JPH0310699B2 - - Google Patents

Info

Publication number
JPH0310699B2
JPH0310699B2 JP59079101A JP7910184A JPH0310699B2 JP H0310699 B2 JPH0310699 B2 JP H0310699B2 JP 59079101 A JP59079101 A JP 59079101A JP 7910184 A JP7910184 A JP 7910184A JP H0310699 B2 JPH0310699 B2 JP H0310699B2
Authority
JP
Japan
Prior art keywords
alloy
less
temperature
flux density
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59079101A
Other languages
Japanese (ja)
Other versions
JPS60224728A (en
Inventor
Ryo Masumoto
Juetsu Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI JIKI ZAIRYO KENKYUSHO
Original Assignee
DENKI JIKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI JIKI ZAIRYO KENKYUSHO filed Critical DENKI JIKI ZAIRYO KENKYUSHO
Priority to JP59079101A priority Critical patent/JPS60224728A/en
Publication of JPS60224728A publication Critical patent/JPS60224728A/en
Publication of JPH0310699B2 publication Critical patent/JPH0310699B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はNi,Nb,PおよびFeよりなる耐摩耗
性高透磁率合金およびNi,Nb,PおよびFeを主
成分とし、副成分としてCr,Mo,Ge,Au,
Co,V,W,Cu,Ta,Mn,Al,Si,Ti,Zr,
Hf,Sn,Sb,Ga,In,Tl,希土類元素、白金
族元素、Be,Ag,Sr,Ba,Bの1種または2
種以上を含有する耐摩耗性高透磁率合金およびそ
の製造法に関するもので、その目的とするところ
は、鍛造加工が容易で、実効透磁率が大きく、飽
和磁束密度が4000G以上で、{110}〈112〉の再結
晶集合組織を有して耐摩耗性が良好な磁性合金を
得るにある。 テープレコーダーなどの磁気記録再生ヘツドは
交流磁界において作動するものであるから、これ
に用いられる磁性合金は高周波磁界における実効
透磁率が大きいことが必要とされ、また磁気テー
プが接触して摺動するため耐摩耗性が良好である
ことが望まれている。現在、耐摩耗性にすぐれた
磁気ヘツド用磁性合金としてはセンダスト(Fe
−Si−Al系合金)およびフエライト(MnO−
ZnO−Fe2O3)があるが、これらは非常に硬く脆
いため、鍛造、圧延加工が不可能で、ヘツドコア
の製造には研削、研磨の方法が用いられており、
従つてその成品は高価である。またセンダストは
飽和磁束密度は大きいが薄板にできないので高周
波磁界における実効透磁率が比較的小さい。また
フエライトは実効透磁率は大きいが、飽和磁束密
度が約4000Gで小さいのが欠点である。他方パー
マロイ(Ni−Fe系合金)は飽和磁束密度が大き
いが、実効透磁率は小さく、また鍛造、圧延加工
および打抜きは容易で量産性にすぐれているが、
摩耗しやすいのが大きな欠点であり、これを改善
することが望まれている。 本発明者らは、先にNi−Fe−Nb系合金は鍛造
加工が容易ですぐれた高透磁率合金であることか
ら、磁気記録再生ヘツド用磁性合金として好適で
あることを見い出し、これを特許出願した(特公
昭47−29690号)。その後本発明者らは、一般に摩
耗現象は合金結晶の方位によつて差異があり、結
晶異方性が存在することが知られていることか
ら、Ni−Fe−Nb系合金の結晶方位と摩耗現象の
関係について研究した結果、Ni−Fe−Nb系合金
において、{100}〈001〉再結晶集合組織は摩耗し
易く、{100}〈112〉再結晶集合組織が耐摩耗性に
すぐれていることを見い出し、これを特許出願し
た(特公昭58−57499号、特開昭53−26994号)。 本発明者らはこの知見に基づいて、さらに進ん
でCu等の面心立方晶金属の{100}〈001〉再結晶
集合組織の形成を抑制する効果があるとされる元
素の一つであるPを同じ面心立方晶のNi−Fe−
Nb系合金に添加し、再結晶集合組織の形成につ
いて研究した。すなわちNi−Fe2元系合金は冷間
圧延加工すると{110}〈112〉+{112}〈111〉の加
工集合組織が生じるが、これを高温加熱すると
{100}〈001〉再結晶集合組織が発達することが知
られている。しかし、これにNbを添加すると積
層欠陥エネルギーは低下し、{110}〈112〉再結晶
集合組織が生成するようになるが、これにさらに
微量のPを添加することによつて{100}〈001〉
再結晶集合組織の成長は抑制され、{110}〈112〉
再結晶集合組織の成長が優先的に促進し、{110}
〈112〉再結晶集合組織が形成されて、耐摩耗性が
著しく向上することを見い出したのである。また
Ni−Fe−Nb系合金にPを添加するとNi−P,
Fe−PおよびNb−P系の硬いリン化物がマトリ
ツクス中に析出し、硬度を高め、耐摩耗性の向上
に寄与するとともに、これらの強弱、磁性および
非強磁性の微細なリン化物の分散析出によつて磁
区が分割されて、交流磁界におる渦電流損失が減
少し、このために実効透磁率が増大することも見
い出した。要するにNbとPの相乗的効果により、
{110}〈112〉再結晶集合組織が発達するとともに
実効透磁率が増大し、耐摩耗性のすぐれた高透磁
率合金が得られるのである。 本発明の合金を造るには、Ni60〜90%、Nb0.5
〜14%、P0.001〜1%および残部Feの適当量を
空気中、好ましくは非酸化性雰囲気(水素、アル
ゴン、窒素など)中あるいは真空中において適当
な溶解炉を用いて溶解した後、マンガン、珪素、
アルミニウム、チタン、カルシウム合金、マグネ
シウム合金、ベリリウム合金その他の脱酸脱硫剤
を少量添加してできるだけ不純物を取り除く。あ
るいは又、上記合金に幅成分としてCr,Mo,
Ge,Auの7%以下、Co,Vの10%以下、Wの15
%以下、Cu,Ta,Mnの25%以下、Al,Si,Ti,
Zr,Hf,Sn,Sb,Ge,In,Tl,希土類元素、
白金族元素の5%以下、Be,Ag,Sr,Baの3
%以下、B1%以下の1種あるいは2種以上の合
計0.01〜30%の所定量を更に添加する。かくして
得た混合物を充分に撹拌して組成的に均一な溶融
合金を造る。 次にこれを適当な形および大きさの鋳型に注入
してて健全な鋳塊を得、さらにこれに高温におい
て鍛造あるいは熱間加工を施して適当な形状のも
の、例えば棒あるいは板となし、必要ならば600
℃以上の温度で焼鈍する。次いでこれに冷間圧延
などの方法によつて加工率30%以上の冷間加工を
施し、目的の形状のもの、例えば厚さ0.1mmの薄
板を造る。次にその薄板から例えば外径45mm、内
径33mmの環状板を打抜き、これを水素中その他の
適当な非酸化性雰囲気(水素、アルゴン、窒素な
ど)中あるいは真空中で800℃以上融点以下の温
度に、所定時間加熱し、次いで規則−不規則格子
変態点(約600℃)以上の温度から100℃/秒〜1
℃/時の組成に対応した適当な速度で冷却するか
あるいはこれをさらに規則−不規則格子変態点
(約600℃)以下の温度で適当時間再加熱し、冷却
する。このようにして実効透磁率3000以上、飽和
磁束密度4000G以上を有し、且つ{110}〈112〉
再結晶集合組織を有した耐摩耗性高透磁率合金が
得られる。 次に本発明を図面につき説明する。 第1図は80%Ni−Fe−5%Nb−P系合金につ
いて加工率85%の冷間圧延し、1050℃で加熱した
後1000℃/時の速度で冷却した場合の再結晶集合
組織および諸特性とP量との関係を示したもので
ある。Ni−Fe−Nb系合金は冷間圧延加工すると
{110}〈112〉+{112}〈111〉の加工集合組織が生
じるが、これを高温加熱すると{110}〈112〉+
{100}〈001〉の再結晶集{100}合組織が生成す
る。しかし、これにPを添加すると{100}<001
>再結晶集合組織の生成が抑制され、{110}
〈112〉の再結晶集合組織が発達し、それとともに
摩耗量は減少する。また実効透磁率はPの添加に
よつて増大する。第2図は80%Ni−Fe−5%Nb
−0.05%P系合金について、1050℃で加熱した場
合の再結晶集合組織および諸特性と冷間加工率と
の関係を示したもので、冷間加工率の増加は
{110}〈112〉の再結晶集合組織の発達をもたら
し、耐摩耗性を向上させ、実効透磁率を高める。
第3図は80%Ni−Fe−5%Nb−0.05%P系合金
を冷間加工率85%で圧延した後の加熱温度と再結
晶集合組織および諸特性との関係を示したもの
で、加熱温度の上昇とともに{112}〈111〉成分
が減少し、{110}〈112〉が発達し、耐摩耗性が向
上し、また実効透磁率は増大する。第4図は合金
番号8(80%Ni−Fe−5%Nb−0.05%P系合
金)、合金番号41(79.5%Ni−Fe−8%Nb−0.035
%P−2%Mo系合金)、合金番号89(82%Ni−Fe
−2%Nb−0.085%P−3%Si系合金)について
実効透磁率と冷却速度との関係およびこれをさら
に再加熱を施した場合の実効透磁率(×印)を示
したものである。合金の組成に対応した最適冷却
速度、最適再加熱温度および再加熱時間が存在す
ることが判る。 第5図は80%Ni−Fe−5%Nb−0.05%P系合
金にCr,Mo,Ge,AuあるいはCoを添加した場
合の磁気ヘツドの耐摩耗量の特性図で、Cr,
Mo,Ge,AuあるいはCoを添加すると、何れも
実効透磁率は高くなり、摩耗量は減少するが、
Cr,Mo,GeあるいはAuの7%以上では飽和磁
束密度が4000G以下となり好ましくない。また
Co10%以上では実効透磁率が3000以下となり好
ましくない。 第6図は同じく80%Ni−Fe−5%Nb−0.05%
P系合金にV,W,Cu,TaあるいはMnを添加
した場合の磁気ヘツドの摩耗量および実効透磁率
