JPH032216B2 - - Google Patents

Info

Publication number
JPH032216B2
JPH032216B2 JP58131817A JP13181783A JPH032216B2 JP H032216 B2 JPH032216 B2 JP H032216B2 JP 58131817 A JP58131817 A JP 58131817A JP 13181783 A JP13181783 A JP 13181783A JP H032216 B2 JPH032216 B2 JP H032216B2
Authority
JP
Japan
Prior art keywords
alloy
less
strontium
barium
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58131817A
Other languages
Japanese (ja)
Other versions
JPS6024348A (en
Inventor
Ryo Masumoto
Juetsu Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI JIKI ZAIRYO KENKYUSHO
Original Assignee
DENKI JIKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI JIKI ZAIRYO KENKYUSHO filed Critical DENKI JIKI ZAIRYO KENKYUSHO
Priority to JP58131817A priority Critical patent/JPS6024348A/en
Priority to US06/624,290 priority patent/US4572750A/en
Publication of JPS6024348A publication Critical patent/JPS6024348A/en
Publication of JPH032216B2 publication Critical patent/JPH032216B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は亀流磁界における磁気特性および耐摩
耗性がすぐれ、鍛造加工が容ィで磁気蚘録再生ヘ
ツドに奜適な高透磁率合金およびその補造法なら
びに磁気蚘録再生ヘツドに関するものである。 テヌプレコヌダヌなどの磁気蚘録再生ヘツドは
亀流磁界においお䜜動するものであるから、これ
に甚いられる磁性合金は高呚波磁界における実効
透磁率が高いこずが必芁ずされ、たた磁気テヌプ
が接觊しお摺動するため耐摩耗性が良奜であるこ
ずが望たれおいる。珟圚、耐摩耗性にすぐれた磁
気ヘツド甚磁性合金ずしおはセンダストFe−
Si−Al系合金およびプラむトMnO−ZnO
−Fe2O3があるが、これらは非垞に硬く脆いた
め、鍛造、圧延加工が䞍可胜で、ヘツドコアの補
造に研削、研磚の方法が甚いられおおり、埓぀お
その成品は高䟡である。たたセンダストは飜和磁
束密床は倧きいが薄板にできないので高呚波磁界
における実効透磁率が比范的小さい。たたプラ
むトは実効透磁率は倧きいが、飜和磁束密床が
5000G以䞋で小さいのが欠点である。他方パヌマ
ロむNi−Fe系合金は鍛造、圧延加工および
打抜きは容易で量産性にすぐれおいるが、軟く摩
耗しやすいのが倧きな欠点である。 本発明者らはNi−Fe系合金の磁気特性および
耐摩耗性の改善に぀いお幟倚研究を行぀た結果、
Ni−Fe系合金に族元玠のストロンチりムお
よびバリりムの皮および皮の合金0.001〜
を添加するこずにより目的を達成したのであ
る。 本発明は重量比におニツケル30〜90、ストロ
ンチりムおよびバリりムの皮たたは皮の合蚈
0.001〜、残郚鉄および少量の䞍玔物ずから
なるか、たたはこれを䞻成分ずし、副成分ずしお
銅30以䞋、タングステン、ニオブ、タンタル、
マンガンのそれぞれ15以䞋、モリブデン、コバ
ルトのそれぞれ10以䞋、クロム、バナゞりム、
チタン、ケむ玠、ゲルマニりム、ガリりム、むン
ゞりム、タリりムのそれぞれ以䞋、アルミニ
りム、ゞルコニりム、ハフニりム、垌土類元玠、
癜金族元玠のそれぞれ以䞋、ベリリりム、
錫、アンチモン、ホり玠、リンのそれぞれ以
䞋の皮たたは皮以䞊の合蚈0.01〜30からな
り、飜和磁束密床5000G以䞊を有し、耐摩耗性お
よび実効透磁率がすぐれ、磁気蚘録再生ヘツド等
に䜿甚し埗る高透磁率磁性合金に係る。 さらに本発明は䞊蚘の高透磁率磁性合金をケヌ
スおよびコアに甚いお補造した耐摩耗性にすぐれ
た磁気蚘録再生ヘツドに係る。 本発明の特城ずする所は䞋蚘の点にある。 第発明 重量比におニツケル30〜90、ストロンチりム
およびバリりムの皮たたは皮の合蚈0.001〜
、残郚鉄および少量の䞍玔物ずからなり、飜
和磁束密床5000G以䞊を有するこずを特城ずする
磁気蚘録再生ヘツド甚耐摩耗性高透磁率合金。 第発明 重量比におニツケル30〜90、ストロンチりム
およびバリりムの皮たたは皮の合蚈0.001〜
、銅30以䞋、タングステン、ニオブ、タン
タル、マンガンのそれぞれ15以䞋、モリブデ
ン、コバルトのそれぞれ10以䞋、クロム、バナ
ゞりム、チタン、ケむ玠、ゲルマニりム、ガリり
ム、むンゞりム、タリりムのそれぞれ以䞋、
アルミニりム、ゞルコニりム、ハフニりム、垌土
類元玠、癜金族元玠のそれぞれ以䞋、ベリリ
りム、錫、アンチモン、ホり玠、リンのそれぞれ
以䞋の皮たたは皮以䞊の合蚈0.01〜30
、残郚鉄および少量の䞍玔物ずからなる飜和磁
束密床5000G以䞊を有するこずを特城ずする磁気
蚘録再生ヘツド甚耐摩耗性高透磁率合金。 第発明 重量比におニツケル30〜90、ストロンチりム
およびバリりムの皮たたは皮の合蚈0.001〜
、残郚鉄および少量の䞍玔物ずからなる合金
を、600℃以䞊融点以䞋の枩床で非酞化性雰囲気
あるいは真空䞭においお、少くずも分間以䞊
100時間以䞋の組成に察応した適圓時間加熱した
埌、600℃以䞊から100℃秒〜℃時の組成に
察応した適圓な速床で垞枩たで冷华するこずを特
城ずする磁気蚘録再生ヘツド甚耐摩耗性高透磁率
合金の補造法。 第発明 重量比におニツケル30〜90、ストロンチりム
およびバリりムの皮たたは皮の合蚈0.001〜
、残郚鉄および少量の䞍玔物ずからなる合金
を600℃以䞊融点以䞋の枩床で非酞化性雰囲気あ
るいは真空䞭においお、少くずも分間以䞊100
時間以䞋の組成に察応した適圓時間加熱した埌、
600℃以䞊から100℃秒〜℃時の組成に察応
した適圓な速床で垞枩たで冷华し、これをさらに
600℃以䞋で非酞化性雰囲気䞭あるいは真空䞭に
おいお分間以䞊100時間以䞋の組成に察応した
適圓時間加熱し、冷华するこずを特城ずする磁気
蚘録再生ヘツド甚耐摩耗性高透磁率合金の補造
法。 第発明 重量比におニツケル30〜90、ストロンチりム
およびバリりムの皮たたは皮の合蚈0.001〜
、残郚鉄および少量の䞍玔物ずからなる合金
を甚いたこずを特城ずする磁気蚘録再生ヘツドに
ある。 本発明の合金を造るには、たず䞻成分のニツケ
ル30〜90、ストロンチりムおよびバリりムの
皮たたは皮の合蚈0.001〜および残郚鉄の
適圓量を非酞化雰囲気䞭あるいは真空䞭においお
適圓な溶解炉を甚いお溶解した埌、適圓な脱酞
剀、脱硫剀を少量添加しおできるだけ䞍玔物を取
り陀き、そのたたか、曎にこれに銅30以䞋、タ
ングステン、ニオブ、タンタル、マンガンのそれ
ぞれ15以䞋、モリブデン、コバルトのそれぞれ
10以䞋、クロム、バナゞりム、チタン、ケむ
玠、ゲルマニりム、ガリりム、むンゞりム、タリ
りムのそれぞれ以䞋、アルミニりム、ゞルコ
ニりム、ハフニりム、垌土類元玠、癜金族元玠の
それぞれ以䞋、ベリリりム、錫、アンチモ
ン、ホり玠、リンのそれぞれ以䞋の皮たた
は皮以䞊の合金0.01〜30の定量を添加しお充
分に撹拌し、組成的に均䞀な溶融合金を造る。次
にこれを適圓な圢および倧きさの鋳型に泚入しお
健党な鋳塊を埗、さらにこれを高枩においお鍛造
熱間圧延および冷間圧延などの成圢加工を斜しお
目的の圢状のもの、䟋えば厚さ0.1mmに薄板を造
る。 次にその薄板から目的の圢状、寞法のものを打
抜き、これを適圓な非酞化性雰囲気䞭あるいは真
空䞭で再結晶枩床以䞊、すなわち玄600℃以䞊、
特に800℃以䞊融点以䞋の枩床に分間以䞊加熱
し、次いで組成に察応した適圓な速床、䟋えば
100℃秒〜℃時で冷华する。合金の組成に
よ぀おはこれをさらに玄600℃以䞋の枩床芏則
栌子−䞍芏則栌子倉態点以䞋の枩床、特に200〜
600℃に分間以䞊100時間以䞋加熱し、冷华する
こずにより飜和磁束密床5000G以䞊を有し、耐摩
耗性にすぐれた高透磁率磁性合金を埗るこずがで
きる。 䞊蚘の液䜓化枩床から芏則−䞍芏則栌子倉態点
玄600℃以䞊の枩床たでの冷华は、急冷しおも
埐冷しおも埗られる磁性には倧した倉わりはない
が、この倉態点以䞋の冷华速床は磁性に倧きな圱
響を及がす。すなわちこの倉態点以䞊の枩床より
100℃秒〜℃時の組成に察応した適圓な速
床で垞枩迄冷华するこずにより、地の芏則床が適
圓に調敎され、すぐれた磁性が埗られる。そしお
䞊蚘の冷华速床の内100℃秒に近い速床で急冷
するず、芏則床が小さくなり、これ以䞊速く冷华
するず芏則化が進たず、芏則床はさらに小さくな
り磁性は劣化する。しかしその芏則床の小さい合
金をその倉態点以䞋の200℃〜600℃に再加熱し冷
华するず、芏則化が進んで適床な芏則床ずなり磁
性は向䞊する。他方、䞊蚘の倉態点以䞊の枩床か
ら、䟋えば℃時以䞋の速床で埐冷するず、芏
則化は進みすぎ、磁性は䜎䞋する。 次に本発明の実斜䟋に぀いお述べる。 実斜䟋  合金番号13組成Ni78.5、Sr1.0、Ba
1.2、残郚Fe 詊料を造るには䞊蚘組成の合金材料の党重量
800をアルミナ坩堝に入れ、真空䞭で高呚波誘
導炉によ぀お溶かした埌、よく撹拌しお均質な溶
融合金ずした。次いでこれを盎埄25mm、高さ170
mmの孔をも぀鋳型に泚入し、埗られた鋳塊を玄
1000℃で鍛造しお厚さ玄mmの板ずした。さらに
箄600〜900℃の間で厚さmmたで熱間圧延し、次
いで垞枩で冷間圧延を斜しお0.1mmの薄板ずし、
それから倖埄45mm、内埄33mmの環状板および磁気
ヘツドのコアを打ち抜いた。次にこれらに第衚
に瀺す皮々な熱凊理を斜し、環状板で磁気特性
を、たたコアを甚いお磁気ヘツドを補造し、衚面
粗さ蚈で磁気テヌプCrO2による200時間走行
埌の摩耗量を枬定しお第衚のような結果を埗
た。
