JPH0368107B2 - - Google Patents

Info

Publication number
JPH0368107B2
JPH0368107B2 JP15278384A JP15278384A JPH0368107B2 JP H0368107 B2 JPH0368107 B2 JP H0368107B2 JP 15278384 A JP15278384 A JP 15278384A JP 15278384 A JP15278384 A JP 15278384A JP H0368107 B2 JPH0368107 B2 JP H0368107B2
Authority
JP
Japan
Prior art keywords
less
alloy
wear
temperature
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15278384A
Other languages
Japanese (ja)
Other versions
JPS6134160A (en
Inventor
Ryo Masumoto
Juetsu Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI JIKI ZAIRYO KENKYUSHO
Original Assignee
DENKI JIKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI JIKI ZAIRYO KENKYUSHO filed Critical DENKI JIKI ZAIRYO KENKYUSHO
Priority to JP15278384A priority Critical patent/JPS6134160A/en
Publication of JPS6134160A publication Critical patent/JPS6134160A/en
Publication of JPH0368107B2 publication Critical patent/JPH0368107B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は亀流磁界における磁気特性および耐摩
耗性がすぐれ、鍛造加工が容易で磁気蚘録再性ヘ
ツドに奜適な高透磁率合金およびその補造法に関
するものである。 埓来の技術 テヌプレコヌダヌなどの磁気蚘録再生ヘツドは
亀流磁界においお䜜動するものであるから、これ
に甚いられる磁性合金は高呚波磁界における実効
透磁率が高いこずが必芁ずされ、たた磁気テヌプ
が接觊しお摺動するため耐摩耗性が良奜であるこ
ずが望たれおいる。珟圚、耐摩耗性にすぐれた磁
気ヘツド甚磁性合金ずしおはセンダストFe−
Si−Al系合金およびプラむトMnO−ZnO
−Fe2O3がある。 発明が解決しようずする問題点 しかしながら、これらの合金は非垞に硬く脆い
ため、鍛造、圧延加工が䞍可胜で、ヘツドコアの
補造には研削、研磚の方法が甚いられおおり、埓
぀おその成品は高䟡である。たたセンダストは飜
和磁束密床は倧きいが薄板にできないので高呚波
磁界における実効透磁率が比范的小さい。たたフ
゚ラむトは実効透磁率は倧きいが、飜和磁束密床
が5000G以䞋で小さいのが欠点である。他方パヌ
マロむNi−Fe系合金は鍛造、圧延加工およ
び打抜きは容易で量産性にすぐれおいるが、軟く
摩耗しやすいのが倧きな欠点である。 本発明者らはNi−Fe系合金の磁気特性および
耐摩耗性の改善に぀いお幟倚研究を行぀た結果、
Ni−Fe系合金の族元玠の亜鉛およびカドミ
りムの皮および皮の合蚈0.001〜を添加
するこずにより目的を達成したのである。 問題点を解決するための手段 本発明の特城ずする所は䞋蚘の点にある。 第発明 重量比におニツケル30〜90、亜鉛およびカド
ミりムの皮たたは皮の合蚈0.001〜、少
量の䞍玔物ず残郚鉄からなり、飜和磁束密床
5000G以䞊を有するこずを特城ずする磁気蚘録再
生ヘツド甚耐摩耗性高透磁率合金。 第発明 重量比におニツケル30〜90、亜鉛およびカド
ミりムの皮たたは皮の合蚈0.001〜、少
量の䞍玔物ず残郚鉄からなる合金を䞻成分ずし
お、副成分ずしお銅30以䞋、タングステン、タ
ンタルのそれぞれ20以䞋、ニオブ、マンガン、
クロムのそれぞれ15以䞋、モリブデン、バナゞ
りム、金、コバルトのそれぞれ10以䞋、チタ
ン、ケむ玠、ゲルマニりム、ガリりム、むンゞり
ム、タリりム、ストロンチりム、バリりム、癜金
族元玠のそれぞれ以䞋、アルミニりム、ゞル
コニりム、ハフニりム、銀、垌土類元玠、ベリリ
りム、錫、アンチモンのそれぞれ以䞋、ホり
玠、リンのそれぞれ以䞋の皮たたは皮以
䞊の合蚈0.01〜30を含有しおなり、飜和磁束密
床5000G以䞊を有するこずを特城ずする磁気蚘録
再生ヘツド甚耐摩耗性高透磁率合金。 第発明 重量比におニツケル30〜90、亜鉛およびカド
ミりムの皮たたは皮の合蚈0.001〜、少
量の䞍玔物ず残郚鉄からなる合金を、600℃以䞊
融点以䞋の枩床で非酞化性雰囲気あるいは真空䞭
においお、少くずも分間以䞊100時間以䞋の組
成に察応した適圓時間加熱した埌、600℃以䞊の
枩床から100℃秒〜℃時の組成に察応した
適圓な速床で垞枩たで冷华するこずを特城ずする
磁気蚘録再生ヘツド甚耐摩耗性高透磁率合金の補
造法。 第発明 重量比におニツケル30〜90、亜鉛およびカド
ミりムの皮たたは皮の合蚈0.001〜、少
量の䞍玔物ず残郚鉄からなる合金を、600℃以䞊
融点以䞋の枩床で非酞化性雰囲気あるいは真空䞭
においお、少くずも分間以䞊100時間以䞋の組
成に察応した適圓時間加熱した埌、600℃以䞊の
枩床から100℃秒〜℃時の組成に察応した
適圓な速床で垞枩たで冷华し、これをさらに600
℃以䞋の枩床で非酞化性雰囲気䞭あるいは真空䞭
においお分間以䞊、組成に察応した適圓時間加
熱し、冷华するこずを特城ずする磁気蚘録再生ヘ
ツド甚耐摩耗性高透磁率合金の補造法。 䜜甚 本発明の合金を造るには、たず䞻成分のニツケ
ル30〜90、亜鉛およびカドミりムの皮たたは
皮の合蚈0.001〜および残郚鉄の適圓量を
非酞化性雰囲気䞭あるいは真空䞭においお適圓な
溶解炉を甚いお溶解した埌、適圓な脱酞剀、脱硫
剀を少量添加しおできるだけ䞍玔物を取り陀き、
そのたたか、曎にこれに銅30以䞋、タングステ
ン、タンタルのそれぞれ20以䞋、ニオブ、マン
ガン、クロムのそれぞれ15以䞋、モリブデン、
バナゞりム、金、コバルトのそれぞれ10以䞋、
チタン、ケむ玠、ゲルマニりム、ガリりム、むン
ゞりム、タリりム、ストロンチりム、バリりム、
癜金族元玠のそれぞれ以䞋、アルミニりム、
ゞルコニりム、ハフニりム、銀、垌土類元玠、ベ
リリりム、錫、アンチモンのそれぞれ以䞋、
ホり玠、リンのそれぞれ以䞋の皮たたは
皮以䞊の合蚈0.01〜30の定量を添加しお充分に
撹拌し、組成的に均䞀な溶融合金を造る。次にこ
れを適圓な圢および倧きさの鋳型に泚入しお健党
な鋳塊を埗、さらにこれを高枩においお鍛造熱間
圧延および冷間圧延などの成圢加工を斜しお目的
の圢状のもの、䟋えば厚さ0.1mmの薄板を造る。 次にその薄板から目的の圢状、寞法のものを打
抜き、これを適圓な非酞化性雰囲気氎玠、アル
ゎン、窒玠など䞭あるいは真空䞭で再結晶枩床
以䞊、すなわち玄600℃以䞊、特に800℃以䞊融点
以䞋の枩床に分間以䞊加熱し、぀いで組成に察
応した適圓な速床、䟋えば100℃秒〜℃時
で冷华する。合金の組成によ぀おはこれをさらに
箄600℃以䞋の枩床芏則栌子−䞍芏則栌子倉態
点以䞋の枩床、特に200〜600℃に分間以䞊100
時間以䞋加熱し、冷华するこずにより飜和磁束密
床5000G以䞊を有し、耐摩耗性にすぐれた高透磁
率磁性合金を埗るこずができる。 䞊蚘の溶䜓化枩床から芏則−䞍芏則栌子倉態点
玄600℃以䞊の枩床たでの冷华は、急冷しおも
埐冷しおも埗られる磁性には倧した倉りはない
が、この倉態点以䞋の冷华速床は磁性に倧きな圱
響を及がす。すなわちこの倉態点以䞊の枩床より
100℃秒〜℃時の組成に察応した適圓な速
床で垞枩迄冷华するこずにより、地の芏則床が適
床に調敎され、すぐれた磁性が埗られる。そしお
䞊蚘の冷华速床の内100℃秒に近い速床で急冷
するず、芏則床が小さくなり、これ以䞊速く冷华
するず芏則化が進たず、芏則床はさらに小さくな
り磁性は劣化する。しかしその芏則床の小さい合
金をその倉態点以䞋の200℃〜600℃に再加熱し冷
华するず、芏則化が進んで適床な芏則床ずなり磁
性は向䞊する。他方、䞊蚘の倉態点以䞊の枩床か
ら、䟋えば℃時以䞋の速床で埐冷するず、芏
則化は進みすぎ、磁性は䜎䞋する。 実斜䟋 次に本発明の実斜䟋に぀いお述べる。 実斜䟋  合金番号17組成Ni−79.0、Zn−1.0、Cd
−1.0、残郚Fe 詊料を造るには䞊蚘組成の合金材料の党重量
800をアルミナ坩堝に入れ、アルゎン䞭で高呚
波誘導炉によ぀お溶かした埌、よく撹拌しお均質
な溶融合金ずした。぀いでこれを盎埄25mm、高さ
170mmの孔をも぀鋳型に泚入し、埗られた鋳塊を
箄1100℃で鍛造しお厚さ玄mmの板ずした。さら
に玄600〜900℃の間で厚さmmたで熱間圧延し、
぀いで垞枩で冷間圧延を斜しお0.1mmの薄板ずし、
それから倖埄45mm、内埄33mmの環状板および磁気
ヘツドのコアを打ち抜いた。぀ぎにこれらに第
衚に瀺す皮々な熱凊理を斜し、環状板で磁気特性
を、たたコアを甚いお磁気ヘツドを補造し、衚面
粗さ蚈で磁気テヌプCrO2による200時間走行
埌の摩耗量を枬定しお第衚のような結果を埗
た。
