびTaは0%
を含まず)および残部Feを主成分とし、副成分としてC
r,Mo,Ge,Auをそれぞれ7%以下、Co,Vをそれぞれ1
0%以下、Wを15%以下、Cu,Mnをそれぞれ25%以下、
Al,Si,Ti,Zr,Hf,Sn,Sb,Ga,In,Tl,Zn,Cd,希
土類元素、白金族元素をそれぞれ5%以下、Be,Ag,S
r,Baをそれぞれ3%以下、Bを1%以下の1種または
2種以上の合計0.01〜30%、少量の不純物とからなる合
金を1000℃を超え1200℃以下の温度で熱間加工した後冷
却し、次に加工率50%以上の冷間加工を施した後、900
℃以上融点以下の温度で加熱し、ついで規則−不規則格
子変態点以上、融点以下の温度から 100℃/秒〜1℃/
時の組成に対応した適当な速度で冷却し、これをさらに
規則−不規則格子変態点以下の温度で1分間以上100 時
間以下の組成に対応した適当時間加熱し冷却することに
より、1 KHzにおける実効透磁率3000以上、飽和磁束密
度4000G以上で、且つ{110 }<112>+{311 }<112
>の再結晶集合組織をもった合金を得ることを特徴とす
る耐摩耗性高透磁率合金の製造法。
2. A weight ratio of Ni 60 to 90%, total of Nb and Ta 0.5 to 20% (however, Nb 14% or less, Nb and Ta 0%).
Is not included) and the balance Fe as a main component, and C as a sub-component.
7% or less for r, Mo, Ge and Au, 1 for Co and V
0% or less, W 15% or less, Cu and Mn 25% or less,
Al, Si, Ti, Zr, Hf, Sn, Sb, Ga, In, Tl, Zn, Cd, rare earth elements, platinum group elements are 5% or less respectively, Be, Ag, S
Alloys consisting of 1% or less of B and 3% or less of B and 1% or less of total of 0.01 to 30% and a small amount of impurities and hot-worked at a temperature of more than 1000 ° C and less than 1200 ° C. 900% after post-cooling and then cold working with a working rate of 50% or more
Heating at a temperature above the melting point and below the melting point, and then from the temperature above the ordered-irregular lattice transformation point and below the melting point, 100 ° C / sec to 1 ° C /
At 1 KHz by cooling at an appropriate rate corresponding to the composition of time and then heating and cooling at a temperature below the ordered-disordered lattice transformation point for an appropriate time corresponding to the composition for 1 minute to 100 hours. Effective permeability of 3000 or more, saturation magnetic flux density of 4000 G or more, and {110} <112> + {311} <112
A method for producing a wear-resistant high-permeability alloy, characterized in that an alloy having a recrystallization texture of <> is obtained.
JP26269489A 1985-01-30 1989-10-07 Manufacturing method of wear resistant high permeability alloy. Expired - Lifetime JPH0645846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26269489A JPH0645846B2 (en) 1985-01-30 1989-10-07 Manufacturing method of wear resistant high permeability alloy.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60014556A JPS61174349A (en) 1985-01-30 1985-01-30 Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/playback head
JP26269489A JPH0645846B2 (en) 1985-01-30 1989-10-07 Manufacturing method of wear resistant high permeability alloy.

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60014556A Division JPS61174349A (en) 1985-01-30 1985-01-30 Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/playback head

Publications (2)

Publication Number Publication Date
JPH02138448A JPH02138448A (en) 1990-05-28
JPH0645846B2 true JPH0645846B2 (en) 1994-06-15

Family

ID=26350506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26269489A Expired - Lifetime JPH0645846B2 (en) 1985-01-30 1989-10-07 Manufacturing method of wear resistant high permeability alloy.

Country Status (1)

Country Link
JP (1) JPH0645846B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777319B2 (en) * 1993-07-30 1998-07-16 財団法人電気磁気材料研究所 Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head

Also Published As

Publication number Publication date
JPH02138448A (en) 1990-05-28

Similar Documents

Publication Publication Date Title
US4830685A (en) Wear-resistant alloy of high permeability and method of producing the same
JP2777319B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
US4440720A (en) Magnet alloy useful for a magnetic recording and reproducing head and a method of manufacturing thereof
JPS625972B2 (en)
US5725687A (en) Wear-resistant high permability alloy and method of manufacturing the same and magnetic recording and reproducing head
JPS6212296B2 (en)
JP3251899B2 (en) Wear-resistant high permeability alloy and magnetic recording / reproducing head
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0645846B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0310699B2 (en)
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPS6218619B2 (en)
JPH0310700B2 (en)
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPH0645839B2 (en) Abrasion resistance high magnetic permeability magnetic recording / reproducing head
JPH0368107B2 (en)
JPH0377644B2 (en)
JPH0645848B2 (en) Manufacturing method of wear resistant high permeability alloy for magnetic recording / reproducing head and magnetic recording / reproducing head
JPS6155583B2 (en)
JPH032216B2 (en)
JPH0377645B2 (en)
JPS6130405B2 (en)
JPH026202B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term