The present invention relates to a high magnetic permeability alloy that has excellent magnetic properties and wear resistance in an alternating magnetic field, can be easily forged, and is suitable for a magnetic recording/reproducing head, a method for producing the same, and a magnetic recording/reproducing head. Since magnetic recording/reproducing heads such as tape recorders operate in alternating magnetic fields, the magnetic alloys used therein must have high effective magnetic permeability in high-frequency magnetic fields, and magnetic tapes must slide in contact with each other. Therefore, it is desired that the wear resistance be good. Currently, Sendust (Fe-
(Si-Al alloy) and ferrite (MnO-ZnO
-Fe 2 O 3 ), but these are extremely hard and brittle and cannot be forged or rolled, so grinding and polishing methods are used to manufacture the head core, and the finished product is therefore expensive. . Sendust has a high saturation magnetic flux density, but cannot be made into a thin plate, so its effective permeability in a high-frequency magnetic field is relatively low. Also, although ferrite has a high effective permeability, the saturation magnetic flux density is
The disadvantage is that it is small, less than 5000G. On the other hand, permalloy (Ni-Fe alloy) is easy to forge, roll, and punch and has excellent mass productivity, but its major drawback is that it is soft and easily abraded. The present inventors conducted numerous studies on improving the magnetic properties and wear resistance of Ni-Fe alloys, and found that
Ni-Fe alloy with one or two alloys of Group A elements strontium and barium 0.001 to 5
The objective was achieved by adding %. The present invention is a combination of 30 to 90% nickel, one or two of strontium and barium by weight.
0.001 to 5%, balance iron and a small amount of impurities, or the main component is copper 30% or less, tungsten, niobium, tantalum,
15% or less each of manganese, 10% or less each of molybdenum and cobalt, chromium, vanadium,
5% or less each of titanium, silicon, germanium, gallium, indium, thallium, aluminum, zirconium, hafnium, rare earth elements,
Less than 3% each of platinum group elements, beryllium,
Contains a total of 0.01 to 30% of one or more of tin, antimony, boron, and phosphorus (2% or less each), has a saturation magnetic flux density of 5000G or more, has excellent wear resistance and effective magnetic permeability, and is suitable for magnetic recording and reproduction. This invention relates to a high permeability magnetic alloy that can be used for heads, etc. Furthermore, the present invention relates to a magnetic recording/reproducing head with excellent wear resistance manufactured using the above-mentioned high permeability magnetic alloy for the case and core. The features of the present invention are as follows. First invention Weight ratio of nickel 30 to 90%, total of one or two of strontium and barium 0.001 to
1. A wear-resistant, high permeability alloy for magnetic recording/reproducing heads, comprising 5% iron, the balance being iron and a small amount of impurities, and having a saturation magnetic flux density of 5000G or more. Second invention Weight ratio of nickel 30 to 90%, total of one or two of strontium and barium 0.001 to
5%, 30% or less of copper, 15% or less each of tungsten, niobium, tantalum, and manganese, 10% or less each of molybdenum, cobalt, 5% or less each of chromium, vanadium, titanium, silicon, germanium, gallium, indium, and thallium. ,
3% or less each of aluminum, zirconium, hafnium, rare earth elements, and platinum group elements, and 2% or less each of beryllium, tin, antimony, boron, and phosphorus, total of 0.01 to 30
%, the balance being iron and a small amount of impurities, and having a saturation magnetic flux density of 5000 G or more. Third invention Weight ratio of nickel 30 to 90%, total of one or two of strontium and barium 0.001 to 0.001
5%, balance iron and a small amount of impurities, in a non-oxidizing atmosphere or in vacuum at a temperature above 600℃ and below the melting point for at least 1 minute.
For a magnetic recording/reproducing head, which is characterized by being heated for an appropriate time corresponding to the composition for 100 hours or less, and then cooling from 600°C or higher to room temperature at an appropriate rate corresponding to the composition, from 100°C/sec to 1°C/hour. Method for manufacturing wear-resistant high permeability alloys. 4th Invention The total weight ratio of 30 to 90% nickel, one or two of strontium and barium is 0.001 to
An alloy consisting of 5% iron, the balance iron and a small amount of impurities is heated at a temperature above 600°C and below the melting point in a non-oxidizing atmosphere or in vacuum for at least 1 minute.
After heating for an appropriate time corresponding to the composition,
Cool from 600℃ or higher to room temperature at an appropriate rate corresponding to the composition of 100℃/sec to 1℃/hour, and then cool it further.