(Field of Industrial Application) The present invention relates to a high magnetic permeability alloy that has excellent magnetic properties and wear resistance in an alternating magnetic field, is easy to forge, and is suitable for magnetic recording/reproducing heads, and a method for manufacturing the same. (Prior Art) Since magnetic recording/reproducing heads such as tape recorders operate in alternating magnetic fields, the magnetic alloys used therein are required to have high effective magnetic permeability in high-frequency magnetic fields, and the magnetic tape is It is desired that the wear resistance is good because it slides on the surface. Currently, Sendust (Fe-
(Si-Al alloy) and ferrite (MnO-ZnO
−Fe 2 O 3 ). (Problems to be Solved by the Invention) However, these alloys are extremely hard and brittle, making it impossible to forge or roll them. Grinding and polishing methods are used to manufacture head cores. The finished product is expensive. Sendust has a high saturation magnetic flux density, but cannot be made into a thin plate, so its effective permeability in a high-frequency magnetic field is relatively low. Furthermore, although ferrite has a high effective magnetic permeability, its drawback is that its saturation magnetic flux density is low at 5000G or less. On the other hand, permalloy (Ni-Fe alloy) is easy to forge, roll, and punch and has excellent mass productivity, but its major drawback is that it is soft and easily abraded. The present inventors conducted numerous studies on improving the magnetic properties and wear resistance of Ni-Fe alloys, and found that
This objective was achieved by adding a total of 0.001 to 5% of one or both of group B elements zinc and cadmium to the Ni-Fe alloy. (Means for Solving the Problems) The features of the present invention are as follows. First invention Consists of 30-90% nickel by weight, 0.001-5% in total of one or two of zinc and cadmium, a small amount of impurities and the balance iron, saturation magnetic flux density
A wear-resistant high permeability alloy for magnetic recording/reproducing heads characterized by having a strength of 5000G or more. 2nd invention The main component is an alloy consisting of 30 to 90% nickel by weight, a total of 0.001 to 5% of one or both of zinc and cadmium, a small amount of impurities and the balance iron, and 30% or less of copper as a subcomponent. , 20% or less of each of tungsten and tantalum, niobium, manganese,
15% or less of each of chromium, 10% or less of each of molybdenum, vanadium, gold, and cobalt, 5% or less of each of titanium, silicon, germanium, gallium, indium, thallium, strontium, barium, and platinum group elements, aluminum, zirconium, and hafnium , silver, rare earth elements, beryllium, tin, antimony, each of 3% or less, boron, phosphorous, each of 2% or less, in total of 0.01 to 30%, and has a saturation magnetic flux density of 5000G or more. A wear-resistant high permeability alloy for magnetic recording/reproducing heads, characterized by having: Third invention: An alloy consisting of 30 to 90% nickel by weight, a total of 0.001 to 5% of one or both of zinc and cadmium, a small amount of impurities, and the balance iron, is non-oxidized at a temperature of 600°C or higher and lower than the melting point. After heating for at least 1 minute to 100 hours in a neutral atmosphere or vacuum for an appropriate time corresponding to the composition, heat from a temperature of 600°C or higher at an appropriate rate of 100°C/sec to 1°C/hour depending on the composition. A method for manufacturing a wear-resistant high permeability alloy for magnetic recording/reproducing heads, which is characterized by cooling to room temperature. 4th Invention An alloy consisting of 30 to 90% nickel by weight, 0.001 to 5% in total of one or both of zinc and cadmium, a small amount of impurities, and the balance iron, is non-oxidized at a temperature of 600°C or higher and lower than the melting point. After heating for at least 1 minute to 100 hours in a neutral atmosphere or vacuum for an appropriate time corresponding to the composition, heat from a temperature of 600°C or higher at an appropriate rate of 100°C/sec to 1°C/hour depending on the composition. Cool to room temperature and heat for another 600 ml.
1. A method for producing a wear-resistant high permeability alloy for a magnetic recording/reproducing head, which comprises heating the alloy at a temperature of 0.degree. (Function) To produce the alloy of the present invention, first, 30 to 90% of nickel as the main component, a total of 0.001 to 5% of one or both of zinc and cadmium, and an appropriate amount of the balance iron in a non-oxidizing atmosphere or After melting in a vacuum using an appropriate melting furnace, add a small amount of an appropriate deoxidizing agent and desulfurizing agent to remove as much impurity as possible.
