JPH0645839B2 - Abrasion resistance high magnetic permeability magnetic recording / reproducing head - Google Patents

Abrasion resistance high magnetic permeability magnetic recording / reproducing head

Info

Publication number
JPH0645839B2
JPH0645839B2 JP1262695A JP26269589A JPH0645839B2 JP H0645839 B2 JPH0645839 B2 JP H0645839B2 JP 1262695 A JP1262695 A JP 1262695A JP 26269589 A JP26269589 A JP 26269589A JP H0645839 B2 JPH0645839 B2 JP H0645839B2
Authority
JP
Japan
Prior art keywords
less
alloy
permeability
magnetic
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1262695A
Other languages
Japanese (ja)
Other versions
JPH02146704A (en
Inventor
量 増本
雄悦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
Original Assignee
THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP60014556A external-priority patent/JPS61174349A/en
Application filed by THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS filed Critical THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
Priority to JP1262695A priority Critical patent/JPH0645839B2/en
Publication of JPH02146704A publication Critical patent/JPH02146704A/en
Publication of JPH0645839B2 publication Critical patent/JPH0645839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Ni,Nb,TaおよびFeよりなる耐摩耗性高透磁率
合金およびNi,Nb,TaおよびFeを主成分とし、副成分とし
てCr,Mo,Ge,Au,Co,V,W,Cu,Mn,Al,Si,Ti,Zr,Hf,Sn,Sb,G
a,In,Tl,Zn,Cd,希土類元素,白金族元素,Be,Ag,Sr,B
a,Bの1種または2種以上を含有する耐摩耗性高透磁率
合金を用いた磁気記録再生ヘッドに関するもので、その
目的とするところは、鍛造加工が容易で、実効透磁率が
大きく、飽和磁束密度が4000G以上で、{110}<112>+{31
1}<112>の再結晶集合組織を有して耐摩耗性が良好な磁
性合金よりなる磁気記録再生ヘッドに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention comprises a wear-resistant high-permeability alloy composed of Ni, Nb, Ta and Fe and Ni, Nb, Ta and Fe as main components, and as sub-components. Cr, Mo, Ge, Au, Co, V, W, Cu, Mn, Al, Si, Ti, Zr, Hf, Sn, Sb, G
a, In, Tl, Zn, Cd, rare earth element, platinum group element, Be, Ag, Sr, B
The present invention relates to a magnetic recording / reproducing head using a wear-resistant high-permeability alloy containing one or more of a and B. Its purpose is to facilitate forging and have a large effective permeability. When the saturation magnetic flux density is 4000 G or more, {110} <112> + {31
The present invention relates to a magnetic recording / reproducing head made of a magnetic alloy having a recrystallization texture of 1} <112> and excellent wear resistance.

(従来の技術) テープレコーダーなどの磁気記録再生ヘッドは交流磁界
において作動するものであるから、これに用いられる磁
性合金は高周波磁界における実効透磁率が大きいことが
必要とされ、また磁気テープが接触して摺動するため耐
摩耗生が良好であることが望まれている。現在、耐摩耗
生にすぐれた磁気ヘッド用磁性合金としてはセンダスト
(Fe-Si-Al系合金)およびMn-Znフェライト(MnO-ZnO-Fe
2O3)があるが、これらは非常に硬く脆いため、鍛造、圧
延加工が不可能で、ヘッドコアの製造には研削、研磨の
方法が用いられており、従ってその成品は高価である。
またセンダストは飽和磁束密度は大きいが薄板にできな
いので高周波磁界における実効透磁率が比較的小さい。
またフェライトは実効透磁率は大きいが、飽和磁束密度
が約4000Gで小さいのが欠点である。他方パーマロイ
(Ni-Fe系合金)は飽和磁束密度は大きいが、実効透磁
率は小さく、また鍛造、圧延加工および打抜きは容易で
量産性にすぐれているが、摩耗しやすいのが大きな欠点
であり、これを改善することが強く望まれている。
(Prior Art) Since a magnetic recording / reproducing head such as a tape recorder operates in an alternating magnetic field, it is necessary that the magnetic alloy used for this has a large effective magnetic permeability in a high frequency magnetic field. Therefore, it is desired that the wear resistance is good because it slides. Currently, as magnetic alloys for magnetic heads with excellent wear resistance, Sendust (Fe-Si-Al alloy) and Mn-Zn ferrite (MnO-ZnO-Fe)
2 O 3 ), but these are extremely hard and brittle, so that they cannot be forged and rolled, and grinding and polishing methods are used to manufacture the head core, and therefore the products are expensive.
In addition, sendust has a high saturation magnetic flux density but cannot be made into a thin plate, so that the effective magnetic permeability in a high frequency magnetic field is relatively small.
Ferrite has a large effective magnetic permeability, but its saturation magnetic flux density is about 4000 G, which is a drawback. On the other hand, permalloy (Ni-Fe alloy) has a high saturation magnetic flux density but a low effective magnetic permeability, and it is easy to forge, roll, and punch and has excellent mass productivity, but it has a major drawback that it is easily worn. ,, there is a strong desire to improve this.

(発明が解決しようとする問題点) 本発明者らは、先にNi-Fe-Nb系およびNi-Fe-Ta系合金は
鍛造加工が容易で硬度および透磁率が大きいことから、
磁気ヘッド用磁性合金として好適であることを見い出
し、これを特許出願した(特公昭47−29690号および特
公昭51−536号)。
(Problems to be Solved by the Invention) The inventors of the present invention previously mentioned that Ni-Fe-Nb and Ni-Fe-Ta alloys are easily forged and have high hardness and magnetic permeability.
They have found that they are suitable as magnetic alloys for magnetic heads and applied for a patent (Japanese Patent Publication No. 47-29690 and Japanese Patent Publication No. 51-536).

その後本発明者らは、磁気ヘッド用磁性合金としてNi-F
e-Nb系およびNi-Fe-Ta系合金の薄板を生産して来たが、
磁気テープの摺動による薄板の摩耗量は、薄板の製造工
程における加工法および熱処理法によって著しく増減し
て耐摩耗性が損われる大きな問題であることから、この
原因を解明するためこれら合金の摩耗について系統的な
研究を行った。その結果、Ni-Fe-Nb系およびNi-Fe-Ta系
合金の摩耗は硬度によって一義的に決定されるものでな
く、薄板の製造方法に依存する再結晶集合組織と緊密な
関係があることが明らかとなった。
After that, the present inventors used Ni-F as a magnetic alloy for a magnetic head.
We have produced thin plates of e-Nb and Ni-Fe-Ta alloys,
The amount of wear of the thin plate due to the sliding of the magnetic tape is a major problem that the wear resistance is impaired due to a significant increase or decrease due to the processing method and heat treatment method in the manufacturing process of the thin plate. We conducted a systematic study on. As a result, the wear of Ni-Fe-Nb and Ni-Fe-Ta alloys is not uniquely determined by hardness, and has a close relationship with the recrystallization texture that depends on the thin plate manufacturing method. Became clear.