Manufacture of a wear-resistant high permeability alloy for magnetic recording and reproducing heads, which is heated at 600°C or lower in a non-oxidizing atmosphere or in vacuum for a period of 1 minute or more and 100 hours or less, and then cooled. Law. Fifth invention Weight ratio of nickel 30 to 90%, total of one or two of strontium and barium 0.001 to 0.001
The magnetic recording/reproducing head is characterized in that it uses an alloy consisting of 5% iron, the balance being iron and a small amount of impurities. To make the alloy of the present invention, first the main components are 30 to 90% nickel, 1% strontium and 1% barium.
After melting a total of 0.001 to 5% of the seed or two and the balance iron in an appropriate melting furnace in a non-oxidizing atmosphere or vacuum, add a small amount of an appropriate deoxidizing agent or desulfurizing agent to melt as much as possible. Remove impurities and add 30% or less copper, 15% or less each of tungsten, niobium, tantalum, and manganese, and each of molybdenum and cobalt.
10% or less of each of chromium, vanadium, titanium, silicon, germanium, gallium, indium, thallium, 3% or less of each of aluminum, zirconium, hafnium, rare earth elements, platinum group elements, beryllium, tin, antimony, boron , 2% or less of phosphorus, respectively, and 0.01 to 30% of one or more alloys are added and sufficiently stirred to produce a compositionally uniform molten alloy. Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then subjected to forming processes such as forging hot rolling and cold rolling at high temperatures to obtain the desired shape, e.g. Make a thin plate with a thickness of 0.1mm. Next, a piece of the desired shape and size is punched out from the thin plate, and it is heated at a temperature above the recrystallization temperature, that is, about 600°C or above, in a suitable non-oxidizing atmosphere or in a vacuum.
In particular, heat to a temperature of 800°C or higher and lower than the melting point for 1 minute or more, and then heat at an appropriate rate depending on the composition, e.g.
Cool at 100°C/sec to 1°C/hour. Depending on the composition of the alloy, this may be further increased to a temperature of about 600°C or below (temperature below the ordered lattice-irregular lattice transformation point), especially 200°C or less.
By heating at 600° C. for 1 minute or more and 100 hours or less and cooling, a high permeability magnetic alloy having a saturation magnetic flux density of 5000 G or more and excellent wear resistance can be obtained. Cooling from the above liquefaction temperature to a temperature above the ordered-disordered lattice transformation point (approximately 600°C) shows that there is no significant difference in the magnetism obtained whether the cooling is rapid or gradual; The following cooling rates have a significant effect on magnetism. In other words, from a temperature above this transformation point
By cooling to room temperature at an appropriate rate corresponding to the composition of 100° C./sec to 1° C./hour, the regularity of the ground can be adjusted appropriately and excellent magnetism can be obtained. If the material is rapidly cooled at a rate close to 100° C./second among the above cooling rates, the degree of order decreases, and if it is cooled any faster, the degree of order does not proceed, and the degree of order decreases further, resulting in deterioration of magnetism. However, when an alloy with a low degree of order is reheated to 200 to 600 degrees Celsius, below its transformation point, and cooled, ordering progresses and the degree of order becomes moderate, improving magnetism. On the other hand, if it is slowly cooled from a temperature above the above-mentioned transformation point at a rate of, for example, 1° C./hour or less, ordering will proceed too much and the magnetism will decrease. Next, examples of the present invention will be described. Example 1 Alloy number 13 (composition Ni=78.5%, Sr=1.0%, Ba
= 1.2%, balance Fe) To make the sample, the total weight of the alloy material with the above composition is required.
800 g of the alumina was placed in an alumina crucible and melted in a high-frequency induction furnace in a vacuum, followed by thorough stirring to obtain a homogeneous molten alloy. Next, this is 25mm in diameter and 170mm in height.
The resulting ingot was poured into a mold with a hole of mm.
It was forged at 1000℃ into a plate approximately 7mm thick. Further, it is hot rolled at about 600 to 900°C to a thickness of 1 mm, and then cold rolled at room temperature to form a thin plate of 0.1 mm.
Then an annular plate with an outer diameter of 45 mm and an inner diameter of 33 mm and the core of the magnetic head were punched out. Next, these were subjected to various heat treatments shown in Table 1, and the annular plate was used to test the magnetic properties, and the core was used to manufacture a magnetic head. The amount of wear was measured and the results shown in Table 1 were obtained.