の特性図で、V,W,Cu,TaあるいはMnを添
加すると、何れも実効透磁率は高くなり、摩耗量
は減少するが、Vを10%以上、Wを15%以上、
Cu,TaあるいはMnを25%以上添加すると飽和
磁束密度が4000G以下となり好ましくない。 第7図は同じく80%Ni−Fe−5%Nb−0.05%
P系合金にAl,Si,Ti,Zr,Hf,Sn,Sbあるい
はGaを添加した場合の特性図で、Al,Si,Ti,
Zr,Hf,Sn,SbあるいはGaを5%以上添加する
と、何れも実効透磁率は高くなり、摩耗量は減少
するが、Si,Ti,Zr,HfあるいはGaが5%以上
では飽和磁束密度は4000G以下となり、Al,Sn
あるいはSbが5%以上では鍛造加工が困難とな
り好ましくない。 第8図は同じく80%Ni−Fe−5%Nb−0.05%
P系合金にIn,Tl,La,Ru,Be,Ag,Sr,Ba
あるいはBを添加した場合の特性図で、In,Tl,
La,Ru.Be,Ag,Sr,BaあるいはBを添加する
と、何れも実効透磁率は高くなり、摩耗量は減少
するが、In,Tl,La,Ruを5%以上、Be,Sr,
Baを3%以上添加すると飽和磁束密度が4000G
以下となり、Agを3%以上あるいはBを1%以
上添加すると鍛造加工が困難となり好ましくな
い。 第9図は80%Ni−Fe−5%Nb−0.05%P系合
金を実施例と同じ方法で製造し、約1000℃で鍛造
して厚さ7mmとし、種々な加熱温度で厚さ0.67mm
まで熱間圧延加工し、ついで常温で冷間圧延加工
を施して0.1mm薄板(冷間加工率85%)とし、こ
の薄板を1050℃の水素中で2時間加熱後、1000
℃/hrの速度で常温まで冷却した場合の熱間加工
の温度と再結晶集合組織の集積度および摩耗量と
の関係を示す特性図である。熱間圧延加工の温度
が900℃以下では{112}〈111〉が残留し、摩耗量
が大きいが、900℃〜1000℃の温度では{110}
〈112〉が発達し摩耗量が特に小さくなるのであ
る。 本発明の合金の製造法においては、900℃を超
え1000℃以下の温度における熱間圧延加工と、加
工率50%以上の冷間加工と、900℃以上の温度に
おける熱処理とを繰り返す工程によつて{110}
〈112〉の再結晶集合組織が著しく発達し、耐摩耗
性のすぐれたNi−Fe−Nb−P系合金が得られる
のである。 本発明において、冷間加工は{110}〈112〉+
{112}〈111〉の集合組織を形成し、これを基とし
て{110}〈112〉の再結晶集合組織を発達させる
ために必要で、第1図および第2図に見られるよ
うにP0.001%以上において、特に加工率30%以上
の冷間加工を施した場合に{110}〈112〉の再結
晶集合組織の発達が顕著で、耐摩耗性は著しく向
上し、その実効透磁率も高い。また上記の冷間加
工に次いで行われる加熱は、組織の均一化、加工
歪の除去とともに、{110}〈112〉の再結晶集合組
織を発達させ、高い実効透磁率とすぐれた耐摩耗
性を得るために必要であるが、第3図に見られる
ように特に800℃以上の加熱によつて実効透磁率
および耐摩耗性は顕著に向上する。 尚、上記の冷間加工と、次いで行われる800℃
以上融点以下の加熱を繰り返し行うことは、
{110}〈112〉の再結晶集合組織の集積度を高め、
耐摩耗性を向上させるために有効である。その場
合は最終冷間加工の加工率が30%以下でも{110}
〈112〉再結晶集合組織が得られるが、本発明の技
術的思想に包含されるものである。 上記の800℃以上融点以下の温度から規則−不
規則格子変態点(約600℃)以上の温度までの冷
却は、急冷しても徐冷しても得られる磁性には大
した変りはないが、第4図に見られるようにこの
変態点以下の冷却速度は磁性に大きな影響を及ぼ
す。すなわちこの変態点以上の温度より100℃/
秒〜1℃/時の組成に対応した適当な速度で常温
迄冷却することにより、地の規則度が適度に調整
され、すぐれた磁性が得られる。そして上記の冷
却速度の内100℃/秒に近い速度で急冷すると、
規則度が小さくなり、これ以上速く冷却すると規
則化が進まず、規則度はさらに小さくなり磁性は
劣化する。しかし、その規則度の小さい合金をそ
の変態点以下の200℃〜600℃に組成に対応して、
1分間以上100時間以下再加熱し冷却すると、規
則化が進んで適度な規則度となり磁性は向上す
る。他方、上記の変態点以上の温度から、例えば
1℃/時以下の速度で徐冷すると、規則化は進み
すぎ、磁性は低下する。 尚、上記の熱処理を水素が存在する雰囲気中で
施すことは、実効透磁率を高めるのに特に効果が
あるので好ましい。 次に本発明の実施例につき説明する。 実施例 1 合金番号8(組成Ni=80%、Nb=5%、P
=0.05%、Fe=残部)の合金の製造 原料として99.8%純度の電解ニツケル、99.9%
純度の電解鉄、99.8%純度のニオブおよびリン20
%のニツケル−リン母合金を用いた。試料を造る
には、原料を全重量800gでアルミナ坩堝に入れ、
真空中で高周波誘導電気炉によつて溶かした後、
よく攪拌して均質な溶融合金とした。次にこれを
直径25mm、高さ170mmの孔をもつ鋳型に注入し、
得られた鋳塊を約1000℃で鍛造して厚さ約7mmの
板とした。さらに約900℃〜1000℃の間で適当な
厚さまで熱間圧延し、次いで常温で種々な加工率
で冷間圧延を施して0.1mmの薄板とし、それから
外径45mm、内径33mmの環状板を打抜いた。 次にこれに種々な熱処理を施して、磁気特性お
よび磁気ヘツドのコアとして使用した場合湿度80
%、40℃においてCrO2磁気テープによる200時間
走行後の摩耗量をタリサーフ表面粗さ計で測定を
行い、第1表のような特性を得た。
The present invention consists of a wear-resistant high permeability alloy consisting of Ni, Nb, P and Fe, with Ni, Nb, P and Fe as the main components, and as subcomponents of Cr, Mo, Ge, Au,
Co, V, W, Cu, Ta, Mn, Al, Si, Ti, Zr,
One or two of Hf, Sn, Sb, Ga, In, Tl, rare earth elements, platinum group elements, Be, Ag, Sr, Ba, B
This article relates to a wear-resistant, high magnetic permeability alloy containing at least 100% of {110} The object of the present invention is to obtain a magnetic alloy having a <112> recrystallized texture and good wear resistance. Since magnetic recording/reproducing heads such as tape recorders operate in alternating magnetic fields, the magnetic alloys used therein must have high effective magnetic permeability in high-frequency magnetic fields, and the magnetic tape must slide in contact with them. Therefore, it is desired that the wear resistance be good. Currently, Sendust (Fe
-Si-Al alloy) and ferrite (MnO-
ZnO-Fe 2 O 3 ), but these are extremely hard and brittle and cannot be forged or rolled, so grinding and polishing methods are used to manufacture head cores.
Therefore, the finished product is expensive. Sendust has a high saturation magnetic flux density, but cannot be made into a thin plate, so its effective permeability in a high-frequency magnetic field is relatively low. Furthermore, although ferrite has a high effective magnetic permeability, its drawback is that its saturation magnetic flux density is low at approximately 4000G. On the other hand, permalloy (Ni-Fe alloy) has a high saturation magnetic flux density, but a low effective permeability, and is easy to forge, roll, and punch, making it highly suitable for mass production.