(問題点を解決するための手段) 本発明の特徴とする所は下記のとおりである。(Means for Solving Problems) The features of the present invention are as follows.

第1発明 重量比にてNi60〜90%、NbおよびTaの合計0.5〜20%
(但し、Nb14%以下、NbおよびTaは0%を含まず)およ
び残部Feと少量の不純物とからなり、1KHzにおける実
効透磁率3000以上、飽和磁束密度4000G以上で、且つ{1
10}<112>+{311}<112>の再結晶集合組織を有する耐摩耗
性高透磁率合金よりなる磁気記録再生ヘッド。
First invention Ni60 to 90% by weight ratio, Nb and Ta total 0.5 to 20%
(However, Nb 14% or less, Nb and Ta do not include 0%) and the balance Fe and a small amount of impurities, effective permeability at 1 KHz of 3000 or more, saturation magnetic flux density of 4000 G or more, and {1
A magnetic recording / reproducing head made of a wear-resistant high-permeability alloy having a recrystallization texture of 10} <112> + {311} <112>.

第2発明 重量比にてNi60〜90%、NbおよびTaの合計0.5〜20%
(但し、Nb14%以下、NbおよびTaは0%を含まず)およ
び残部Feを主成分とし、副成分としてCr,Mo,Ge,Auをそ
れぞれ7%以下、Co,Vをそれぞれ10%以下、Wを15%以
下、Cu,Mnをそれぞれ25%以下、Al,Si,Ti,Zr,Hf,Sn,Sb,
Ga,In,Tl,Zn,Cd,希土類元素,白金族元素をそれぞれ5
%以下、Be,Ag,Sr,Baをそれぞれ3%以下、Bを1%以
下の1種または2種以上の合計0.01〜30%、少量の不純
物とからなり1KHzにおける実効透磁率3000以上、飽和
磁束密度4000G以上で、且つ{110}<112>+{311}<112>の
再結晶集合組織を有する耐摩耗性高透磁率合金よりなる
磁気記録再生ヘッド。
Second invention Ni60 to 90% by weight, total of Nb and Ta 0.5 to 20%
(However, Nb 14% or less, Nb and Ta do not include 0%) and the balance Fe as main components, Cr, Mo, Ge, Au as sub-components each 7% or less, Co, V each 10% or less, W less than 15%, Cu, Mn less than 25% each, Al, Si, Ti, Zr, Hf, Sn, Sb,
Ga, In, Tl, Zn, Cd, rare earth element, platinum group element 5 each
%, Be, Ag, Sr, Ba each 3% or less, B 1% or less 1 type or 2 or more total 0.01 to 30%, consisting of a small amount of impurities, effective permeability 3000 K or more at 1 KHz, saturated A magnetic recording / reproducing head made of a wear-resistant high-permeability alloy having a magnetic flux density of 4000 G or more and a recrystallization texture of {110} <112> + {311} <112>.

(作用) 一般に摩耗現象は合金の結晶方位によって大きな差異が
あり、結晶異方性が存在することが知られているが、本
発明者らは、Ni-Fe-Nb系およびNi-Fe-Ta系合金において
は、{110}<001>結晶方位は摩耗し易しく、{110}<112>と
この<112>方向を軸として多少回転した{311}<112>結晶
方位が耐摩耗性にすぐれていることを見い出した。すな
わち、Ni-Fe-Nb系およびNi-Fe-Ta系合金は{110}<112>+
{311}<112>の再結晶集合組織を形成させることによって
耐摩耗性が著しく向上することを見い出したのである。
(Function) Generally, it is known that the wear phenomenon has a large difference depending on the crystal orientation of the alloy, and the crystal anisotropy exists, but the present inventors have found that the Ni-Fe-Nb system and the Ni-Fe-Ta system have The {110} <001> crystallographic orientation is easily abraded in the alloys based on {110} <112> and the {311} <112> crystallographic orientation rotated slightly around this <112> direction is excellent in wear resistance. I found that. That is, Ni-Fe-Nb and Ni-Fe-Ta alloys are {110} <112> +
It was found that wear resistance was significantly improved by forming a recrystallized texture of {311} <112>.

本発明者らはこの知見に基づいて、Ni-Fe-Nb系およびNi
-Fe-Ta系合金の{110}<112>+{311}<112>再結晶集合組織
を形成させるための研究を幾多遂行した。すなわち、Ni
-Fe二元系合金は冷間圧延加工すると{110}<112>+{112}<
111>の加工集合組織を生じるか、これを高温加熱すると
{100}<001>再結晶集合組織が発達することが知られてい
る。
The present inventors have based on this finding the Ni-Fe-Nb system and the Ni
A number of studies have been carried out to form {110} <112> + {311} <112> recrystallized textures of -Fe-Ta alloys. That is, Ni
-Fe binary alloy {110} <112> + {112} <when cold-rolled
If a processed texture of 111> is generated or this is heated at high temperature
It is known that {100} <001> recrystallized texture develops.

しかし、これにNbおよび/またはTaを添加すると積層欠
陥エネルギーが低下し、冷間加工率50%以上を施した
後、900℃以上の高温度で加熱することによって{110}<1
12>+{311}<112>再結晶集合組織を効果的に形成させ、耐
摩耗性を著しく向上できることを見い出した。
However, when Nb and / or Ta is added to this, the stacking fault energy decreases, and after cold working rate of 50% or more, heating at a high temperature of 900 ° C or more {110} <1
It has been found that 12> + {311} <112> recrystallized texture can be effectively formed and wear resistance can be remarkably improved.

また、Ni-Fe系合金にNbおよび/またはTaを添加するこ
とによって比電気抵抗は増大し、結晶粒が微細になるの
で、交流磁界における渦電流損失が減少し、このため実
効透磁率は増大する。要するにNbおよび/またはTaの添
加効果により、 {110}<112>+{311}<112>再結晶集合組織が発達するとと
もに実効透磁率が増大し、耐摩耗性のすぐれた高透磁率
合金が得られるのである。
Moreover, by adding Nb and / or Ta to the Ni-Fe alloy, the specific electric resistance increases and the crystal grains become finer, so the eddy current loss in the AC magnetic field decreases, and therefore the effective permeability increases. To do. In short, due to the effect of adding Nb and / or Ta, the {110} <112> + {311} <112> recrystallized texture develops and the effective permeability increases, resulting in a high permeability alloy with excellent wear resistance. You can get it.