As it is, or in addition, 30% or less copper, 20% or less each of tungsten and tantalum, 15% or less each of niobium, manganese, and chromium, molybdenum,
10% or less each of vanadium, gold, and cobalt,
Titanium, silicon, germanium, gallium, indium, thallium, strontium, barium,
5% or less each of platinum group elements, aluminum,
3% or less each of zirconium, hafnium, silver, rare earth elements, beryllium, tin, and antimony,
One or two types of boron and phosphorus each with 2% or less
A total amount of 0.01 to 30% of the seeds or more is added and thoroughly stirred to create a compositionally uniform molten alloy. Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then subjected to forming processes such as forging hot rolling and cold rolling at high temperatures to obtain the desired shape, e.g. Build a thin plate with a thickness of 0.1mm. Next, punch out a piece of the desired shape and size from the thin plate, and heat it in a suitable non-oxidizing atmosphere (hydrogen, argon, nitrogen, etc.) or in vacuum at a temperature above the recrystallization temperature, that is, about 600°C or above, especially 800°C. It is heated to a temperature above the melting point or below for 1 minute or more, and then cooled at an appropriate rate depending on the composition, for example, 100° C./second to 1° C./hour. Depending on the composition of the alloy, this may be further heated to a temperature of about 600℃ or below (temperature below the ordered lattice-irregular lattice transformation point), especially 200 to 600℃ for 1 minute or more.
By heating for less than an hour and cooling, a high permeability magnetic alloy having a saturation magnetic flux density of 5000 G or more and excellent wear resistance can be obtained. Cooling from the above solution temperature to a temperature above the ordered-irregular lattice transformation point (approximately 600°C) shows that there is no significant difference in the magnetic properties obtained whether the cooling is rapid or gradual; The following cooling rates have a significant effect on magnetism. In other words, from the temperature above this transformation point
By cooling to room temperature at an appropriate rate corresponding to the composition of 100° C./sec to 1° C./hour, the regularity of the ground can be appropriately adjusted and excellent magnetism can be obtained. If the material is rapidly cooled at a rate close to 100° C./second among the above cooling rates, the degree of order decreases, and if it is cooled any faster, the degree of order does not proceed, and the degree of order decreases further, resulting in deterioration of magnetism. However, when an alloy with a low degree of order is reheated to 200 to 600 degrees Celsius, below its transformation point, and cooled, ordering progresses and the degree of order becomes moderate, improving magnetism. On the other hand, if it is slowly cooled from a temperature above the above-mentioned transformation point at a rate of, for example, 1° C./hour or less, ordering will proceed too much and the magnetism will decrease. (Example) Next, an example of the present invention will be described. Example 1 Alloy number 17 (composition Ni-79.0%, Zn-1.0%, Cd
-1.0%, balance Fe) To make a sample, the total weight of the alloy material with the above composition is required.
800 g of the alumina was placed in an alumina crucible and melted in an argon atmosphere using a high frequency induction furnace, followed by thorough stirring to obtain a homogeneous molten alloy. Next, make this 25mm in diameter and height
The ingot was poured into a mold with a 170 mm hole, and the resulting ingot was forged at approximately 1100°C to form a plate approximately 7 mm thick. Furthermore, it is hot rolled at approximately 600 to 900℃ to a thickness of 1 mm.
Then cold rolled at room temperature to make a 0.1mm thin plate.
Then, an annular plate with an outer diameter of 45 mm and an inner diameter of 33 mm and a magnetic head core were punched out. Next, add these to the first
After applying the various heat treatments shown in the table, the annular plate was used to measure the magnetic properties, and the core was used to manufacture a magnetic head, and a surface roughness meter was used to measure the amount of wear after 200 hours of running on magnetic tape (CrO 2 ). The results shown in Table 1 were obtained.