A major drawback is that it is easily abraded, and it is desired to improve this. The inventors of the present invention have previously discovered that Ni-Fe-Nb alloys are suitable as magnetic alloys for magnetic recording/reproducing heads because they are easy to forge and have excellent high magnetic permeability, and have patented this alloy. An application was filed (Special Publication No. 47-29690). Subsequently, the present inventors discovered that the wear phenomenon generally differs depending on the orientation of the alloy crystal, and it is known that crystal anisotropy exists. As a result of research on the relationship between the phenomena, it was found that in Ni-Fe-Nb alloys, the {100}〈001〉 recrystallized texture is easy to wear, while the {100}〈112〉 recrystallized texture has excellent wear resistance. He discovered this and filed a patent application for it (Japanese Patent Publication No. 58-57499, Japanese Patent Publication No. 53-26994). Based on this knowledge, the present inventors went further and discovered that it is one of the elements that is said to have the effect of suppressing the formation of {100}<001> recrystallization texture in face-centered cubic metals such as Cu. P is the same face-centered cubic Ni−Fe−
We added it to Nb-based alloys and studied the formation of recrystallized texture. In other words, when a Ni-Fe binary alloy is cold-rolled, a {110}<112>+{112}<111> working texture is produced, but when this is heated at high temperature, a {100}<001> recrystallization texture is generated. known to develop. However, when Nb is added to this, the stacking fault energy decreases and a {110}<112> recrystallized texture is generated, but by adding a small amount of P to this, the stacking fault energy becomes {110}<112>. 001〉
The growth of recrystallized texture is suppressed, {110}<112>
Growth of recrystallized texture is promoted preferentially, {110}
They discovered that the formation of a <112> recrystallized texture significantly improves wear resistance. Also
When P is added to Ni-Fe-Nb alloy, Ni-P,
Fe-P and Nb-P-based hard phosphides precipitate in the matrix, increasing hardness and contributing to improved wear resistance, as well as the dispersed precipitation of these strong and weak, magnetic and non-ferromagnetic fine phosphides. It was also found that the eddy current loss in the alternating magnetic field is reduced by dividing the magnetic domain, thereby increasing the effective magnetic permeability. In short, due to the synergistic effect of Nb and P,
As the {110}<112> recrystallization texture develops, the effective magnetic permeability increases, resulting in a high permeability alloy with excellent wear resistance. To make the alloy of the present invention, Ni60-90%, Nb0.5
After melting appropriate amounts of ~14%, P0.001~1% and the balance Fe in air, preferably in a non-oxidizing atmosphere (hydrogen, argon, nitrogen, etc.) or in vacuum using a suitable melting furnace, manganese, silicon,
Add a small amount of deoxidizing and desulfurizing agents such as aluminum, titanium, calcium alloys, magnesium alloys, beryllium alloys, etc. to remove impurities as much as possible. Alternatively, the width components of the above alloy may include Cr, Mo,
7% or less of Ge, Au, 10% or less of Co, V, 15% of W
% or less, Cu, Ta, Mn 25% or less, Al, Si, Ti,
Zr, Hf, Sn, Sb, Ge, In, Tl, rare earth elements,
5% or less of platinum group elements, Be, Ag, Sr, Ba
% or less, one type or two or more types of B1% or less are further added in a predetermined amount of 0.01 to 30% in total. The mixture thus obtained is thoroughly agitated to produce a compositionally uniform molten alloy. Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is further forged or hot-worked at high temperatures to form an appropriate shape, such as a bar or plate. 600 if necessary
Anneal at temperatures above ℃. Next, this is subjected to cold working at a processing rate of 30% or more by a method such as cold rolling to produce a thin plate of the desired shape, for example, a thin plate with a thickness of 0.1 mm. Next, an annular plate with an outer diameter of 45 mm and an inner diameter of 33 mm is punched out from the thin plate, and this is held in hydrogen or other suitable non-oxidizing atmosphere (hydrogen, argon, nitrogen, etc.) or in vacuum at a temperature of 800°C or more and below the melting point. , heated for a predetermined time, and then heated at 100°C/sec to 1 from a temperature above the regular-irregular lattice transformation point (approximately 600°C).
It is cooled at an appropriate rate corresponding to the composition per hour, or it is further reheated at a temperature below the regular-disorder lattice transformation point (approximately 600°C) for an appropriate period of time, and then cooled. In this way, it has an effective magnetic permeability of 3000 or more, a saturation magnetic flux density of 4000G or more, and {110}<112>