本発明の合金を造るには、Ni60〜90%、NbおよびTaの合
計0.5〜20%(但し、Nb14%以下、NbおよびTaは
0%を含まず)および残部Feの適当量を空気中、好まし
くは非酸化性雰囲気(水素,アルゴン、窒素など)中あ
るいは真空中において適当な溶解炉を用いて溶解する。
或は又、上記合金に副成分としてCr,Mo,Ge,Auの7%以
下、Co,Vの10%以下、Wの15%以下、Cu,Mnの25%以
下、Al,Si,Ti,Zr,Hf,Sn,Sb,Ga,In,Tl,Zn,Cd,希土類元
素,白金族元素の5%以下、Be,Ag,Sr,Baの3%以下、
B1%以下の1種あるいは2種以上の合計0.01〜30%の
所定量を更に添加する。かくして得た混合物を充分に撹
拌して組成的に均一な溶融合金を造る。また、鍛造性及
び加工性を改善する為、必要に応じて脱酸剤としてC,
Ca,Mg等を少量(各0.5%以下)添加する。
In order to produce the alloy of the present invention, 60 to 90% of Ni, 0.5 to 20% in total of Nb and Ta (however, Nb is 14% or less, Nb and Ta do not include 0%) and the appropriate amount of balance Fe in air are used. It is preferably melted in a non-oxidizing atmosphere (hydrogen, argon, nitrogen, etc.) or in vacuum using a suitable melting furnace.
Alternatively, as an auxiliary component to the above alloy, Cr, Mo, Ge, Au is 7% or less, Co, V is 10% or less, W is 15% or less, Cu, Mn is 25% or less, Al, Si, Ti, Zr, Hf, Sn, Sb, Ga, In, Tl, Zn, Cd, rare earth elements, 5% or less of platinum group elements, Be, Ag, Sr, Ba 3% or less,
A predetermined amount of 0.01% to 30% in total of one kind or two kinds or more of B1% or less is further added. The mixture thus obtained is thoroughly stirred to produce a compositionally uniform molten alloy. Further, in order to improve forgeability and workability, C, as a deoxidizing agent, may be added as necessary.
Add a small amount of Ca, Mg, etc. (each 0.5% or less).

次にこれを適当な形および大きさの鋳型に注入して健全
な鋳塊を得、さらにこれに1000℃〜1200℃の高温におい
て鍛造あるいは熱間加工を施して適当な形状のもの、例
えば棒あるいは板となし、必要ならば焼鈍する。次いで
これに冷間圧延などの方法によって加工率50%以上の冷
間加工を施し、目的の形状のもの、例えば厚さ0.1mmの
薄板を造る。次にその薄板から例えば45mm、内径33mmの
環状板を打抜き、これを水素中その他の適当な非酸化性
雰囲気(水素,アルゴン,窒素など)中あるいは真空中
で900℃以上融点以下の温度で適当時間加熱し、ついで
規則−不規則格子変態点(約600℃)以上の温度から100
℃/秒〜1℃/時の組成に対応した適当な速度で冷却す
るかあるいはこれをさらに規則−不規則格子変態点(約
600℃)以下の温度で適当時間再加熱し、冷却する。こ
のようにして実効透磁率3000以上、飽和磁束密度4000G
以上を有し、且つ{110}<112>+{311}<112>の再結晶集合
組織を有した耐摩耗性高透磁率合金が得られる。次に本
発明を図面につき説明する。
Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then subjected to forging or hot working at a high temperature of 1000 ° C to 1200 ° C and having an appropriate shape, such as a bar. Alternatively, it is made into a plate and annealed if necessary. Next, this is subjected to cold working at a working rate of 50% or more by a method such as cold rolling to produce a thin plate having a target shape, for example, a thickness of 0.1 mm. Then, for example, an annular plate with a diameter of 45 mm and an inner diameter of 33 mm is punched out from the thin plate, and this is suitable in hydrogen or other suitable non-oxidizing atmosphere (hydrogen, argon, nitrogen, etc.) or in vacuum at a temperature of 900 ° C or higher and melting point or lower After heating for a period of time, then from the temperature above the ordered-disordered lattice transformation point (about 600 ℃) to 100
C./sec. To 1.degree. C./hr. Cooling at an appropriate rate corresponding to the composition, or by further adding this to the ordered-disordered lattice transformation point (about
Reheat at a temperature below 600 ℃ for an appropriate time and cool. In this way, the effective permeability is 3000 or more and the saturation magnetic flux density is 4000G.
A wear-resistant high-permeability alloy having the above and a {110} <112> + {311} <112> recrystallization texture is obtained. The present invention will now be described with reference to the drawings.

第1図は79%Ni-Fe-Nb-Ta系合金(但し、Nb:Ta−1:
1)について加工率90%の冷間圧延し、1100℃で加熱し
た後、800℃/時の速度で冷却した場合の再結晶集合組
織および諸特性とNbおよびTa量との関係を示したもので
ある。
Figure 1 shows a 79% Ni-Fe-Nb-Ta alloy (however, Nb: Ta-1:
Regarding 1), the relationship between the Nb and Ta contents and the recrystallization texture and various properties when cold rolling with a working rate of 90%, heating at 1100 ° C, and cooling at a rate of 800 ° C / hour were shown. Is.

Ni-Fe-Nb-Ta系合金は冷間圧延加工すると{110}<112>+{1
12}<111>の加工集合組織が生じるが、これを高温加熱す
ると{100}<001>と{110}<112>+{311}<112>の再結晶集合
組織が生成する。しかし、これにNbおよびTaを添加する
と{100}<001>再結晶集合組織の生成が抑制され、{110}<
112>+{311}<112>の再結晶集合組織が発達し、それとと
もに摩耗量は減少する。また実効透磁率はNbおよびTaの
添加によって増大するが、NbおよびTaの合計0.5%以下
ではその効果が少なく、また20%以上では鍛造加工が困
難となり好ましくない。
Ni-Fe-Nb-Ta alloy {110} <112> + {1 when cold-rolled
A processed texture of 12} <111> is generated, but when this is heated at high temperature, recrystallized textures of {100} <001> and {110} <112> + {311} <112> are generated. However, addition of Nb and Ta to this suppresses the formation of {100} <001> recrystallized texture, and {110} <
The recrystallized texture of 112> + {311} <112> develops, and the amount of wear decreases with it. Further, the effective magnetic permeability is increased by the addition of Nb and Ta, but if the total amount of Nb and Ta is 0.5% or less, the effect is small, and if it is 20% or more, forging is difficult, which is not preferable.