【衚】【table】

【衚】 実斜䟋  合金番号66組成Ni−79.0、Zn−0.7、Cd
−1.2、Nb−7.0、残郚Fe 詊料を造るには䞊蚘組成の合金材料の党重量
800をアルミナ坩堝に入れ、真空䞭で高呚波誘
導電気炉によ぀お溶かした埌よく撹拌しお溶融合
金ずした。補造工皋は実斜䟋ず同じである。詊
料に皮々の熱凊理を斜しお第衚に瀺すような特
性が埗られた。
[Table] Example 2 Alloy number 66 (composition Ni-79.0%, Zn-0.7%, Cd
-1.2%, Nb -7.0%, balance Fe) Total weight of alloy material with the above composition to make the sample.
800 g of the alumina was placed in an alumina crucible, melted in a vacuum using a high-frequency induction electric furnace, and stirred well to obtain a molten alloy. The manufacturing process is the same as in Example 1. The samples were subjected to various heat treatments and the properties shown in Table 2 were obtained.

【衚】【table】

【衚】 ぀ぎに第衚には1150℃の真空䞭で時間加熱
した埌、600℃から皮々な速床で垞枩たで冷华す
るか、あるいはこれをさらに600℃以䞋の枩床で
再加熱しお、垞枩で枬定された代衚的な合金の諞
特性が瀺しおある。
[Table] Next, Table 3 shows that after heating in a vacuum at 1150℃ for 2 hours, cooling from 600℃ to room temperature at various speeds, or further heating at a temperature below 600℃, The properties of representative alloys measured at room temperature are shown.