【衚】 実斜䟋  合金番号42組成Ni79.0、Nb7.0、Sr
1.5、Ba1.0、残郚Fe 詊料を造るには䞊蚘組成の合金材料の党重量
800をアルミナ坩堝に入れ、真空䞭で高呚波誘
導電気炉によ぀お溶かした埌よく撹拌しお溶融合
金ずした。補造工皋は実斜䟋ず同じである。詊
料に皮々の熱凊理を斜しお第衚に瀺すような特
性が埗られた。
[Table] Example 2 Alloy number 42 (composition Ni=79.0%, Nb=7.0%, Sr
= 1.5%, Ba = 1.0%, balance Fe) To make a sample, the total weight of the alloy material with the above composition is
800 g of the alumina was placed in an alumina crucible, melted in a vacuum using a high-frequency induction electric furnace, and stirred well to obtain a molten alloy. The manufacturing process is the same as in Example 1. The samples were subjected to various heat treatments and the properties shown in Table 2 were obtained.

【衚】【table】

【衚】 次に第衚には1150℃の真空䞭で時間加熱し
た埌、600℃から皮々な速床で垞枩たで冷华する
か、あるいはこれをさらに600℃以䞋の枩床で再
加熱しお、垞枩で枬定された代衚的な合金の諞特
性が瀺しおある。
[Table] Next, Table 3 shows that after heating in a vacuum at 1150°C for 2 hours, cooling from 600°C to room temperature at various rates, or further heating at a temperature below 600°C, The properties of representative alloys measured at room temperature are shown.