第2図は79%Ni-Fe-5%Nb−5%Ta合金について、1100
℃で加熱した場合の再結晶集合組織および諸特性と冷間
加工率との関係を示したもので、冷間加工率の増加は{1
10}<112>+{311}<112>の再結晶集合組織の発達をもたら
し、耐摩耗性を向上させ、実効透磁率を高めるが加工率
50%以上において特に著しい。
Fig. 2 shows 1100 for 79% Ni-Fe-5% Nb-5% Ta alloy.
This figure shows the relationship between the cold workability and the recrystallization texture and various characteristics when heated at ℃.
10} <112> + {311} <112> recrystallized texture is developed, wear resistance is improved, and effective permeability is increased
It is especially remarkable at 50% or more.

第3図は79%Ni-Fe-5%Nb−5%Ta合金を冷間加工率85
%で圧延した後の加熱温度と再結晶集合組織および諸特
性との関係を示したもので、加熱温度の上昇とともに{1
12}<111>成分が減少し{110}<112>+{311}<112>が発達し
て耐摩耗性が向上し、また実効透磁率は増大するが、特
に900℃以上において著しい。第4図は合金番号64(80.3
%Ni-Fe−2%Nb−2%Ta-3%Ge合金)、合金番号52(7
9.5%Ni-Fe-5%Nb-3%Ta-2%Mo合金)、合金番号21(79
%Ni-Fe-5%Nb-5%Ta合金)について実効透磁率と冷却
速度との関係およびこれらをさらに再加熱処理を施した
場合の実効透磁率(×印)を示したものである。合金の
組成に対応した最適冷却速度、最適再加熱温度および再
加熱時間が存在することが判る。
Fig. 3 shows the cold working rate of 79% Ni-Fe-5% Nb-5% Ta alloy 85
The relationship between the heating temperature after rolling at%, the recrystallization texture, and various properties is shown.
Although the 12} <111> component decreases and {110} <112> + {311} <112> develops to improve wear resistance and increase the effective magnetic permeability, particularly at 900 ° C or higher. Fig. 4 shows alloy number 64 (80.3
% Ni-Fe-2% Nb-2% Ta-3% Ge alloy), alloy number 52 (7
9.5% Ni-Fe-5% Nb-3% Ta-2% Mo alloy), alloy number 21 (79
% Ni-Fe-5% Nb-5% Ta alloy) and the effective permeability and cooling rate when these are further reheated. It can be seen that there is an optimum cooling rate, optimum reheating temperature and reheating time corresponding to the composition of the alloy.

第5図は79%Ni-Fe-5%Nb-5%Ta合金にCr,Mo,Ge,Auある
いはCoを添加した場合の磁気ヘッドの摩耗量及び実効透
磁率の特性図で、Cr,Mo,Ge,AuあるいはCoを添加する
と、何れも実効透磁率は高くなり、摩耗量は減少する
が、Cr,Mo、GeあるいはAuの7%以上では飽和磁束密度が
4000G以下となり好ましくない。またCo10%以上では残
留磁気が大きくなり、帯磁ノイズが増大するので、好ま
しくない。
Fig. 5 is a characteristic diagram of the wear amount and effective permeability of the magnetic head when Cr, Mo, Ge, Au or Co is added to 79% Ni-Fe-5% Nb-5% Ta alloy. , Ge, Au or Co is added, the effective magnetic permeability is increased and the wear amount is reduced, but the saturation magnetic flux density is 7% or more of Cr, Mo, Ge or Au.
It is less than 4000G, which is not preferable. On the other hand, if the Co content is 10% or more, the remanence becomes large, and magnetic noise increases, which is not preferable.

第6図は同じく79%Ni-Fe-5%Nb-5%Ta合金にV,W,Cuあ
るいはMnを添加した場合の磁気ヘッドの摩耗量及び実効
透磁率の特性図で、V,W,Cu,TaあるいはMnを添加する
と、何れも実効透磁率は高くなり、摩耗量は減少する
が、Vを10%以上、Wを15%以上、Cu,TaあるいはMnを2
5%以上添加すると飽和磁束密度が4000G以下となり好ま
しくない。
Fig. 6 is a characteristic diagram of the wear amount and effective permeability of the magnetic head when V, W, Cu or Mn was added to 79% Ni-Fe-5% Nb-5% Ta alloy. When Cu, Ta or Mn is added, the effective magnetic permeability increases and the wear amount decreases, but V is 10% or more, W is 15% or more, and Cu, Ta or Mn is 2% or more.
If 5% or more is added, the saturation magnetic flux density becomes 4000 G or less, which is not preferable.

第7図は同じく79%Ni-Fe-5%Nb-5%Ta合金にAl,Si,Tl,
Zr,Hf,Sn,Sb,Ga,InあるいはTlを添加した場合の特性図
で、Al,Si,Ti,Zr,Hf,Sn,Sb,Ga,InあるいはTlを添加する
と、何れも実効透磁率は高くなり、摩耗量は減少する
が、Si,Ti,Zr,Hf,Ga,InあるいはT15%以上では飽和磁束
密度は4000G以下となり、Al,SnあるいはSbが5%以上で
は鍛造加工が困難となり好ましくない。
Fig. 7 also shows 79% Ni-Fe-5% Nb-5% Ta alloy with Al, Si, Tl,
Zr, Hf, Sn, Sb, Ga, In or Tl is a characteristic diagram, and when Al, Si, Ti, Zr, Hf, Sn, Sb, Ga, In or Tl is added, the effective permeability is Becomes higher and the wear amount decreases, but when Si, Ti, Zr, Hf, Ga, In or T15% or more, the saturation magnetic flux density becomes 4000G or less, and when Al, Sn or Sb is 5% or more, forging becomes difficult. Not preferable.

第8図は同じく79%Ni-Fe-5%Nb-5%Ta合金にZn,Cd,La,
Pt,Be,Ag,Sr,BaあるいはBを添加した場合の特性図で、
Zn,Cd,La,Pt,Be,Agt,Sr,BaあるいはBを添加すると、何
れも実効透磁率は高くなり、摩耗量は減少するが、Zn,C
d,La,Ptを5%以上、Be,Sr,Baを3%以上添加すると飽
和磁束密度が4000G以下となり、Agを3%以上あるいは
Bを1%以上添加すると鍛造加工が困難となり好ましく
ない。
Fig. 8 shows the same 79% Ni-Fe-5% Nb-5% Ta alloy with Zn, Cd, La,
Characteristic diagram when Pt, Be, Ag, Sr, Ba or B is added,
When Zn, Cd, La, Pt, Be, Agt, Sr, Ba or B is added, the effective magnetic permeability increases and the wear amount decreases, but Zn, C
If d, La, Pt is added by 5% or more and Be, Sr, Ba is added by 3% or more, the saturation magnetic flux density becomes 4000 G or less, and if Ag is added by 3% or more or B is added by 1% or more, forging is difficult, which is not preferable.