A wear-resistant high permeability alloy with a recrystallized texture is obtained. The invention will now be explained with reference to the drawings. Figure 1 shows the recrystallized texture and structure of an 80%Ni-Fe-5%Nb-P alloy that was cold rolled at a processing rate of 85%, heated to 1050℃, and then cooled at a rate of 1000℃/hour. This figure shows the relationship between various properties and the amount of P. When Ni-Fe-Nb alloy is cold-rolled, a processing texture of {110}〈112〉+{112}〈111〉 occurs, but when this is heated at high temperature, it becomes {110}〈112〉+
Recrystallization collection of {100}<001>{100} synthesis is generated. However, when P is added to this, {100}<001
>The formation of recrystallized texture is suppressed, {110}
The <112> recrystallization texture develops, and the amount of wear decreases accordingly. Moreover, the effective magnetic permeability increases by adding P. Figure 2 shows 80%Ni-Fe-5%Nb
This figure shows the relationship between the recrystallization texture and various properties and cold working rate when heated at 1050℃ for -0.05%P alloy, and the increase in cold working rate is due to {110}<112> It leads to the development of recrystallized texture, improves wear resistance and increases effective magnetic permeability.
Figure 3 shows the relationship between the heating temperature, recrystallization texture, and various properties after rolling an 80% Ni-Fe-5% Nb-0.05% P alloy at a cold working rate of 85%. As the heating temperature increases, the {112}<111> component decreases, the {110}<112> component develops, the wear resistance improves, and the effective magnetic permeability increases. Figure 4 shows alloy number 8 (80%Ni-Fe-5%Nb-0.05%P alloy) and alloy number 41 (79.5%Ni-Fe-8%Nb-0.035).
%P-2%Mo alloy), alloy number 89 (82%Ni-Fe
2% Nb-0.085% P-3% Si based alloy), the relationship between effective magnetic permeability and cooling rate, and the effective magnetic permeability (x mark) when this is further reheated are shown. It can be seen that there is an optimal cooling rate, optimal reheating temperature, and optimal reheating time that correspond to the composition of the alloy. Figure 5 is a characteristic diagram of the wear resistance of the magnetic head when Cr, Mo, Ge, Au or Co is added to the 80%Ni-Fe-5%Nb-0.05%P alloy.
When Mo, Ge, Au, or Co is added, the effective magnetic permeability increases and the amount of wear decreases, but
If Cr, Mo, Ge or Au exceeds 7%, the saturation magnetic flux density will be less than 4000G, which is not preferable. Also
If Co is 10% or more, the effective magnetic permeability will be less than 3000, which is not preferable. Figure 6 shows the same 80%Ni-Fe-5%Nb-0.05%
This is a characteristic diagram of the wear amount and effective magnetic permeability of the magnetic head when V, W, Cu, Ta, or Mn is added to the P-based alloy. increases and the amount of wear decreases, but if V is 10% or more and W is 15% or more,
If Cu, Ta or Mn is added in an amount of 25% or more, the saturation magnetic flux density will be less than 4000G, which is not preferable. Figure 7 shows the same 80%Ni-Fe-5%Nb-0.05%
This is a characteristic diagram when Al, Si, Ti, Zr, Hf, Sn, Sb or Ga is added to P-based alloy.
When Zr, Hf, Sn, Sb, or Ga is added in an amount of 5% or more, the effective magnetic permeability increases and the amount of wear decreases, but when Si, Ti, Zr, Hf, or Ga is added in an amount of 5% or more, the saturation magnetic flux density decreases. 4000G or less, Al, Sn
Alternatively, if the Sb content is 5% or more, forging becomes difficult, which is not preferable. Figure 8 shows the same 80%Ni-Fe-5%Nb-0.05%
P-based alloys include In, Tl, La, Ru, Be, Ag, Sr, Ba
Or, in the characteristic diagram when B is added, In, Tl,
Adding La, Ru.Be, Ag, Sr, Ba or B increases the effective permeability and reduces the amount of wear.
When 3% or more of Ba is added, the saturation magnetic flux density becomes 4000G.
If 3% or more of Ag or 1% or more of B is added, forging becomes difficult and undesirable. Figure 9 shows an 80% Ni-Fe-5% Nb-0.05% P alloy produced in the same manner as in the example, forged at about 1000°C to a thickness of 7 mm, and then heated to a thickness of 0.67 mm at various heating temperatures.
The sheet was hot rolled to 1000℃, then cold rolled at room temperature to form a 0.1mm thin plate (cold working rate 85%). After heating this sheet in hydrogen at 1050℃ for 2 hours,
FIG. 2 is a characteristic diagram showing the relationship between the temperature of hot working, the degree of accumulation of recrystallized texture, and the amount of wear when cooling to room temperature at a rate of °C/hr. When the hot rolling temperature is below 900℃, {112} and <111> remain and the amount of wear is large, but at temperatures between 900℃ and 1000℃, {110}