【衚】【table】

【衚】 ぀ぎに本発明合金の亜鉛およびカドミりムの添
加効果に぀いお図面によ぀お詳现に述べる。第
図には78.5Ni−Fe−Zn合金に぀いおZn添加量
ず実効透磁率、飜和磁束密床および摩耗量ずの関
係を瀺し、第図には79Ni−Fe−Nb−Zn
合金に぀いおZn添加量ず実効透磁率、飜和磁束
密床および摩耗量ずの関係を瀺した。 第図には78.5Ni−Fe−Cd合金に぀いおCd
添加量ず実効透磁率、飜和磁束密床および摩耗量
ずの関係を瀺し、第図には79Ni−Fe−
Nb−Cd合金に぀いおCd添加量ず実効透磁率、飜
和磁束密床および摩耗量ずの関係を瀺した。 第図は79.0Ni−Fe−1.0Zn−1.0Cd合
金にCu、、Ta、NbあるいはMnを添加した堎
合の各元玠の添加量ず実効透磁率、飜和磁束密床
および摩耗量ずの関係を瀺す。 第図は79.0Ni−Fe−1.0Zn−1.0Cd合
金にCr、Mo、、AuあるいはCoを添加した堎
合の各元玠の添加量ず実効透磁率、飜和磁束密床
および摩耗量ずの関係を瀺す。 第図は79.0Ni−Fe−1.0Zn−1.0Cd合
金にTi、Si、Ge、Ga、In、Tl、Sr、Ba、Ptあ
るいはAlを添加した堎合の各元玠の添加量ず実
効透磁率、飜和磁束密床および摩耗量ずの関係を
瀺す。 第図は79.0Ni−Fe−1.0Zn−1.0Cd合
金にZr、Hf、Ag、Ce、Be、Sn、Sb、あるい
はを添加した堎合の各元玠の添加量ず実効透磁
率、飜和磁束密床および摩耗量ずの関係を瀺す。 䞀般に亜鉛又はカドミりムの添加量の増加ずず
もに実効透磁率は著しく増倧し、摩耗量は枛少す
る。しかし亜鉛およびカドミりムが以䞊では
加工が困難になり奜たしくない。 本発明のこのような磁気特性の向䞊は溶解時に
おける亜鉛およびカドミりムの脱酞、脱硫効果に
よ぀お䞍玔物が陀去され、合金組織を枅浄にする
ずずもに、亜鉛およびカドミりムの添加によ぀お
飜和磁歪および結晶磁気異方性゚ネルギヌが小さ
くなり、磁化し易い状態に成るものず考えられ
る。さらにNi−Zn系、Fe−Zn系、Ni−Cd系お
よびFe−Cd系金属間化合物が埮现に析出しお磁
区を分割し磁壁を増加させるので、亀流磁界にお
ける磁壁の移動速床を盞察的に枛少させ、そのた
め枊電流損倱が小さくなり、倧きな実効透磁率が
埗られるものず考えられる。たた本発明合金の耐
摩耗性の向䞊は、亜鉛又はカドミりムを添加する
ず、Ni−Fe合金の地が固溶䜓硬化するずずもに、
匷固な金属間化合物が地に埮现に析出し、さらに
耐食性が向䞊するこずによるものず考えられる。 さらに副成分ずしお添加するCu、、Nd、
Ta、Mn、Mo、、Au、Co、Cr、Ti、Ge、
Ga、In、Tl、Sr、Ba、Al、Si、Zr、Hf、Ag、
垌土類元玠、癜金族元玠、Be、Sn、Sb、およ
び等は本発明合金の実効透磁率を高める効果が
あり、たたCoは飜和磁束密床を高めるのに有効
である。さらにCu、、Nb、Ta、、Au、
Ti、Ge、Ga、In、Tl、Sr、Ba、Al、Si、Zr、
Hf、Ag、垌土類元玠、癜金族元玠、Be、Sn、
Sb、および等は本発明合金の耐摩耗性を改
善する効果が倧きく、さらにSr、Ba、Nb、Ta、
Mn、Ti、Si、垌土類元玠は鍛造加工性を改善す
る効果が倧きい。 次に本発明においお合金の組成をニツケル30〜
90、亜鉛又はカドミりムの皮たたは皮の合
蚈0.001〜および残郚鉄ず限定し、たたこれ
に添加する元玠を銅30以䞋、タングステン、タ
ンタルのそれぞれ20以䞋、ニオブ、マンガン、
クロムのそれぞれ15以䞋、モリブデン、バナゞ
りム、金、コバルトのそれぞれ10以䞋、チタ
ン、ケむ玠、ゲルマニりム、ガリりム、むンゞり
ム、タリりム、ストロンチりム、バリりム、癜金
族元玠のそれぞれ以䞋、アルミニりム、ゞル
コニりム、ハフニりム、銀、垌土類元玠、ベリリ
りム、錫、アンチモンのそれぞれ以䞋、ホり
玠、リンのそれぞれ以䞋の皮たたは皮以
䞊の合蚈0.01〜30ず限定した理由は、実斜䟋、
第衚および図面で明らかなように、その組成範
囲の飜和磁束密床は5000G以䞊で、実効透磁率お
よび耐摩耗性にすぐれ、䞔぀加工性も良奜である
が、組成がこの範囲をはずれるず飜和磁束密床が
5000G以䞋ずなり、実効透磁率が䜎䞋し、摩耗が
倧きくなり、䞔぀加工が困難ずなり、磁気蚘録再
生ヘツドの材料ずしお䞍適圓ずなるからである。
すなわち、亜鉛およびカドミりムが0.001未満
では添加効果を小さく、を越えるず鋳造加工
が困難ずなる。そしおこれに副成分ずしお銅30
以䞋、タングステン20、ニオブ15、タンタル
20、マンガン15、クロム15、モリブデン10
、バナゞりム10、金10、チタン、ゲル
マニりム、ガリりム、むンゞりム、
タリりム、ストロンチりム、バリりム
、癜金族元玠のそれぞれを越え添加するず
飜和磁束密床が5000G以䞋ずなるからであり、ゞ
ルコニりム、銅、ケむ玠、アルミニ
りム、ハフニりム、垌土類元玠、ベ
リリりム、錫、アンチモン、ホり玠
、リンのそれぞれを越えお添加するず鍛
造あるいは加工が困難ずなるからであり、Coを
10を越え添加するず実効透磁率が小さくなるか
らである。 なお、第衚より明らかなように、Ni−Feç³»
合金に副成分の䜕れかを入れるず実効透磁率は曎
に倧きくなり、たた、硬床も高くなり、耐摩耗性
が改善されるのでこれらの副成分の添加は同䞀効
果であり、同効成分ず芋做し埗る。たた、垌土類
元玠はスカンゞりム、むツトリりムおよびランタ
ン系元玠からなるものであるが、その副成分添加
効果は党く同䞀であり、癜金族元玠は癜金、むリ
ゞりム、ルテニりム、ロゞりム、パラゞりム、オ
スミりムからなるが、その効果も党く同䞀であ
る。 尚、炭玠、窒玠、酞玠および硫黄は耐摩耗性を
改善し、Te、Se、Bi、CaおよびPbは快削性を改
善するので、磁気特性を損わない皋床の各々0.1
以䞋ならば有効であり、本発明合金に䞍玔物ず
しお含有されおも差支えない。 発明の効果 芁するに本発明合金は飜和磁束密床が5000G以
䞊で実効透磁率が高く、耐摩耗性がすぐれ、䞔぀
加工性が良奜なので磁気録音再生ヘツド甚磁性合
金ずしお奜適であるばかりでなく、VTRおよび
電子蚈算機の磁気蚘録再生ヘツドならびに普通の
電気機噚などに甚いる磁性材料ずしおも非垞に奜
適である。
[Table] Next, the effect of adding zinc and cadmium to the alloy of the present invention will be described in detail with reference to the drawings. 1st
Figure 2 shows the relationship between Zn addition amount, effective magnetic permeability, saturation magnetic flux density, and wear amount for 78.5%Ni-Fe-Zn alloy.
The relationship between the amount of Zn added and the effective magnetic permeability, saturation magnetic flux density, and wear amount of the alloy was shown. Figure 3 shows Cd for 78.5%Ni-Fe-Cd alloy.
The relationship between the addition amount, effective magnetic permeability, saturation magnetic flux density, and wear amount is shown in Figure 4.
The relationship between the amount of Cd added and the effective magnetic permeability, saturation magnetic flux density, and wear amount for Nb-Cd alloys was shown. Figure 5 shows the amount of each element added, effective magnetic permeability, saturation magnetic flux density and amount of wear when Cu, W, Ta, Nb or Mn is added to a 79.0%Ni-Fe-1.0%Zn-1.0%Cd alloy. shows the relationship between Figure 6 shows the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and amount of wear when Cr, Mo, V, Au, or Co is added to a 79.0% Ni-Fe-1.0% Zn-1.0% Cd alloy. shows the relationship between Figure 7 shows the amount of each element added and the effective effect when Ti, Si, Ge, Ga, In, Tl, Sr, Ba, Pt or Al is added to a 79.0%Ni-Fe-1.0%Zn-1.0%Cd alloy. The relationship between