本発明において、冷間加工は{110}<112>+{112}<111>の
冷間加工集合組織を形成し、これを基として{110}<112>
+{311}<112>の再結晶集合組織を発達させるために必要
で、第1図および第2図に見られるようにNbおよびTaの
合計0.5%以上において、特に加工率50%以上の冷間加
工を施した場合に{110}<112>+{311}<112>の再結晶集合
組織の発達が顕著で、耐摩耗性は著るしく向上し、その
実効透磁率も高い。また上記の冷間加工に次いで行われ
る加熱は、組織の均一化、加工歪の除去とともに、{11
0}<112>+{311}<112>の再結晶集合組織を発達させ、高い
実効透磁率とすぐれた耐摩耗性を得るために必要である
が、第3図に見られるように特に900℃以上の加熱によ
って実効透磁率および耐摩耗性は顕著に向上する。
In the present invention, cold working forms a cold worked texture of {110} <112> + {112} <111>, and based on this, {110} <112>
It is necessary to develop the recrystallized texture of + {311} <112>, and as shown in Figs. 1 and 2, when the total of Nb and Ta is 0.5% or more, especially when the working rate is 50% or more. When subjected to hot working, the recrystallization texture of {110} <112> + {311} <112> is remarkably developed, wear resistance is markedly improved, and its effective magnetic permeability is also high. In addition, the heating that is performed after the cold working described above is performed along with the homogenization of the structure and the removal of the working strain.
It is necessary to develop the recrystallized texture of 0} <112> + {311} <112>, and to obtain high effective permeability and excellent wear resistance, but as shown in FIG. Heating above ℃ significantly improves the effective permeability and wear resistance.

尚、上記の冷間加工と、次いで行われる900℃以上融点
以下の加熱を繰り返し行うことは、 {110}<112>+{311}<112>の再結晶集合組織の集積度を高
め、耐摩耗性を向上させるために有効である。この場合
は最終冷間加工の加工率が50%以下でも{110}<112>+{31
1}<112>再結晶集合組織が得られるが、本発明の技術的
思想に包含されるものである。したがって、本発明の冷
間加工率は、全製造工程における冷間加工を総計した加
工率を意味し、最終冷間加工率のみを意味するものでは
ない。
It should be noted that repeating the above cold working and the subsequent heating at 900 ° C. or higher and the melting point or lower enhances the degree of integration of the recrystallization texture of {110} <112> + {311} <112>, and It is effective for improving wear resistance. In this case, even if the final cold working rate is 50% or less, {110} <112> + {31
1} <112> A recrystallization texture is obtained, which is included in the technical idea of the present invention. Therefore, the cold working rate of the present invention means a working rate obtained by summing up the cold working in all manufacturing steps, and does not mean only the final cold working rate.

上記の900℃以上融点以下の温度から規則−不規則格子
変態点(約600℃)以上の温度までの冷却は、急冷して
も徐冷しても得られる磁性には大した変りはないが、第
4図に見られるようにこの変態点以下の冷却速度は磁性
に大きな影響を及ぼす。すなわちこの変態点以下の温度
より100℃/秒〜1℃/時の組成に対応した適当な速度
で常温迄冷却することにより、他の規則度が適度に調整
され、すぐれた磁性が得られる。そして上記の冷却速度
の内100℃/秒に近い速度で急冷すると、規則度が小さ
くなり、これ以上速く冷却すると規則化が進まず、規則
度はさらに小さくなり磁性は劣化する。しかし、その規
則度の小さい合金をその変態点以下の200〜600℃に組成
に対応して、1分間以上100時間以下再加熱し冷却する
と、規則化が進んで適度な規則度となり磁性は向上す
る。他方、上記の変態点以上の温度から、例えば1℃/
時以下の速度で徐冷すると、規則化は進みすぎ、磁性は
低下する。
Cooling from the temperature above 900 ° C. and below the melting point to the temperature above the ordered-irregular lattice transformation point (about 600 ° C.) does not change much in the magnetic properties obtained by rapid cooling or slow cooling. As shown in FIG. 4, the cooling rate below this transformation point has a great influence on magnetism. That is, by cooling from the temperature below this transformation point to room temperature at an appropriate rate corresponding to the composition of 100 ° C./sec to 1 ° C./hour, other degree of order is appropriately adjusted and excellent magnetism is obtained. Then, if the material is rapidly cooled at a rate close to 100 ° C./second among the above cooling rates, the order becomes small, and if it is cooled faster than this, ordering does not proceed and the order becomes smaller and magnetism deteriorates. However, if the alloy with a low degree of order is reheated to 200 to 600 ° C below the transformation point for 1 minute or more and 100 hours or less according to the composition, the ordering proceeds to an appropriate degree of order and the magnetism improves. To do. On the other hand, from the temperature above the transformation point, for example, 1 ° C /
If it is slowly cooled at a rate of less than an hour, ordering will proceed too much and magnetism will decrease.

尚、上記の熱処理を水素が存在する雰囲気中で施すこと
は、実効透磁率を高めるのに特に効果があるので好まし
い。
Incidentally, it is preferable to perform the above heat treatment in an atmosphere in which hydrogen is present, because it is particularly effective in increasing the effective magnetic permeability.

(実施例) 次に本発明を実施例につき説明する。(Example) Next, this invention is demonstrated about an Example.

実施例1 合金番号21(組成Ni=79%,Nb=5%,Ta=5%,Fe=
残部)の合金の製造 原料として99.8%純度の電解ニッケル、99.9%純度の電
解鉄、99.8%純度のニオブおよびタンタルを用いた。試
料を造るには、原料を全重量800gでアルミナ坩堝に入
れ、真空中で高周波誘導電気炉によって溶かした後、よ
く撹拌して均質な溶融合金とした。次にこれを直径25m
m、高さ170mmの孔をもつ鋳型に注入し、得られた鋳塊を
約1100℃で鍛造して厚さ7mmの板とした。さらに1000℃
を超え1200℃以下の温度で適当な厚さまで熱間圧延し、
ついで常温で種々な加工率で冷間圧延を施して0.1mmの
薄板とし、それから外径45mm、内径33mmの環状板を打ち
抜いた。
Example 1 Alloy No. 21 (Composition Ni = 79%, Nb = 5%, Ta = 5%, Fe =
(Remainder) Manufacturing of alloys As raw materials, 99.8% pure electrolytic nickel, 99.9% pure electrolytic iron, 99.8% pure niobium and tantalum were used. To prepare a sample, the raw material was put into an alumina crucible in a total weight of 800 g, melted in a high-frequency induction electric furnace in a vacuum, and well stirred to obtain a homogeneous molten alloy. Then this is 25m in diameter
It was poured into a mold having a hole of m and 170 mm in height, and the obtained ingot was forged at about 1100 ° C. to obtain a plate having a thickness of 7 mm. 1000 ° C
Hot rolling to a suitable thickness at a temperature of over 1,200 ° C,
Then, at room temperature, cold rolling was performed at various processing rates to form a 0.1 mm thin plate, and then an annular plate having an outer diameter of 45 mm and an inner diameter of 33 mm was punched out.