<112> is developed and the amount of wear becomes particularly small. The method for producing the alloy of the present invention involves a process of repeating hot rolling at temperatures above 900°C and below 1000°C, cold working at a working rate of 50% or more, and heat treatment at temperatures above 900°C. Tsute {110}
The recrystallized texture of <112> is significantly developed, and a Ni-Fe-Nb-P alloy with excellent wear resistance is obtained. In the present invention, cold working is {110}<112>+
It is necessary to form the {112}〈111〉 texture and develop the {110}〈112〉 recrystallization texture based on this, and as seen in Figures 1 and 2, P0. 001% or higher, the development of {110} <112> recrystallized texture is remarkable, especially when cold working is performed at a working rate of 30% or higher, and the wear resistance is significantly improved, and the effective permeability is also expensive. In addition, the heating performed after the cold working described above not only homogenizes the structure and removes processing distortion, but also develops a {110} <112> recrystallized texture, resulting in high effective magnetic permeability and excellent wear resistance. However, as shown in FIG. 3, effective magnetic permeability and wear resistance are significantly improved by heating to 800° C. or higher. In addition, the above cold working and the subsequent 800℃
Repeated heating below the melting point is
Increasing the degree of accumulation of {110}<112> recrystallized texture,
Effective for improving wear resistance. In that case, even if the processing rate of final cold working is less than 30% {110}
Although a <112> recrystallized texture is obtained, it is included in the technical idea of the present invention. When cooling from a temperature above 800°C below the melting point to a temperature above the regular-irregular lattice transformation point (approximately 600°C), there is not much difference in the magnetism obtained whether cooling is rapid or gradual. As seen in FIG. 4, the cooling rate below this transformation point has a large effect on magnetism. In other words, 100℃/from the temperature above this transformation point
By cooling to room temperature at an appropriate rate corresponding to the composition of seconds to 1° C./hour, the degree of regularity of the ground can be appropriately adjusted and excellent magnetism can be obtained. Then, if you rapidly cool it at a rate close to 100℃/sec among the above cooling rates,
The degree of order decreases, and if it is cooled any faster, the degree of order does not progress, and the degree of order decreases further, resulting in deterioration of magnetism. However, depending on the composition of the alloy with a small degree of order, at 200℃ to 600℃ below its transformation point
When reheated for 1 minute or more and 100 hours or less and cooled, ordering progresses to a suitable degree of order and improves magnetism. On the other hand, if it is slowly cooled from a temperature above the above-mentioned transformation point at a rate of, for example, 1° C./hour or less, ordering will proceed too much and the magnetism will decrease. Note that it is preferable to perform the above heat treatment in an atmosphere where hydrogen is present, since this is particularly effective in increasing the effective magnetic permeability. Next, examples of the present invention will be described. Example 1 Alloy number 8 (composition Ni=80%, Nb=5%, P
= 0.05%, Fe = balance) Production of alloy 99.8% pure electrolytic nickel, 99.9% as raw material
Purity electrolytic iron, 99.8% purity niobium and phosphorus 20
% nickel-phosphorus master alloy was used. To make the sample, put the raw materials into an alumina crucible with a total weight of 800 g.
After melting in vacuum using a high frequency induction electric furnace,
The mixture was thoroughly stirred to obtain a homogeneous molten alloy. Next, pour this into a mold with a hole of 25 mm in diameter and 170 mm in height.
The obtained ingot was forged at about 1000°C to form a plate with a thickness of about 7 mm. Furthermore, it was hot rolled to an appropriate thickness between approximately 900℃ and 1000℃, and then cold rolled at room temperature at various processing rates to obtain a thin plate of 0.1mm.Then, an annular plate with an outer diameter of 45mm and an inner diameter of 33mm was formed. Punched out. This is then subjected to various heat treatments to improve its magnetic properties and improve humidity levels of 80% when used as the core of a magnetic head.
%, and the amount of wear after 200 hours of running on a CrO 2 magnetic tape at 40°C was measured using a Talysurf surface roughness meter, and the characteristics shown in Table 1 were obtained.