【衚】 次に本発明合金のSrおよびBa添加効果に぀い
お図面によ぀お詳现に述べる。第図には78.5
Ni−Fe−Ba合金に぀いおBa添加量ず実効透磁
率、飜和磁束密床および摩耗量ずの関係を瀺し、
第図には79Ni−Fe−Nb−Ba合金に぀
いおBa添加量ず実効透磁率、飜和磁束密床およ
び摩耗量ずの関係を瀺した。 第図には78.5Ni−Fe−Sr合金に぀いおSr
添加量ず実効透磁率、飜和磁束密床および摩耗量
ずの関係を瀺し、第図には79Ni−Fe−
Nb−Sr合金に぀いおSr添加量ず実効透磁率、飜
和磁束密床および摩耗量ずの関係を瀺した。第
図は78.5Ni−Fe−1.0Sr−1.2Ba合金にCu
NbTaあるいはMnを添加した堎合の各元
玠の添加量ず実効透磁率、飜和磁束密床および摩
耗量ずの関係を瀺す特性図である。 第図は78.5Ni−Fe−1.0Sr−1.2Ba合
金MoCoCrあるいはTiを添加した堎合
の各元玠の添加量ず実効透磁率、飜和磁束密床お
よび摩耗量ずの関係を瀺す特性図である。 第図は78.5Ni−Fe−1.0Sr−1.2Ba合
金にSiGeGaIn又はTlを添加した堎合の
各元玠の添加量ず実効透磁率、飜和磁束密床およ
び摩耗量ずの関係を瀺す特性図である。 第図は78.5Ni−Fe−1.0Sr−1.2Ba合
金にAlZrHfCePt又はBeSnSb
あるいはをそれぞれ添加した堎合の各元玠の添
加量ず実効透磁率、飜和磁束密床および摩耗量ず
の関係を瀺す特性図である。 䞀般にストロンチりム又はバリりムの添加量の
増加ずずもに実効透磁率は著しく増倧し、摩耗量
は枛少する。しかしストロンチりムおよびバリり
ムが以䞊では加工が困難になり奜たしくな
い。 本発明のこのような磁気特性の向䞊は溶解時に
おけるストロンチりムおよびバリりムの脱酞効果
によ぀お䞍玔物が陀去され、合金組織を枅浄にす
るずずもに、ストロンチりムおよびバリりムの結
晶型がニツケルおよび鉄ず同様に察称性のよい立
方晶を圢成するので、結晶磁気異方性゚ネルギヌ
が小さくなり、磁化し易い状態に成るものず考え
られる。さらにNi−Sr系、Fe−Sr系、Ni−Ba
系およびFe−Ba系金属間化合物が埮现に析出し
お磁区を分割し磁壁を増加させるので、亀流磁界
における磁壁の移動速床を盞察的に枛少させ、そ
のため枊電流損倱が小さくなり、倧きな実効透磁
率が埗られるものず考えられる。たた本発明合金
の耐摩耗性の向䞊は、倧きな原子間距離を有する
ストロンチりム又はバリりムを添加するず、Ni
−Fe合金の地が固溶䜓硬化するずずもに、匷固
な金属間化合物が地に埮现に析出するこずによる
ものず考えられる。 曎に副成分ずしお添加するCuNbTa
MnMoCoCrTiGeGaInTl
AlSiZrHf垌土類元玠、癜金族元玠、
BeSnSbおよび等は本発明合金の実効
透磁率を高める効果があり、たたCoは飜和磁束
密床を高めるのに有効である。曎にCu
NbTaTiGeGaInTlAlSi
ZrHf垌土類元玠、癜金族元玠、BeSn
Sbおよび等は本発明合金の耐摩耗性を改
善する効果が倧きく、曎にNbTaMnTi
Si垌土類元玠は鍛造加工性を改善する効果が倧
きい。 芁するに本発明合金は飜和磁束密床が5000G以
䞊で実効透磁率が高く、耐摩耗性がすぐれ、䞔぀
加工性が良奜なので磁気蚘録再生ヘツド甚磁性合
金ずしお奜適であるばかりでなく、VTRおよび
電子蚈算機の磁気蚘録再生ヘツドならびに普通の
電気機噚などに甚いる磁性材料ずしおも非垞に奜
適である。 次に本発明においお合金の組成をニツケル30〜
90、ストロンチりム又はバリりムの皮たたは
皮の合蚈0.001〜および残郚鉄ず限定し、
たたこれに添加する元玠を銅30以䞋、タングス
テン、ニオブ、タンタル、マンガンのそれぞれ15
以䞋、モリブデン、コバルトのそれぞれ10以
䞋、クロム、バナゞりム、チタン、ケむ玠、ゲル
マニりム、ガリりム、むンゞりム、タリりムのそ
れぞれ以䞋、アルミニりム、ゞルコニりム、
ハフニりム、垌土類元玠、癜金族元玠のそれぞれ
以䞋、ベリリりム、錫、アンチモン、ホり
玠、リンのそれぞれ以䞋の皮たたは皮以
䞊の合金0.01〜30ず限定した理由は、実斜䟋、
第衚および図面第図ないし第図より明らか
なように、その組成範囲の飜和磁束密床は5000G
以䞊で、実効透磁率および耐摩耗性にすぐれ、䞔
぀加工性も良奜であるが、組成がこの範囲をはず
れるず飜和磁束密床が5000G以䞋ずなり、実効透
磁率が䜎䞋し、摩耗が倧きくなり、䞔぀加工が困
難ずなり、磁気蚘録再生ヘツドの材料ずしお䞍適
圓ずなるからである。すなわち、ストロンチりム
およびバリりムが0.001未満では添加効率が小
さく、を越えるず鍛造加工が困難ずなるから
である。そしおこれに副成分ずしお銅30以䞋、
タングステン15、ニオブ15、タンタル15、
マンガン15、モリブデン10、クロム、バ
ナゞりム、チタン、ゲルマニりム、
ガリりム、むンゞりム、タリりム、
アルミニりム、ケむ玠、ハフニりム
、垌土類元玠、癜金族元玠のそれぞれ
を越え添加するず飜和磁束密床が5000G以䞋ずな
るからであり、ベリリりム、錫、アンチ
モン、ホり玠、リンのそれぞれを越
えお添加するず鍛造あるいは加工が困難ずなるか
らであり、Coを10を越え添加するず実効透磁
率が小さくなるからである。 なお、第衚より明らかなように、Ni−Feç³»
合金に副成分の䜕れかを入れるず実効透磁率は曎
に倧きくなり、たた、硬床も高くなり、耐摩耗性
が改善されるのでこれらの副成分の添加は同䞀効
果であり、同効成分ず芋倣し埗る。たた、垌土類
元玠はスカンゞりム、むツトリりムおよびランタ
ン系元玠からなるものであるが、その副成分添加
効果は党く同䞀であり、癜金族元玠は癜金、むリ
ゞりム、ルテニりム、ロゞりム、パラゞりム、オ
スミりムからなるが、その効果も党く同䞀であ
る。
[Table] Next, the effect of adding Sr and Ba to the alloy of the present invention will be described in detail with reference to the drawings. Figure 1 shows 78.5%
The relationship between Ba addition amount, effective magnetic permeability, saturation magnetic flux density, and wear amount for Ni-Fe-Ba alloy is shown.
Figure 2 shows the relationship between the amount of Ba added and the effective magnetic permeability, saturation magnetic flux density, and wear amount for the 79% Ni-Fe-7% Nb-Ba alloy. Figure 3 shows Sr for 78.5%Ni-Fe-Sr alloy.
The relationship between the addition amount, effective magnetic permeability, saturation magnetic flux density, and wear amount is shown in Figure 4.
The relationship between the amount of Sr added and the effective magnetic permeability, saturation magnetic flux density, and wear amount for Nb-Sr alloys was shown. Fifth
The figure shows 78.5%Ni-Fe-1.0%Sr-1.2%Ba alloy with Cu,
FIG. 3 is a characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and amount of wear when W, Nb, Ta, or Mn is added. Figure 6 shows the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density and amount of wear when Mo, Co, Cr, V or Ti is added to the 78.5%Ni-Fe-1.0%Sr-1.2%Ba alloy. It is a characteristic diagram showing a relationship. Figure 7 shows the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and wear amount when Si, Ge, Ga, In, or Tl is added to a 78.5% Ni-Fe-1.0% Sr-1.2% Ba alloy. FIG. Figure 8 shows 78.5%Ni-Fe-1.0%Sr-1.2%Ba alloy with Al, Zr, Hf, Ce, Pt or Be, Sn, Sb, B
Alternatively, it is a characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and amount of wear when P is added. Generally, as the amount of strontium or barium added increases, the effective magnetic permeability increases significantly and the amount of wear decreases. However, if the content of strontium and barium exceeds 5%, processing becomes difficult, which is not preferable. This improvement in magnetic properties of the present invention is due to the deoxidizing effect of strontium and barium during melting, which removes impurities and cleanses the alloy structure. It is thought that since it forms a cubic crystal with good symmetry, the magnetocrystalline anisotropy energy becomes small, making it easy to magnetize. Furthermore, Ni-Sr system, Fe-Sr system, Ni-Ba system
The Fe-Ba system and Fe-Ba intermetallic compounds precipitate finely, dividing the magnetic domain and increasing the domain wall, which relatively reduces the moving speed of the domain wall in an alternating magnetic field, which reduces eddy current loss and increases the effective permeability. It is thought that magnetic property can be obtained. Furthermore, the wear resistance of the alloy of the present invention is improved by adding strontium or barium, which has a large interatomic distance.
This is thought to be due to solid solution hardening of the -Fe alloy base and fine precipitation of strong intermetallic compounds on the base. Furthermore, Cu, W, Nb, Ta, added as subcomponents
Mn, Mo, Co, Cr, V, Ti, Ge, Ga, In, Tl,
Al, Si, Zr, Hf, rare earth elements, platinum group elements,
Be, Sn, Sb, B, P, etc. are effective in increasing the effective magnetic permeability of the alloy of the present invention, and Co is effective in increasing the saturation magnetic flux density. Furthermore, Cu, W,