つぎにこれに種々な熱処理を施して、磁気特性ならびに
磁気ヘッドのコアとして使用した場合湿度80%、40℃に
おいてCrO2磁気テープによる200時間走行後の摩耗量を
タリサーフ表面粗さ計で測定を行い、第1表のような特
性を得た。
Next, various heat treatments were applied to this, and when used as the core of the magnetic head, the amount of wear after running for 200 hours with a CrO 2 magnetic tape at a humidity of 80% and 40 ° C was measured with a Talysurf surface roughness meter. Then, the characteristics shown in Table 1 were obtained.

実施例2 合金番号52(組成Ni=79.5%,Nb=5%,Ta=3%,M
o=2%,Fe=残部)の合金の製造 原料は実施例1と同じ純度でニッケル,鉄,ニオブ、タ
ンタル99.8%純度のモリブデンおよびニオブ65%,タン
タル5%を含むフエロニオブ合金を用いた。試料の製造
法は実施例1と同じである。試料に種々の熱処理を施し
て磁気特性および磁気ヘツドのコアとして使用した場合
湿度80%、温度40℃においてCrO2磁気テープによる200
時間走行後の摩耗量の測定を行い、第2表に示すような
特性が得られた。
Example 2 Alloy No. 52 (composition Ni = 79.5%, Nb = 5%, Ta = 3%, M
Manufacture of alloy of o = 2%, Fe = balance) As a raw material, nickel, iron, niobium, molybdenum having a purity of 99.8% of tantalum and molybdenum of 65% niobium and 5% of tantalum having the same purity as in Example 1 were used. The manufacturing method of the sample is the same as that of the first embodiment. When used as a core of the magnetic characteristics and the magnetic head is subjected to various heat treatments on the sample humidity of 80% by CrO 2 magnetic tape at a temperature 40 ° C. 200
The amount of wear after running over time was measured and the characteristics shown in Table 2 were obtained.

なお代表的な合金の特性は第3表に示すとおりである。The properties of typical alloys are shown in Table 3.

本発明において、50%以上の冷間加工の処理前に、1000
℃を超え1200℃以下の温度で熱間圧延すると、次いで施
される加工率50%以上の冷間加工ならびに900℃以上の
温度における熱処理によりもたらされる{110}<112>+{31
1}<112>の再結晶集合組織の生成および耐摩耗性に強く
影響する。
In the present invention, before the cold working treatment of 50% or more, 1000
Hot-rolling at a temperature above ℃ and below 1200 ℃ is brought by cold working with a working rate of 50% or more and heat treatment at a temperature above 900 ℃ {110} <112> + {31
It strongly influences the formation of 1} <112> recrystallized texture and wear resistance.

実施例3 79%Ni-Fe-5%Nb-5%Ta合金を本願実施例1に準じて製
造し、約1000℃で鍛造して厚さ7mmの板とした。さらに
種々な加熱温度で厚さ1.0mmまで熱間圧延加工し、次い
で常温で冷間圧延加工を施して0.1mmの薄板(冷間加工
率90%)とした。この薄板を1100℃の水素中で2時間加
熱後800℃/hrの速度で常温まで冷却した場合の熱間圧
延加工の温度と再結晶集合組織および摩耗量との関係を
第9図に示した。熱間圧延加工の温度が1000℃以下では
{112}<111>が残留し摩耗量が大きいが、1000℃を超え12
00℃以下の温度では{110}<112>+{311}<112>が発達し摩
耗量が特に小さくなる。すなわち、本発明では熱間圧延
加工の温度によって、最終的に得られる合金の耐摩耗性
が大きく影響されるのである。
Example 3 A 79% Ni-Fe-5% Nb-5% Ta alloy was manufactured according to Example 1 of the present application, and forged at about 1000 ° C to obtain a plate having a thickness of 7 mm. Further, hot rolling was performed at various heating temperatures to a thickness of 1.0 mm, and then cold rolling was performed at room temperature to obtain a 0.1 mm thin plate (cold working rate 90%). Fig. 9 shows the relationship between the temperature of hot rolling, the recrystallization texture and the amount of wear when this thin plate was heated in hydrogen at 1100 ° C for 2 hours and then cooled to room temperature at a rate of 800 ° C / hr. . When the temperature of hot rolling is 1000 ℃ or less
{112} <111> remains and wear is large, but exceeds 1000 ° C 12
At temperatures below 00 ° C, {110} <112> + {311} <112> develops and the amount of wear becomes particularly small. That is, in the present invention, the wear resistance of the finally obtained alloy is greatly influenced by the temperature of hot rolling.

上記のように本発明合金は加工が容易で、耐摩耗性にす
ぐれ、4000G以上の飽和磁束密度、3000以上の高い実効
透磁率、低保磁力を有しているので、磁気記録再生ヘッ
ドのコアおよびケース用磁性合金として好適であるばか
りでなく、耐摩耗性および高透磁率を必要とする一般の
電磁器機の磁性材料としても好適である。
As described above, the alloy of the present invention is easy to process, has excellent wear resistance, has a saturation magnetic flux density of 4000 G or more, a high effective magnetic permeability of 3000 or more, and a low coercive force. It is suitable not only as a magnetic alloy for a case but also as a magnetic material for a general electromagnetic machine that requires wear resistance and high magnetic permeability.

次に本発明において合金の組成をNi60〜90%、Nbおよび
Taの合計0.5〜20%(但し、Nb14%以下、Nbおよび
Taは0%を含まず)および残部Feと限定し、これに副
成分として添加する元素をCr,Mo,Ge,Auを7%以下、Co,
Vを10%以下、Wを15%以下、Cu,Mnを25%以下、Al,Si,
Ti,Zr,Hf,Sn,Sb,Ga,In,Tl,Zn,Cd,希土類元素、白金族
元素を5%以下、Be,Ag,Sr,Baを3%以下、Bを1%以
下の1種または2種以上の合計で0.01〜30%と限定した
理由は各実施例、第3表および図面中第5図ないし第8
図で明らかなように、この組成範囲の実効透磁率は3000
以上、飽和磁束密度4000G以上で、且つ{110}<112>+{31
1}<112>の再結晶集合組織を有し、耐摩耗性がすぐれて
いるが、この組成範囲をはずれると磁気特性あるいは耐
摩耗性が劣化するからである。
Next, in the present invention, the composition of the alloy is changed to Ni60-90%, Nb and
The total amount of Ta is limited to 0.5 to 20% (however, Nb is 14% or less, Nb and Ta do not include 0%) and the balance is Fe, and Cr, Mo, Ge and Au are added to these elements as auxiliary components to 7%. Below, Co,
V less than 10%, W less than 15%, Cu, Mn less than 25%, Al, Si,
Ti, Zr, Hf, Sn, Sb, Ga, In, Tl, Zn, Cd, rare earth element, platinum group element 5% or less, Be, Ag, Sr, Ba 3% or less, B 1% or less 1 The reason for limiting 0.01 to 30% in total of one kind or two or more kinds is each Example, Table 3 and FIGS. 5 to 8 in the drawings.
As is clear from the figure, the effective permeability in this composition range is 3000
Above, saturation magnetic flux density of 4000G or more, and {110} <112> + {31
This is because it has a recrystallization texture of 1} <112> and has excellent wear resistance, but if it deviates from this composition range, the magnetic properties or wear resistance deteriorates.