【表】 実施例 2 合金番号41(組成Ni=79.5%、Nb=8%、P
=0.035%、Mo=2%、Fe=残部)の合金の製
造 原料は実施例1と同じ純度のニツケル、鉄およ
び99.8%純度のニオブ、モリブデンとリン10%の
鉄−リン母合金を用いた。試料の製造法は実施例
1とおなじである。試料に種々の熱処理を施して
磁気特性および磁気ヘツドのコアとして使用した
場合湿度80%、温度40℃においてCrO2磁気テー
プによる200時間走行後の摩耗量の測定を行い、
第2表に示すような特性が得られた。 なお代表的な合金の特性は第3表に示すとおり
である。
[Table] Example 2 Alloy number 41 (composition Ni=79.5%, Nb=8%, P
= 0.035%, Mo = 2%, Fe = balance) The raw materials used were nickel and iron with the same purity as in Example 1, niobium with 99.8% purity, an iron-phosphorus master alloy containing molybdenum and 10% phosphorus. . The method for manufacturing the sample was the same as in Example 1. When the sample was subjected to various heat treatments and used as the core of a magnetic head, the amount of wear was measured after 200 hours of running with a CrO 2 magnetic tape at a humidity of 80% and a temperature of 40°C.
The properties shown in Table 2 were obtained. The characteristics of typical alloys are shown in Table 3.