magnetic permeability, saturation magnetic flux density, and amount of wear is shown. Figure 8 shows the amount of each element added and the effective magnetic permeability when Zr, Hf, Ag, Ce, Be, Sn, Sb, B or P is added to a 79.0%Ni-Fe-1.0%Zn-1.0%Cd alloy. , shows the relationship between saturation magnetic flux density and amount of wear. Generally, as the amount of zinc or cadmium added increases, the effective magnetic permeability increases significantly and the amount of wear decreases. However, if the zinc and cadmium content exceeds 5%, processing becomes difficult, which is not preferable. The improvement in magnetic properties of the present invention is due to the deoxidation and desulfurization effects of zinc and cadmium during melting, which remove impurities and clean the alloy structure, and the addition of zinc and cadmium improves saturation magnetostriction and It is thought that the magnetocrystalline anisotropy energy becomes smaller and the state becomes easier to magnetize. In addition, Ni-Zn, Fe-Zn, Ni-Cd, and Fe-Cd intermetallic compounds precipitate finely, dividing the magnetic domain and increasing the domain wall, so the relative movement speed of the domain wall in an alternating magnetic field is It is believed that this reduces the eddy current loss and provides a large effective magnetic permeability. Furthermore, the wear resistance of the alloy of the present invention is improved by solid solution hardening of the Ni-Fe alloy base when zinc or cadmium is added.
This is thought to be due to the fine precipitation of strong intermetallic compounds on the ground, further improving corrosion resistance. Furthermore, Cu, W, Nd, which are added as subcomponents,
Ta, Mn, Mo, V, Au, Co, Cr, Ti, Ge,
Ga, In, Tl, Sr, Ba, Al, Si, Zr, Hf, Ag,
Rare earth elements, platinum group elements, Be, Sn, Sb, B, P, etc. are effective in increasing the effective magnetic permeability of the alloy of the present invention, and Co is effective in increasing the saturation magnetic flux density. Furthermore, Cu, W, Nb, Ta, V, Au,
Ti, Ge, Ga, In, Tl, Sr, Ba, Al, Si, Zr,
Hf, Ag, rare earth elements, platinum group elements, Be, Sn,
Sb, B, P, etc. have a great effect on improving the wear resistance of the alloy of the present invention, and Sr, Ba, Nb, Ta, etc.
Mn, Ti, Si, and rare earth elements have a large effect on improving forging workability. Next, in the present invention, the composition of the alloy is changed from Nickel 30 to
90%, a total of 0.001 to 5% of one or two of zinc or cadmium, and the balance iron, and the elements added to this are limited to 30% or less copper, 20% or less each of tungsten and tantalum, niobium, manganese,
15% or less of each of chromium, 10% or less of each of molybdenum, vanadium, gold, and cobalt, 5% or less of each of titanium, silicon, germanium, gallium, indium, thallium, strontium, barium, and platinum group elements, aluminum, zirconium, and hafnium , silver, rare earth elements, beryllium, tin, antimony, each of 3% or less, boron, phosphorus, each of 2% or less, and the total of one or more types was limited to 0.01 to 30%.
As is clear from Table 3 and the drawings, the saturation magnetic flux density in this composition range is 5000G or more, which has excellent effective magnetic permeability and wear resistance, as well as good workability; however, when the composition falls outside this range, it saturates magnetic flux density
This is because if it becomes less than 5000G, the effective magnetic permeability decreases, wear increases, and machining becomes difficult, making it unsuitable as a material for magnetic recording/reproducing heads.
That is, if zinc and cadmium are less than 0.001%, the effect of addition is small, and if it exceeds 5%, casting becomes difficult. And this has 30% copper as a subcomponent.
Below, 20% tungsten, 15% niobium, tantalum
20%, manganese 15%, chromium 15%, molybdenum 10
%, vanadium 10%, gold 10%, titanium 5%, germanium 5%, gallium 5%, indium 5%,
Thallium 5%, Strontium 5%, Barium 5
This is because if more than 5% of platinum group elements are added, the saturation magnetic flux density becomes 5000G or less. This is because adding more than 3% beryllium, 3% tin, 3% antimony, 2% boron, and 2% phosphorus will make forging or processing difficult.