Nb, Ta, V, Ti, Ge, Ga, In, Tl, Al, Si,
Zr, Hf, rare earth elements, platinum group elements, Be, Sn,
Sb, B, P, etc. have a great effect on improving the wear resistance of the alloy of the present invention, and Nb, Ta, Mn, Ti, etc.
Si and rare earth elements have a great effect on improving forging workability. In short, the alloy of the present invention has a saturation magnetic flux density of 5000 G or more, high effective permeability, excellent wear resistance, and good workability, so it is not only suitable as a magnetic alloy for magnetic recording/reproducing heads, but also for VTRs and electronic computers. It is also very suitable as a magnetic material for use in magnetic recording/reproducing heads and ordinary electrical equipment. Next, in the present invention, the composition of the alloy is changed from Nickel 30 to
90%, 0.001 to 5% in total of one or both of strontium or barium, and the balance iron,
In addition, the elements added to this are less than 30% copper, and 15% each of tungsten, niobium, tantalum, and manganese.
% or less, molybdenum and cobalt each 10% or less, chromium, vanadium, titanium, silicon, germanium, gallium, indium, thallium each 5% or less, aluminum, zirconium,
The reason for limiting the content to 0.01 to 30% of an alloy of one or more types of hafnium, rare earth elements, and platinum group elements, each of which is 3% or less, and beryllium, tin, antimony, boron, and phosphorus, each of which is 2% or less, is as follows:
As is clear from Table 3 and Figures 1 to 8, the saturation magnetic flux density in the composition range is 5000G.
As described above, the material has excellent effective magnetic permeability and wear resistance, as well as good workability, but if the composition is outside this range, the saturation magnetic flux density will be less than 5000G, the effective magnetic permeability will decrease, and wear will increase. This is because it is difficult to process, making it unsuitable as a material for magnetic recording/reproducing heads. That is, if the content of strontium and barium is less than 0.001%, the addition efficiency is low, and if it exceeds 5%, forging becomes difficult. In addition to this, less than 30% copper is added as a subcomponent.
15% tungsten, 15% niobium, 15% tantalum,
15% manganese, 10% molybdenum, 5% chromium, 5% vanadium, 5% titanium, 5% germanium,
5% gallium, 5% indium, 5% thallium,
3% aluminum, 5% silicon, 3% hafnium
%, rare earth elements 3%, and platinum group elements 3%, the saturation magnetic flux density becomes 5000 G or less. This is because if more than 10% of Co is added, forging or processing becomes difficult, and if more than 10% of Co is added, the effective magnetic permeability decreases. As is clear from Table 3, if any of the subcomponents is added to the Ni-Fe alloy, the effective magnetic permeability will further increase, the hardness will also increase, and the wear resistance will be improved. Addition of sub-ingredients has the same effect and can be considered as an ingredient with the same effect. Rare earth elements consist of scandium, yttrium, and lanthanum-based elements, but the effect of adding their subcomponents is exactly the same, and platinum group elements consist of platinum, iridium, ruthenium, rhodium, palladium, and osmium, but The effect is exactly the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は78.5Ni−Fe−Ba合金のバリりム量
ず実効透磁率、飜和磁束密床および摩耗量ずの関
係を瀺す特性図、第図は79Ni−Fe−Nb
−Ba合金のバリりム量ず実効透磁率、飜和磁束
密床および摩耗量ずの関係を瀺す特性図、第図
は78.5Ni−Fe−Sr合金のストロンチりム量ず
実効透磁率、飜和磁束密床および摩耗量ずの関係
を瀺す特性図、第図は79Ni−Fe−Nb−
Sr合金のストロンチりム量ず実効透磁率、飜和
磁束密床および摩耗量ずの関係を瀺す特性図、第
図は78.5Ni−Fe−1.0Sr−1.2Ba合金に
CuNbTaあるいはMnを添加した堎合の
各元玠の添加量ず実効透磁率、飜和磁束密床およ
び摩耗量ずの関係を瀺す特性図、第図は78.5
Ni−Fe−1.0Sr−1.2Ba合金にMoCoCr
あるいはTiを添加した堎合の各元玠の添加量
ず実効透磁率、飜和磁束密床および摩耗量ずの関
係を瀺す特性図、第図は78.5Ni−Fe−1.0
Sr−1.2Ba合金にSiGeGaIn又はTlを
添加した堎合の各元玠の添加量ず実効透磁率、飜
和磁束密床および摩耗量ずの関係を瀺す特性図、
第図は78.5Ni−Fe−1.0Sr−1.2Ba合金
にAlZrHfCePt又はBeSnSbあ
るいはをそれぞれを添加した堎合の各元玠の添
加量ず実効透磁率、飜和磁束密床および摩耗量ず
の関係を瀺す特性図である。
Figure 1 is a characteristic diagram showing the relationship between barium content, effective magnetic permeability, saturation magnetic flux density, and wear amount of 78.5%Ni-Fe-Ba alloy, Figure 2 is 79%Ni-Fe-7%Nb
-Characteristic diagram showing the relationship between barium content and effective magnetic permeability, saturation magnetic flux density, and wear amount of Ba alloy. Figure 3 shows the relationship between strontium content and effective magnetic permeability, saturation magnetic flux density, and wear amount of 78.5% Ni-Fe-Sr alloy. A characteristic diagram showing the relationship with the amount, Figure 4 is 79%Ni-Fe-7%Nb-
A characteristic diagram showing the relationship between the amount of strontium, effective magnetic permeability, saturation magnetic flux density, and amount of wear in Sr alloy.
Characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and wear amount when Cu, W, Nb, Ta, or Mn is added. Figure 6 is 78.5%.
Ni-Fe-1.0%Sr-1.2%Ba alloy with Mo, Co, Cr,
A characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and wear amount when V or Ti is added. Figure 7 shows 78.5%Ni-Fe-1.0%.
Characteristic diagram showing the relationship between the amount of each element added and effective magnetic permeability, saturation magnetic flux density, and wear amount when Si, Ge, Ga, In, or Tl is added to Sr-1.2%Ba alloy,
Figure 8 shows the amounts of each element added when Al, Zr, Hf, Ce, Pt, Be, Sn, Sb, B or P are added to a 78.5% Ni-Fe-1.0% Sr-1.2% Ba alloy. FIG. 3 is a characteristic diagram showing the relationship between , effective magnetic permeability, saturation magnetic flux density, and amount of wear.