【表】【table】

【表】【table】

【表】 上記実施例、第3表および図面に掲げた合金に
は比較的純度の高い金属Nb,Cr,Mo,W,
Mn,V,Ti,Al,Siおよび希土類元素等を用い
たが、これらの代わりに経済的に有利な一般市販
のフエロ合金、母合金およびミツシユメタルを用
いても溶解の際、脱酸、脱硫を充分に行えば、こ
れら金属を単独で用いる場合とほぼ同様な磁気特
性、耐摩性および加工性が得られる。 上記のように本発明合金は加工が容易で、耐摩
耗性にすぐれ、4000G以上の飽和磁束密度、高い
透磁率、低保磁力を有しているので、磁気記録再
生ヘツドのコアおよびケース用磁性合金として好
適であるばかりでなく、耐摩耗性および高透磁率
を必要とする一般の電磁器機の磁性材料としても
好適である。 次に本発明において合金の組成をNi60〜90%、
Nb0.5〜14%、P0.001〜1%および残部Feと限定
し、これに幅成分として添加する元素をCr,
Mo,Ge,Auを7%以下、Co,Vを10%以下、
Wを15%以下、Cu,Ta,Mnを25%以下、Al,
Si,Ti,Zr,Hf,Sn,Sb,Ga,In,Tl,希土
類元素、白金族元素を5%以下、Be,Ag,Sr,
Baを3%以下、Bを1%以下の1種または2種
以上の合計で0.01〜30%と限定した理由は各実施
例、第3表および図面で明らかなように、この組
成範囲の実効透磁率は3000以上、飽和磁束密度
4000G以上で、且つ{110}〈112〉の再結晶集合
組織を有し、耐摩耗性がすぐれているが、この組
成範囲をはずれると磁気特性あるいは耐摩耗性が
劣化するからである。 すなわち、Nb0.5%以下およびP0.001%以下で
は{110}〈112〉の再結晶集合組織が充分発達し
ないので耐摩耗性が悪く、Nb14%以上およびP1
%以上では鍛造加工が困難となり、また実効透磁
率3000以下、飽和磁束密度4000G以下になるから
である。 そしてNi60〜90%、Nb0.5〜14%、P0.001〜1
%および残部Feの組成範囲の合金は、実効透磁
率3000以上、飽和磁束密度4000G以上で、耐摩耗
性がすぐれ、且つ加工性が良好であるが、一般に
これにさらにCr,Mo,Ge,Au,W,V,Cu,
Ta,Mn,Al,Zr,Si,Ti,Hf,Ga,希土類元
素、Be,Ag,B等を添加すると特に実効透磁率
を高める効果があり、Coを添加すると投入飽和
磁束密度を高める効果があり、Ge,Au,V,
Ta,W,Ti,Zr,Hf,Al,Si,Sn,Sb,Ga,
In,Tl,希土類元素、白金族元素,Be,Ag,
Sr,Ba,B等を添加すると特に耐摩耗性を向上
する効果があり、Au,Mn,Ti,Co,希土類元
素、Be,Sr,Ba,Bを添加すると鍛造、加工を
良好にする効果がある。
[Table] The alloys listed in the above examples, Table 3, and drawings include relatively pure metals Nb, Cr, Mo, W,
Mn, V, Ti, Al, Si, rare earth elements, etc. were used, but economically advantageous commercially available ferro alloys, master alloys, and Mitsushi metals could also be used instead of these to prevent deoxidation and desulfurization during melting. If done satisfactorily, magnetic properties, wear resistance, and processability can be obtained that are almost the same as when these metals are used alone. As mentioned above, the alloy of the present invention is easy to process, has excellent wear resistance, has a saturation magnetic flux density of 4000 G or more, high magnetic permeability, and low coercive force, so it can be used as a magnetic material for cores and cases of magnetic recording/reproducing heads. It is suitable not only as an alloy but also as a magnetic material for general electromagnetic equipment that requires wear resistance and high magnetic permeability. Next, in the present invention, the composition of the alloy is 60 to 90% Ni,
Nb0.5~14%, P0.001~1% and the balance Fe, and the elements added as width components are Cr,
Mo, Ge, Au 7% or less, Co, V 10% or less,
W 15% or less, Cu, Ta, Mn 25% or less, Al,
Si, Ti, Zr, Hf, Sn, Sb, Ga, In, Tl, rare earth elements, platinum group elements at 5% or less, Be, Ag, Sr,
The reason for limiting Ba to 3% or less and B to 1% or less, the total of one or more types of 0.01 to 30%, is due to the effectiveness of this composition range, as is clear from each example, Table 3, and drawings. Magnetic permeability is over 3000, saturation magnetic flux density
This is because it has a recrystallized texture of {110}<112> and has excellent wear resistance, but if the composition falls outside this composition range, the magnetic properties or wear resistance will deteriorate. In other words, if Nb is 0.5% or less and P is 0.001% or less, the recrystallized texture of {110}<112> will not develop sufficiently, resulting in poor wear resistance;
% or more, forging becomes difficult, and the effective magnetic permeability becomes less than 3000 and the saturation magnetic flux density becomes less than 4000G. And Ni60~90%, Nb0.5~14%, P0.001~1
% and the balance Fe has an effective magnetic permeability of 3000 or more, a saturation magnetic flux density of 4000G or more, excellent wear resistance, and good workability, but generally alloys with Cr, Mo, Ge, and Au in addition to these have excellent wear resistance and workability. ,W,V,Cu,
Adding Ta, Mn, Al, Zr, Si, Ti, Hf, Ga, rare earth elements, Be, Ag, B, etc. has the effect of increasing the effective magnetic permeability, and adding Co has the effect of increasing the input saturation magnetic flux density. Yes, Ge, Au, V,
Ta, W, Ti, Zr, Hf, Al, Si, Sn, Sb, Ga,
In, Tl, rare earth elements, platinum group elements, Be, Ag,
Adding Sr, Ba, B, etc. has the effect of particularly improving wear resistance, and adding Au, Mn, Ti, Co, rare earth elements, Be, Sr, Ba, B, etc. has the effect of improving forging and processing. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は80%Ni−Fe−5%Nb−P系合金の諸
特性とP量との関係を示す特性図、第2図は80%
Ni−Fe−5%Nb−0.05%P系合金の諸特性と冷
間加工率との関係を示す特性図、第3図は80%
Ni−Fe−5%Nb−0.05%P系合金の諸特性と加
熱温度との関係を示す特性図、第4図は80%Ni
−Fe−5%Nb−0.05%P系合金の(合金番号
8)、79.5%Ni−Fe−8%Nb−0.035%P−2%
Mo系合金(合金番号41)、および82%Ni−Fe−
2%Nb−0.085%P−3%Si系合金(合金番号
89)の実効透磁率と冷却速度、再加熱温度および
再加熱時間との関係を示す特性図、第5図は80%
Ni−Fe−5%Nb−0.05%P系合金にCr,Mo,
Ge,AuあるいはCoを添加した場合の諸特性と各
元素の添加量との関係を示す特性図、第6図は80
%Ni−Fe−5%Nb−0.05%P系合金にV,W,
Cu,TaあるいはMnを添加した場合の諸特性と
各元素の添加量との関係を示す特性図、第7図は
80%Ni−Fe−5%Nb−0.05%P系合金にAl,
Si,Ti,Zr,Hf,Sn,SbあるいはGaを添加し
た場合の諸特性と各元素の添加量との関係を示す
特性図、第8図はIn,Tl,La,Ru,Be,Ag,
Sr,BaあるいはBを添加した場合の諸特性と各
元素の添加量との関係を示す特性図、第9図は80
%Ni−Fe−5%Nb−0.05%P系合金の熱間圧延
加工温度と再結晶集合組織と摩耗量との関係を示
す特性図である。
Figure 1 is a characteristic diagram showing the relationship between various properties and P content of 80%Ni-Fe-5%Nb-P alloy, Figure 2 is 80%Ni-Fe-5%Nb-P alloy.
Characteristic diagram showing the relationship between various properties and cold working rate of Ni-Fe-5%Nb-0.05%P alloy, Figure 3 is 80%
Characteristic diagram showing the relationship between various properties and heating temperature of Ni-Fe-5%Nb-0.05%P alloy, Figure 4 shows 80%Ni
-Fe-5%Nb-0.05%P-based alloy (alloy number 8), 79.5%Ni-Fe-8%Nb-0.035%P-2%
Mo-based alloy (alloy number 41) and 82% Ni−Fe−
2%Nb-0.085%P-3%Si alloy (alloy number
89), a characteristic diagram showing the relationship between the effective magnetic permeability, cooling rate, reheating temperature, and reheating time. Figure 5 is 80%.
Ni-Fe-5%Nb-0.05%P alloy with Cr, Mo,
A characteristic diagram showing the relationship between various characteristics and the amount of each element added when Ge, Au or Co is added, Figure 6 is 80
%Ni-Fe-5%Nb-0.05%P alloy with V, W,
Figure 7 is a characteristic diagram showing the relationship between various characteristics and the amount of each element added when Cu, Ta or Mn is added.
80%Ni-Fe-5%Nb-0.05%P alloy with Al,
A characteristic diagram showing the relationship between various characteristics and the amount of each element added when Si, Ti, Zr, Hf, Sn, Sb or Ga is added.
A characteristic diagram showing the relationship between various properties and the amount of each element added when Sr, Ba or B is added, Figure 9 is 80
FIG. 2 is a characteristic diagram showing the relationship between hot rolling temperature, recrystallization texture, and wear amount of a %Ni-Fe-5%Nb-0.05%P-based alloy.