This is because adding more than 10% reduces the effective magnetic permeability. As is clear from Table 3, if any of the subcomponents is added to the Ni-Fe alloy, the effective magnetic permeability will further increase, the hardness will also increase, and the wear resistance will be improved. Addition of sub-ingredients has the same effect and can be regarded as the same effective ingredient. Rare earth elements consist of scandium, yttrium, and lanthanum-based elements, but the effect of adding their subcomponents is exactly the same, and platinum group elements consist of platinum, iridium, ruthenium, rhodium, palladium, and osmium, but The effect is exactly the same. In addition, carbon, nitrogen, oxygen, and sulfur improve wear resistance, and Te, Se, Bi, Ca, and Pb improve free machinability, so each should be added at 0.1 to an extent that does not impair magnetic properties.
% or less, it is effective, and there is no problem even if it is contained as an impurity in the alloy of the present invention. (Effects of the Invention) In short, the alloy of the present invention has a saturation magnetic flux density of 5000 G or more, high effective permeability, excellent wear resistance, and good workability, so it is not only suitable as a magnetic alloy for magnetic recording/playback heads, but also It is also very suitable as a magnetic material for use in magnetic recording/reproducing heads for VTRs and computers, as well as ordinary electrical equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第図は78.5Ni−Fe−Zn合金の亜鉛量ず実
効透磁率、飜和磁束密床および摩耗量ずの関係を
瀺す特性図、第図は79Ni−Fe−Nb−Zn
合金の亜鉛量ず実効透磁率、飜和磁束密床および
摩耗量ずの関係を瀺す特性図、第図は78.5Ni
−Fe−Cd合金のカドミりム量ず実効透磁率、飜
和磁束密床および摩耗量ずの関係を瀺す特性図、
第図は79Ni−Fe−Nb−Cd合金のカド
ミりム量ず実効透磁率、飜和磁束密床および摩耗
量ずの関係を瀺す特性図、第図は79.0Ni−
Fe−1.0Zn−1.0Cd合金にCu、、Ta、Nb
あるいはMnを添加した堎合の各元玠の添加量ず
実効透磁率、飜和磁束密床および摩耗量ずの関係
を瀺す特性図、第図は79.0Ni−Fe−1.0Zn
−1.0Cd合金にCr、Mo、、AuあるいはCoを
添加した堎合の各元玠の添加量ず実効透磁率、飜
和磁束密床および摩耗量ずの関係を瀺す特性図、
第図は79.0Ni−Fe−1.0Zn−1.0Cd合金
にTi、Si、Ge、Ga、In、Tl、Sr、Ba、Ptある
いはAlを添加した堎合の各元玠の添加量ず実効
透磁率、飜和磁束密床および摩耗量ずの関係を瀺
す特性図、第図は79.0Ni−Fe−1.0Zn−1.0
Cd合金にZr、Hf、Ag、Ce、Be、Sn、Sb、
あるいはを添加した堎合の各元玠の添加量ず実
効透磁率、飜和磁束密床および摩耗量ずの関係を
瀺す特性図である。
Figure 1 is a characteristic diagram showing the relationship between zinc content, effective magnetic permeability, saturation magnetic flux density, and wear amount of 78.5%Ni-Fe-Zn alloy, and Figure 2 is 79%Ni-Fe-7%Nb-Zn.
Characteristic diagram showing the relationship between the amount of zinc in the alloy, effective magnetic permeability, saturation magnetic flux density, and amount of wear. Figure 3 is for 78.5%Ni.
-Characteristic diagram showing the relationship between the amount of cadmium in the Fe-Cd alloy, effective magnetic permeability, saturation magnetic flux density, and amount of wear,
Figure 4 is a characteristic diagram showing the relationship between the amount of cadmium, effective magnetic permeability, saturation magnetic flux density, and wear amount of 79%Ni-Fe-7%Nb-Cd alloy, and Figure 5 is a characteristic diagram showing the relationship between cadmium content, effective magnetic permeability, saturation magnetic flux density, and amount of wear for 79%Ni-Fe-79.0%Nb-Cd alloy.
Fe-1.0%Zn-1.0%Cd alloy with Cu, W, Ta, and Nb
Or a characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and wear amount when Mn is added. Figure 6 is 79.0%Ni-Fe-1.0%Zn
A characteristic diagram showing the relationship between the amount of each element added and effective magnetic permeability, saturation magnetic flux density, and wear amount when Cr, Mo, V, Au, or Co is added to -1.0% Cd alloy,
Figure 7 shows the amount of each element added and the effective effect when Ti, Si, Ge, Ga, In, Tl, Sr, Ba, Pt or Al is added to a 79.0%Ni-Fe-1.0%Zn-1.0%Cd alloy. Characteristic diagram showing the relationship between magnetic permeability, saturation magnetic flux density and wear amount, Figure 8 is 79.0%Ni-Fe-1.0%Zn-1.0
%Cd alloy with Zr, Hf, Ag, Ce, Be, Sn, Sb, B
Alternatively, it is a characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and amount of wear when P is added.