Claims (1)

【特蚱請求の範囲】  重量比におニツケル30〜90、ストロンチり
ムおよびバリりムの皮たたは皮の合蚈0.001
〜、残郚鉄および少量の䞍玔物ずからなり、
飜和磁束密床5000G以䞊を有するこずを特城ずす
る磁気蚘録再生ヘツド甚耐摩耗性高透磁率合金。  重量比におニツケル30〜90、ストロンチり
ムおよびバリりムの皮たたは皮の合蚈0.001
〜、銅30以䞋、タングステン、ニオブ、タ
ンタル、マンガンのそれぞれ15以䞋、モリブデ
ン、コバルトのそれぞれ10以䞋、クロム、バナ
ゞりム、チタン、ケむ玠、ゲルマニりム、ガリり
ム、むンゞりム、タリりムのそれぞれ以䞋、
アルミニりム、ゞルコニりム、ハフニりム、垌土
類元玠、癜金族元玠のそれぞれ以䞋、ベリリ
りム、錫、アンチモン、ホり玠、リンのそれぞれ
以䞋の皮たたは皮以䞊の合蚈0.01〜30
、残郚鉄および少量の䞍玔物ずからなる飜和磁
束密床5000G以䞊を有するこずを特城ずする磁気
蚘録再生ヘツド甚耐摩耗性高透磁率合金。  重量比におニツケル30〜90、ストロンチり
ムおよびバリりムの皮たたは皮の合蚈0.001
〜、残郚鉄および少量の䞍玔物ずからなる合
金を、600℃以䞊融点以䞋の枩床で非酞化性雰囲
気あるいは真空䞭においお、少くずも分間以䞊
100時間以䞋の組成に察応した適圓時間加熱した
埌、600℃以䞊から100℃秒〜℃時の組成に
察応した適圓な速床で垞枩たで冷华するこずを特
城ずする磁気蚘録再生ヘツド甚耐摩耗性高透磁率
合金の補造法。  重量比におニツケル30〜90、ストロンチり
ムおよびバリりムの皮たたは皮の合蚈0.001
〜、残郚鉄および少量の䞍玔物ずからなる合
金を600℃以䞊融点以䞋の枩床で非酞化性雰囲気
あるいは真空䞭においお、少くずも分間以䞊
100時間以䞋の組成に察応した適圓時間加熱した
埌、600℃以䞊から100℃秒〜℃時の組成に
察応した適圓な速床で垞枩たで冷华し、これをさ
らに600℃以䞋で非酞化性雰囲気䞭あるいは真空
䞭においお分間以䞊100時間以䞋で組成に察応
した適圓時間加熱し、冷华するこずを特城ずする
磁気蚘録再生ヘツド甚耐摩耗性高透磁率合金の補
造法。  重量比におニツケル30〜90、ストロンチり
ムおよびバリりムの皮たたは皮の合蚈0.001
〜、残郚鉄および少量の䞍玔物ずからなる合
金を甚いたこずを特城ずする磁気蚘録再生ヘツ
ド。
[Claims] 1. Total weight ratio of 30 to 90% nickel, one or two of strontium and barium: 0.001
~5%, balance iron and small amounts of impurities,
A wear-resistant high permeability alloy for magnetic recording and reproducing heads, characterized by having a saturation magnetic flux density of 5000G or more. 2 Weight ratio of 30 to 90% nickel, one or two of strontium and barium, total 0.001
Up to 5% copper, up to 15% each of tungsten, niobium, tantalum, and manganese, up to 10% each of molybdenum and cobalt, and up to 5% each of chromium, vanadium, titanium, silicon, germanium, gallium, indium, and thallium. below,
3% or less each of aluminum, zirconium, hafnium, rare earth elements, and platinum group elements, and 2% or less each of beryllium, tin, antimony, boron, and phosphorus, total of 0.01 to 30
%, the balance being iron and a small amount of impurities, and having a saturation magnetic flux density of 5000 G or more. 3 Total weight ratio of 30 to 90% nickel, one or two of strontium and barium 0.001
~5%, the balance iron and a small amount of impurities, in a non-oxidizing atmosphere or in vacuum at a temperature of 600℃ or higher and lower than the melting point for at least 1 minute.
For a magnetic recording/reproducing head, which is characterized by being heated for an appropriate time corresponding to the composition for 100 hours or less, and then cooling from 600°C or higher to room temperature at an appropriate rate corresponding to the composition, from 100°C/sec to 1°C/hour. Method for producing wear-resistant high permeability alloys. 4 Weight ratio of 30 to 90% nickel, one or two of strontium and barium, total 0.001
~5%, the balance iron and a small amount of impurities is heated at a temperature above 600°C and below the melting point in a non-oxidizing atmosphere or in vacuum for at least 1 minute.
After heating for an appropriate time corresponding to the composition for 100 hours or less, cooling from 600℃ or higher to room temperature at an appropriate rate corresponding to the composition of 100℃/sec to 1℃/hour, and then cooling it to room temperature at a temperature of 600℃ or less. 1. A method for producing a wear-resistant high permeability alloy for a magnetic recording/reproducing head, which comprises heating the alloy in a neutral atmosphere or in a vacuum for an appropriate period of time corresponding to the composition, from 1 minute to 100 hours, and then cooling. 5 Weight ratio of 30 to 90% nickel, one or two of strontium and barium, total 0.001
A magnetic recording/reproducing head characterized in that it uses an alloy consisting of ~5% iron, the balance being iron and a small amount of impurities.
JP58131817A 1983-07-21 1983-07-21 Wear-resistant alloy with high magnetic permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head Granted JPS6024348A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58131817A JPS6024348A (en) 1983-07-21 1983-07-21 Wear-resistant alloy with high magnetic permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
US06/624,290 US4572750A (en) 1983-07-21 1984-06-25 Magnetic alloy for magnetic recording-reproducing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58131817A JPS6024348A (en) 1983-07-21 1983-07-21 Wear-resistant alloy with high magnetic permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1262698A Division JPH0645848B2 (en) 1989-10-07 1989-10-07 Manufacturing method of wear resistant high permeability alloy for magnetic recording / reproducing head and magnetic recording / reproducing head