Claims (1)

【特許請求の範囲】 1 重量比にてNi60〜90%、Nb0.5〜14%、
P0.001〜1%および残部Feと少量の不純物とか
らなり、1KHzにおける実効透磁率3000以上、飽
和磁束密度4000G以上で、且つ{110}〈112〉の
再結晶集合組織を有することを特徴とする耐摩耗
性高透磁率合金。 2 重量比にてNi60〜90%、Nb0.5〜14%、
P0.001〜1%、Cr,Mo,Ge,Auをそれぞれ7
%以下、Co、Vをそれぞれ10%以下、Wを15%
以下、Cu,Ta,Mnをそれぞれ25%以下、Al,
Si,Ti,Zr,Hf,Sn,Sb,Ga,In,Tl,希土
類元素、白金族元素をそれぞれ5%以下、Be,
Ag,Sr,Baをそれぞれ3%以下、Bを1%以下
の1種または2種以上の合計0.01〜30%、残部Fe
および少量の不純物とからなり、1KHzにおける
実効透磁率3000以上、飽和磁束密度4000G以上
で、且つ{110}〈112〉の再結晶集合組織を有す
ることを特徴とする耐摩耗性高透磁率合金。 3 重量比にてNi60〜90%、Nb0.5〜14%、
P0.001〜1%および残部Feと少量の不純物とか
らなる合金を900℃を超え1000℃以下の温度で熱
間加工した後冷却し、次に加工率50%以上の冷間
加工を施した後、900℃以上融点以下の温度で加
熱し、ついで規則−不規則格子変態点以上の温度
から100℃/秒〜1℃/時の組成に対応した所定
速度で常温まで冷却することにより、1KHzにお
ける実効透磁率3000以上、飽和磁束密度4000G以
上で、且つ{110}〈112〉の再結晶集合組織を形
成せしめることを特徴とする耐摩耗性高透磁率合
金の製造法。 4 重量比にてNi60〜90%、Nb0.5〜14%、
P0.001〜1%および残部Feと少量の不純物とか
らなる合金を900℃を超え1000℃以下の温度で熱
間加工した後冷却し、次に加工率50%以上の冷間
加工を施した後、900℃以上融点以下の温度で加
熱し、ついで規則−不規則格子変態点以上の温度
から100℃/秒〜1℃/時の組成に対応した所定
の速度で冷却し、これをさらに規則−不規則格子
変態点以下の温度で1分間以上100時間以下の組
成に対応した所定時間加熱し冷却することによ
り、1KHzにおける実効透磁率3000以上、飽和磁
束密度4000G以上で、且つ{110}〈112〉の再結
晶集合組織を形成せしめることを特徴とする耐摩
耗性高透磁率合金の製造法。
[Claims] 1. Ni 60-90%, Nb 0.5-14% by weight,
It consists of P0.001~1%, the balance is Fe, and a small amount of impurities, and is characterized by having an effective magnetic permeability of 3000 or more at 1KHz, a saturation magnetic flux density of 4000G or more, and a recrystallization texture of {110}<112>. Wear-resistant high permeability alloy. 2 Ni60-90%, Nb0.5-14% by weight,
P0.001~1%, 7 each for Cr, Mo, Ge, and Au
% or less, Co and V each 10% or less, W 15%
Below, Cu, Ta, Mn are each 25% or less, Al,
Si, Ti, Zr, Hf, Sn, Sb, Ga, In, Tl, rare earth elements, platinum group elements each at 5% or less, Be,
Ag, Sr, Ba 3% or less each, B 1% or less, total 0.01-30%, balance Fe
and a small amount of impurities, and has an effective magnetic permeability of 3000 or more at 1KHz, a saturation magnetic flux density of 4000G or more, and a recrystallization texture of {110}<112>. 3 Ni60-90%, Nb0.5-14% by weight,
An alloy consisting of P0.001 to 1%, the balance Fe, and a small amount of impurities was hot worked at a temperature above 900°C and below 1000°C, then cooled, and then cold worked at a processing rate of 50% or more. After that, it is heated at a temperature of 900℃ or higher and lower than the melting point, and then cooled from the regular-irregular lattice transformation point or higher to room temperature at a predetermined rate corresponding to the composition of 1KHz. A method for producing a wear-resistant high permeability alloy, which has an effective magnetic permeability of 3000 or more, a saturation magnetic flux density of 4000G or more, and forms a recrystallized texture of {110}<112>. 4 Ni60-90%, Nb0.5-14% by weight,
An alloy consisting of P0.001 to 1%, the balance Fe, and a small amount of impurities was hot worked at a temperature above 900°C and below 1000°C, then cooled, and then cold worked at a processing rate of 50% or more. After that, it is heated at a temperature of 900℃ or higher and lower than the melting point, and then cooled at a predetermined rate corresponding to the composition from 100℃/sec to 1℃/hour from a temperature higher than the ordered-irregular lattice transformation point. - By heating and cooling at a temperature below the irregular lattice transformation point for a predetermined time corresponding to the composition for 1 minute to 100 hours, the effective magnetic permeability at 1KHz is 3000 or more, the saturation magnetic flux density is 4000G or more, and {110} A method for producing a wear-resistant high permeability alloy characterized by forming a recrystallized texture of 112〉.
JP59079101A 1984-04-19 1984-04-19 Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head Granted JPS60224728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59079101A JPS60224728A (en) 1984-04-19 1984-04-19 Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59079101A JPS60224728A (en) 1984-04-19 1984-04-19 Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP1262696A Division JPH0645847B2 (en) 1989-10-07 1989-10-07 Manufacturing method of wear resistant high permeability alloy.
JP1262697A Division JPH02186605A (en) 1989-10-07 1989-10-07 Wear-resistant high permeability magnetic recording and reproducing head

Publications (2)

Publication Number Publication Date
JPS60224728A JPS60224728A (en) 1985-11-09
JPH0310699B2 true JPH0310699B2 (en) 1991-02-14

Family

ID=13680487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59079101A Granted JPS60224728A (en) 1984-04-19 1984-04-19 Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head

Country Status (1)

Country Link
JP (1) JPS60224728A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191340A (en) * 1984-10-11 1986-05-09 Res Inst Electric Magnetic Alloys Wear-resistant high permeability alloy and its production and magnetic recording and reproducing head
JPS61174349A (en) * 1985-01-30 1986-08-06 Res Inst Electric Magnetic Alloys Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/playback head
JP3294029B2 (en) * 1994-11-16 2002-06-17 財団法人電気磁気材料研究所 Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121120A (en) * 1974-03-12 1975-09-22
JPS58123848A (en) * 1982-01-20 1983-07-23 Res Inst Electric Magnetic Alloys Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
JPS6024348A (en) * 1983-07-21 1985-02-07 Res Inst Electric Magnetic Alloys Wear-resistant alloy with high magnetic permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121120A (en) * 1974-03-12 1975-09-22
JPS58123848A (en) * 1982-01-20 1983-07-23 Res Inst Electric Magnetic Alloys Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
JPS6024348A (en) * 1983-07-21 1985-02-07 Res Inst Electric Magnetic Alloys Wear-resistant alloy with high magnetic permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Also Published As

Publication number Publication date
JPS60224728A (en) 1985-11-09

Similar Documents

Publication Publication Date Title
US4830685A (en) Wear-resistant alloy of high permeability and method of producing the same
JP2777319B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JPS62988B2 (en)
JPS625972B2 (en)
US5725687A (en) Wear-resistant high permability alloy and method of manufacturing the same and magnetic recording and reproducing head
JPS6212296B2 (en)
JPH0310699B2 (en)
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JP3251899B2 (en) Wear-resistant high permeability alloy and magnetic recording / reproducing head
JPH02194154A (en) Manufacture of water-resistant high permeability alloy
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPH0377644B2 (en)
JPH0310700B2 (en)
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPS6218619B2 (en)
JPH0645846B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0368107B2 (en)
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JPH02146704A (en) Magnetic recording and reproducing head having wear resistance and high permeability
JPH07166281A (en) Wear resistant magnetic alloy
JPH0377645B2 (en)
JPH032216B2 (en)
JPS6155583B2 (en)
JPS6130405B2 (en)