Claims (1)

【特蚱請求の範囲】  重量比におニツケル30〜90、亜鉛およびカ
ドミりムの皮たたは皮の合蚈0.001〜、
少量の䞍玔物ず残郚鉄からなり、飜和磁束密床
5000G以䞊を有するこずを特城ずする磁気蚘録再
生ヘツド甚耐摩耗性高透磁率合金。  重量比におニツケル30〜90、亜鉛およびカ
ドミりムの皮たたは皮の合蚈0.001〜、
少量の䞍玔物ず残郚鉄からなる合金を䞻成分ず
し、副成分ずしお銅30以䞋、タングステン、タ
ンタルのそれぞれ20以䞋、ニオブ、マンガン、
クロムのそれぞれ15以䞋、モリブデン、バナゞ
りム、金、コバルトのそれぞれ10以䞋、チタ
ン、ケむ玠、ゲルマニりム、ガリりム、む゜ゞり
ム、タリりム、ストロンチりム、バリりム、癜金
族元玠のそれぞれ以䞋、アルミニりム、ゞル
コニりム、ハフニりム、銀、垌土類元玠、ベリリ
りム、錫、アンチモンのそれぞれ以䞋、ホり
玠、リンのそれぞれ以䞋の皮たたは皮以
䞊の合蚈0.01〜30を含有しおなり、飜和磁束密
床5000G以䞊を有するこずを特城ずする磁気蚘録
再生ヘツド甚耐摩耗性高透磁率合金。  重量比におニツケル30〜90、亜鉛およびカ
ドミりムの皮たたは皮の合蚈0.001〜、
少量の䞍玔物ず残郚鉄からなる合金を、600℃以
䞊融点以䞋の枩床で非酞化性雰囲気あるいは真空
䞭においお、少くずも分間以䞊100時間以䞋の
組成に察応した適圓時間加熱した埌、600℃以䞊
の枩床から100℃秒〜℃時の組成に察応し
た適圓な速床で垞枩たで冷华するこずを特城ずす
る磁気蚘録再生ヘツド甚耐摩耗性高透磁率合金の
補造法。  重量比におニツケル30〜90、亜鉛およびカ
ドミりムの皮たたは皮の合蚈0.001〜、
少量の䞍玔物ず残郚鉄からなる合金を、600℃以
䞊融点以䞋の枩床で非酞化性雰囲気あるいは真空
䞭においお、少くずも分間以䞊100時間以䞋の
組成に察応した適圓時間加熱した埌、600℃以䞊
の枩床から100℃秒〜℃時の組成に察応し
た適圓な速床で垞枩たで冷华し、これをさらに
600℃以䞋の枩床で非酞化性雰囲気䞭あるいは真
空䞭においお分間以䞊、組成に察応した適圓時
間加熱し、冷华するこずを特城ずする磁気蚘録再
生ヘツド甚耐摩耗性高透磁率合金の補造法。
[Claims] 1. 30 to 90% nickel by weight, 0.001 to 5% in total of one or two of zinc and cadmium,
Consisting of a small amount of impurities and the remainder iron, the saturation magnetic flux density
A wear-resistant high permeability alloy for magnetic recording/reproducing heads characterized by having a strength of 5000G or more. 2. Nickel 30-90% by weight, total of one or two of zinc and cadmium 0.001-5%,
The main component is an alloy consisting of a small amount of impurities and the balance iron, and the secondary components are less than 30% copper, less than 20% each of tungsten and tantalum, niobium, manganese,
15% or less of each of chromium, 10% or less of each of molybdenum, vanadium, gold, and cobalt, 5% or less of each of titanium, silicon, germanium, gallium, isodium, thallium, strontium, barium, and platinum group elements, aluminum, zirconium, and hafnium , silver, rare earth elements, beryllium, tin, antimony, each of 3% or less, boron, phosphorous, each of 2% or less, in total of 0.01 to 30%, and has a saturation magnetic flux density of 5000G or more. A wear-resistant high permeability alloy for magnetic recording/reproducing heads, characterized by having: 3. Nickel 30-90% by weight, total of one or two of zinc and cadmium 0.001-5%,
After heating an alloy consisting of a small amount of impurities and the balance iron in a non-oxidizing atmosphere or in vacuum at a temperature of 600°C or higher and below the melting point for an appropriate time corresponding to the composition for at least 1 minute or more and 100 hours or less, 1. A method for producing a wear-resistant high permeability alloy for a magnetic recording/reproducing head, characterized in that the alloy is cooled from a temperature of 100° C./sec to 1° C./hour to room temperature at an appropriate rate corresponding to the composition. 4. Nickel 30-90% by weight, total of one or two of zinc and cadmium 0.001-5%,
After heating an alloy consisting of a small amount of impurities and the balance iron in a non-oxidizing atmosphere or in vacuum at a temperature of 600°C or higher and below the melting point for an appropriate time corresponding to the composition for at least 1 minute or more and 100 hours or less, From the temperature of
A method for producing a wear-resistant high permeability alloy for magnetic recording/reproducing heads, which comprises heating at a temperature of 600°C or less in a non-oxidizing atmosphere or vacuum for 1 minute or more for an appropriate time depending on the composition, and cooling. .
JP15278384A 1984-07-25 1984-07-25 Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head Granted JPS6134160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15278384A JPS6134160A (en) 1984-07-25 1984-07-25 Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15278384A JPS6134160A (en) 1984-07-25 1984-07-25 Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1262699A Division JPH02153036A (en) 1989-10-07 1989-10-07 Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head

Publications (2)

Publication Number Publication Date
JPS6134160A JPS6134160A (en) 1986-02-18
JPH0368107B2 true JPH0368107B2 (en) 1991-10-25

Family

ID=15548050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15278384A Granted JPS6134160A (en) 1984-07-25 1984-07-25 Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head

Country Status (1)

Country Link
JP (1) JPS6134160A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153036A (en) * 1989-10-07 1990-06-12 Res Inst Electric Magnetic Alloys Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JP5076514B2 (en) * 2007-01-23 2012-11-21 䜏友倧阪セメント株匏䌚瀟 Method for producing tabular nickel-iron-zinc alloy nanoparticles and tabular nickel-iron-zinc alloy nanoparticles
CN104357710B (en) * 2014-11-26 2016-08-17 匠立红 A kind of nickel alloy and preparation method thereof

Also Published As

Publication number Publication date
JPS6134160A (en) 1986-02-18

Similar Documents

Publication Publication Date Title
US4710243A (en) Wear-resistant alloy of high permeability and method of producing the same
US5547520A (en) Wear-resistant high permeability magnetic alloy and method of manufacturing the same
JPS625972B2 (en)
JPS6133900B2 (en)
JPS59582B2 (en) Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method
JPH0158261B2 (en)
KR100405929B1 (en) Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head
JPS6212296B2 (en)
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPH0368107B2 (en)
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPH032216B2 (en)
JPS6218619B2 (en)
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JPH0310699B2 (en)
JPH0310700B2 (en)
JPH10259439A (en) Wear resistant high permeability alloy and magnetic recording and reproducing head
JPH0377644B2 (en)
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0645846B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0525947B2 (en)
JPS6130405B2 (en)