Publications (2)

Publication Number Publication Date
JPS6024348A JPS6024348A (en) 1985-02-07
JPH032216B2 true JPH032216B2 (en) 1991-01-14

Family

ID=15066792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58131817A Granted JPS6024348A (en) 1983-07-21 1983-07-21 Wear-resistant alloy with high magnetic permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Country Status (1)

Country Link
JP (1) JPS6024348A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224728A (en) * 1984-04-19 1985-11-09 Res Inst Electric Magnetic Alloys Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head
JPS6191340A (en) * 1984-10-11 1986-05-09 Res Inst Electric Magnetic Alloys Wear-resistant high permeability alloy and its production and magnetic recording and reproducing head

Also Published As

Publication number Publication date
JPS6024348A (en) 1985-02-07

Similar Documents

Publication Publication Date Title
US4710243A (en) Wear-resistant alloy of high permeability and method of producing the same
JP2777319B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JPH06322472A (en) Production of fe base soft magnetic alloy
JPS6133900B2 (en)
JPS625972B2 (en)
JPS59582B2 (en) Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method
KR100405929B1 (en) Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head
JPS6212296B2 (en)
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPH032216B2 (en)
JP3251899B2 (en) Wear-resistant high permeability alloy and magnetic recording / reproducing head
JPH0368107B2 (en)
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0310699B2 (en)
JPS6218619B2 (en)
JPH0310700B2 (en)
JPH0525947B2 (en)
JPH0377644B2 (en)
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0645846B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPS6155583B2 (en)
JPS61143546A (en) Amorphous alloy for magnetic head