すなわち、NbおよびTaの合計0.5%以下では{110}<112>+
{311}<112>の再結晶集合組織が充分発達しないので耐摩
耗性が悪く、NbおよびTaの合計20%以上およびNb14%で
は鍛造加工が困難となり、また、飽和磁束密度4000G以
下になるからである。
That is, when the total amount of Nb and Ta is 0.5% or less, {110} <112> +
The abrasion resistance is poor because the recrystallized texture of {311} <112> does not develop sufficiently, and it is difficult to forge with a total of 20% or more of Nb and Ta and 14% of Nb, and the saturation magnetic flux density is 4000 G or less. Is.

そしてNi60〜90%、NbおよびTaの合計0.5〜20%(但
し、Nb14%以下、NbおよびTaは0%を含まず)お
よび残部Feの組成範囲の合金は、実効透磁率3000以上、
飽和磁束密度4000G以上で、耐摩耗性がすぐれ、且つ加
工性が良好であるが、一般にこれにさらにCr,Mo,Ge,Au,
W,V,Cu,Mn,Al,Zr,Si,Ti,Hf,Ga,In,Tl,Zn,Cd,希土類元
素、白金族元素,Be,Ag,Sr,Ba,B等を添加すると共に特
に実効透磁率を高める効果があり、Coを添加すると特に
飽和磁束密度を高める効果があり、Au,Mn,Ti,
Co,希土類元素,白金族元素,Be,Sr,Ba,Bを添加する
と鍛造、加工を良好にする効果があり、Al,Sn,Sb,Au,A
g,Ti,Zn,Cd,BeおよびVの添加は{110}<112>+{311}<112>
の再結晶集合組織を発達させ、耐摩耗性を向上する効果
がある。
Then, the alloy having a composition range of Ni60 to 90%, a total of Nb and Ta of 0.5 to 20% (however, Nb is 14% or less, Nb and Ta do not include 0%) and the balance of Fe is 3000 or more in effective permeability,
With a saturation magnetic flux density of 4000 G or more, it has excellent wear resistance and good workability, but in addition to this, generally Cr, Mo, Ge, Au,
W, V, Cu, Mn, Al, Zr, Si, Ti, Hf, Ga, In, Tl, Zn, Cd, rare earth element, platinum group element, Be, Ag, Sr, Ba, B etc. It has the effect of increasing the effective magnetic permeability, and the addition of Co has the effect of particularly increasing the saturation magnetic flux density.
Addition of Co, rare earth element, platinum group element, Be, Sr, Ba, B has the effect of improving forging and processing, and Al, Sn, Sb, Au, A
Addition of g, Ti, Zn, Cd, Be and V is {110} <112> + {311} <112>
Has the effect of developing a recrystallized texture of and improving wear resistance.

(発明の効果) 要するに本発明の合金は鍛造加工が容易で {110}<112>+{311}<112>の再結晶集合組織を形成させる
ことによって耐摩耗性がすぐれ、飽和磁束密度が4000G
以上で、実効透磁率が高いので、磁気記録再生ヘッド用
磁性合金として好適であるばかりでなく、耐摩耗性およ
び高透磁率を必要とする一般の電磁器機の磁性材料とし
ても好適である。
(Effects of the Invention) In short, the alloy of the present invention is easy to forge, has excellent wear resistance by forming a recrystallized texture of {110} <112> + {311} <112>, and has a saturation magnetic flux density of 4000 G.
As described above, since it has a high effective magnetic permeability, it is suitable not only as a magnetic alloy for a magnetic recording / reproducing head, but also as a magnetic material for a general electromagnetic machine that requires wear resistance and high magnetic permeability.

【図面の簡単な説明】[Brief description of drawings]

第1図は79%Ni-Fe-Nb-Ta系合金の諸特性とNbおよびTa
量(但し、Nb:Ta=1:1)との関係を示す特性図、 第2図は79%Ni-Fe-5%Nb−5%Ta合金の再結晶集合組
織および諸特性と冷間加工率との関係を示す特性図、 第3図は79%Ni-Fe-5%Nb−5%Ta合金の再結晶集合組
織および諸特性と加熱温度との関係を示す特性図、 第4図は80.3%Ni-Fe-2%Nb−2%Ta-3%Ge合金(合金
番号64)、79.5%Ni-Fe-5%Nb-3%Ta-2%Mo合金(52)、
および79%Ni-Fe-5%Nb-5%Ta合金(21)の実効透磁率と
冷却速度、再加熱温度および再加熱時間との関係を示す
特性図、 第5図は79%Ni-Fe-5%Nb-5%Ta合金にCr,Mo,Ge,Auある
いはCoを添加した場合の諸特性と各元素の添加量との関
係を示す特性図、 第6図は79%Ni-Fe-5%Nb-5%Ta合金にV,W,CuあるいはM
nを添加した場合の諸特性と各元素の添加量との関係を
示す特性図、 第7図は79%Ni-Fe-5%Nb-5%Ta合金はAl,Si,Ti,Zr,Hf,
Sn,Sb,Ga,InあるいはTlを添加した場合の諸特性と各元
素の添加量との関係を示す特性図、 第8図は79%Ni-Fe-5%Nb-5%Ta合金にZn,Cd,La,Pt,Be,
Ag,Sr,BaあるいはBを添加した場合の諸特性と各元素の
添加量との関係を示す特性図、 第9図は79%Ni-Fe-5%Nb-5%Ta合金を実施例3により
製造した時の熱間圧延加工温度と再結晶集合組織の集積
度および摩耗量との関係を示す特性図である。
Figure 1 shows various characteristics of 79% Ni-Fe-Nb-Ta alloy and Nb and Ta.
Fig. 2 is a characteristic diagram showing the relationship with the amount (however, Nb: Ta = 1: 1). Fig. 2 shows the recrystallization texture and various characteristics of 79% Ni-Fe-5% Nb-5% Ta alloy and cold working. Fig. 3 is a characteristic diagram showing the relationship between the heating temperature and the recrystallization texture of 79% Ni-Fe-5% Nb-5% Ta alloy and Fig. 4 is a characteristic diagram showing the relationship with the heating temperature. 80.3% Ni-Fe-2% Nb-2% Ta-3% Ge alloy (alloy number 64), 79.5% Ni-Fe-5% Nb-3% Ta-2% Mo alloy (52),
And 79% Ni-Fe-5% Nb-5% Ta alloy (21) is a characteristic diagram showing the relationship between effective permeability and cooling rate, reheating temperature and reheating time. Fig. 5 shows 79% Ni-Fe -5% Nb-5% Ta alloy with Cr, Mo, Ge, Au or Co added to each characteristic and the characteristic diagram showing the relationship between the added amount of each element, Fig.6 is 79% Ni-Fe- 5% Nb-5% Ta alloy with V, W, Cu or M
Fig. 7 is a characteristic diagram showing the relationship between various characteristics when n is added and the amount of each element added. Fig. 7 shows Al, Si, Ti, Zr, Hf for 79% Ni-Fe-5% Nb-5% Ta alloy. ,
Fig. 8 is a characteristic diagram showing the relationship between various properties when Sn, Sb, Ga, In or Tl is added and the amount of each element added. Fig. 8 shows 79% Ni-Fe-5% Nb-5% Ta alloy with Zn. , Cd, La, Pt, Be,
FIG. 9 is a characteristic diagram showing the relationship between various characteristics when Ag, Sr, Ba or B is added and the addition amount of each element. FIG. 9 shows a 79% Ni-Fe-5% Nb-5% Ta alloy in Example 3 FIG. 6 is a characteristic diagram showing the relationship between the hot rolling processing temperature and the degree of accumulation of the recrystallization texture and the amount of wear when manufactured by.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/147 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01F 1/147

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量比にてNi60〜90%、NbおよびTaの合計
0.5〜20%(但し、Nb14%以下、NbおよびTaは0%を含
まず)および残部Feと少量の不純物とからなり、1KHz
における実効透磁率3000以上、飽和磁束密度4000G以上
で、且つ{110}<112>+{311}<112>の再結晶集合組織を有
する耐摩耗性高透磁率合金よりなる磁気記録再生ヘッ
ド。
1. A total of 60 to 90% by weight of Ni, Nb and Ta.
0.5 to 20% (however, Nb 14% or less, Nb and Ta do not include 0%) and the balance Fe and a small amount of impurities, 1 KHz
A magnetic recording / reproducing head made of a wear-resistant high-permeability alloy having an effective magnetic permeability of 3000 or more, a saturation magnetic flux density of 4000 G or more, and a recrystallization texture of {110} <112> + {311} <112>.
【請求項2】重量比にてNi60〜90%、NbおよびTaの合計
0.5〜20%(但し、Nb14%以下、NbおよびTaは0%を含
まず)および残部Feを主成分とし、副成分としてCr,Mo,
Ge,Auをそれぞれ7%以下、Co,Vをそれぞれ10%以下、
Wを15%以下、Cu,Mnをそれぞれ25%以下、A,Si,Ti,Z
r,Hf,Sn,Sb,Ga,In,T,Zn,Cd,希土類元素,白金族元素
をそれぞれ5%以下、Be,Ag,Sr,Baをそれぞれ3%以
下、Bを1%以下の1種または2種以上の合計0.01〜30
%、少量の不純物とからなり1KHzにおける実効透磁率3
000以上、飽和磁束密度4000G以上で、且つ{110}<112>+
{311}<112>の再結晶集合組織を有する耐摩耗性高透磁率
合金よりなる磁気記録再生ヘッド。
2. A total of 60 to 90% by weight of Ni, Nb and Ta.
0.5 to 20% (however, Nb 14% or less, Nb and Ta do not include 0%) and the balance Fe as main components, and Cr, Mo, and
Ge and Au are each 7% or less, Co and V are 10% or less,
W: 15% or less, Cu, Mn: 25% or less, A, Si, Ti, Z
r, Hf, Sn, Sb, Ga, In, T, Zn, Cd, rare earth element, platinum group element each 5% or less, Be, Ag, Sr, Ba each 3% or less, B 1% or less 1 0.01-30 total of two or more species
%, Consisting of a small amount of impurities and effective permeability at 1 KHz 3
000 or more, saturation magnetic flux density 4000G or more, and {110} <112> +
A magnetic recording / reproducing head made of a wear-resistant high-permeability alloy having a {311} <112> recrystallization texture.
JP1262695A 1985-01-30 1989-10-07 Abrasion resistance high magnetic permeability magnetic recording / reproducing head Expired - Lifetime JPH0645839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1262695A JPH0645839B2 (en) 1985-01-30 1989-10-07 Abrasion resistance high magnetic permeability magnetic recording / reproducing head

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60014556A JPS61174349A (en) 1985-01-30 1985-01-30 Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/playback head
JP1262695A JPH0645839B2 (en) 1985-01-30 1989-10-07 Abrasion resistance high magnetic permeability magnetic recording / reproducing head

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60014556A Division JPS61174349A (en) 1985-01-30 1985-01-30 Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/playback head

Publications (2)

Publication Number Publication Date
JPH02146704A JPH02146704A (en) 1990-06-05
JPH0645839B2 true JPH0645839B2 (en) 1994-06-15

Family

ID=26350507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262695A Expired - Lifetime JPH0645839B2 (en) 1985-01-30 1989-10-07 Abrasion resistance high magnetic permeability magnetic recording / reproducing head

Country Status (1)

Country Link
JP (1) JPH0645839B2 (en)

Also Published As

Publication number Publication date
JPH02146704A (en) 1990-06-05

Similar Documents

Publication Publication Date Title
US4830685A (en) Wear-resistant alloy of high permeability and method of producing the same
JP2777319B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JPS625972B2 (en)
JP3294029B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JPS6212296B2 (en)
JP3251899B2 (en) Wear-resistant high permeability alloy and magnetic recording / reproducing head
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0645839B2 (en) Abrasion resistance high magnetic permeability magnetic recording / reproducing head
JPH0310700B2 (en)
JPH0645846B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0310699B2 (en)
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPH0645848B2 (en) Manufacturing method of wear resistant high permeability alloy for magnetic recording / reproducing head and magnetic recording / reproducing head
JPH0368107B2 (en)
JPH0377644B2 (en)
JPS6218619B2 (en)
JPH07166281A (en) Wear resistant magnetic alloy
JPH032216B2 (en)
JPH0377645B2 (en)
JPS6130405B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term