JPH06299129A - Adhesive for electronic device - Google Patents

Adhesive for electronic device

Info

Publication number
JPH06299129A
JPH06299129A JP5083685A JP8368593A JPH06299129A JP H06299129 A JPH06299129 A JP H06299129A JP 5083685 A JP5083685 A JP 5083685A JP 8368593 A JP8368593 A JP 8368593A JP H06299129 A JPH06299129 A JP H06299129A
Authority
JP
Japan
Prior art keywords
adhesive
electronic device
filler
fiber
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5083685A
Other languages
Japanese (ja)
Other versions
JP2880875B2 (en
Inventor
Yukari Kaga
由佳里 加我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5083685A priority Critical patent/JP2880875B2/en
Publication of JPH06299129A publication Critical patent/JPH06299129A/en
Application granted granted Critical
Publication of JP2880875B2 publication Critical patent/JP2880875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PURPOSE:To improve the reliability of an electronic device by using an adhesive having a high thermal conductivity so as to improve heat dissipation of the electronic device and preventing strain between inner constituting components or breakage thereof caused by generated thermal stress. CONSTITUTION:There is provided an adhesive 1 for an electronic device, composed of a filler 2 such as carbon fibers mutually independent and continuous in the direction of the heat-conducting pass and a matrix 3 composed of an uncured or semi-cured resin and supplied in the form of sheet or film. This adhesive 1 is hardened by heating to bond an electronic device 4 to a heat sink 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子デバイス用接着剤に
関する。
TECHNICAL FIELD The present invention relates to an adhesive for electronic devices.

【0002】[0002]

【従来の技術】電子デバイスは、熱膨張係数の異なる多
種の材料から構成されているため、組立中あるいは使用
中に生じる温度差によって内部構成要素間に応力や歪を
生じる。従来の素子集積度が比較的小さいデバイスでは
発生熱も比較的小さく、またパッケージは大型・厚型で
あったため応力や歪の発生による影響も比較的小さかっ
た。ところが、集積度が上がりパッケージが小型・薄型
化するにつれて、放熱の必要性が高まってきた。そのた
め、放熱を良くする方法が検討され、その1つに電子デ
バイスモジュール(以下、モジュールと記す)中の放熱
空間や放熱機構(放熱経路)の設計上の問題点がある。
2. Description of the Related Art Since electronic devices are made of various materials having different coefficients of thermal expansion, stress or strain is generated between internal components due to a temperature difference generated during assembly or during use. In the conventional device with a relatively small degree of element integration, the generated heat was also relatively small, and since the package was large and thick, the influence of stress and strain was relatively small. However, as the degree of integration has increased and the package has become smaller and thinner, the need for heat dissipation has increased. Therefore, a method of improving heat dissipation has been studied, and one of them is a design problem of a heat dissipation space and a heat dissipation mechanism (heat dissipation path) in an electronic device module (hereinafter referred to as a module).

【0003】ところが、このとき放熱経路に用いられる
電子デバイス用接着剤(以下、接着剤と記す)は樹脂を
主成分としているので一般に熱伝導性が悪い。そこで、
図4(a)に示すように、熱伝導率の高い金属などの粒
子を充填材2としてマトリックス3に分散させて放熱性
を高める方法が用いられた。
However, the adhesive for electronic devices (hereinafter referred to as the adhesive) used for the heat dissipation path at this time generally has poor thermal conductivity because it contains a resin as a main component. Therefore,
As shown in FIG. 4 (a), a method was used in which particles such as a metal having a high thermal conductivity were dispersed as a filler 2 in the matrix 3 to enhance heat dissipation.

【0004】[0004]

【発明が解決しようとする課題】この粒子充填系接着剤
における熱伝導率の増加度合いは、充填率の増加に対し
て伸びが小さいため、熱伝導率の大きな改良は期待でき
ない。このためヒートシンクの放熱機構を改良したり、
パッケージとして放熱性に優れた材料を用いても、この
接着剤の熱伝導率が向上できないためにモジュール全体
として好ましい放熱特性を得ることができず電子デバイ
スの信頼性上問題点があった。
Since the degree of increase in the thermal conductivity of this particle-filled adhesive is small with respect to the increase in the packing rate, a large improvement in the thermal conductivity cannot be expected. Therefore, the heat dissipation mechanism of the heat sink is improved,
Even if a material excellent in heat dissipation is used for the package, the heat conductivity of the adhesive cannot be improved, so that the module as a whole cannot obtain a preferable heat dissipation property, and there is a problem in reliability of the electronic device.

【0005】本発明の目的は、熱伝導性に優れ電子デバ
イスの信頼性を確保できる電子デバイス用接着剤を提供
することにある。
An object of the present invention is to provide an adhesive for an electronic device which has excellent thermal conductivity and can secure the reliability of the electronic device.

【0006】[0006]

【課題を解決するための手段】本発明の電子デバイス用
接着剤は、ガラス繊維と炭素繊維とアルミナ繊維を含む
無機繊維と、ポリアミド繊維とポリエステル繊維を含む
有機繊維と、金属繊維とのうちのいずれか一種の充填材
と、未硬化または光硬化状樹脂とを含有し、前記充填材
の繊維が熱経路方向に互いに独立して連続しているかま
たは前記充填材の繊維が熱経路方向に糸まり状で連続し
ている。
The adhesive for electronic devices of the present invention comprises an inorganic fiber containing a glass fiber, a carbon fiber and an alumina fiber, an organic fiber containing a polyamide fiber and a polyester fiber, and a metal fiber. It contains any one kind of filler and an uncured or photocurable resin, and the fibers of the filler are continuous independently of each other in the heat path direction, or the fibers of the filler are yarns in the heat path direction. It is continuous in a ball shape.

【0007】[0007]

【作用】一般に接着剤として用いられているシリコーン
などの樹脂材料は、熱伝導率がおよそ0.2W/m・K
程度である。そこで熱伝導率の高い材料を充填すること
によって、接着剤全体の熱伝導率を改良することが可能
である。
[Function] A resin material such as silicone which is generally used as an adhesive has a thermal conductivity of about 0.2 W / m · K.
It is a degree. Therefore, it is possible to improve the thermal conductivity of the entire adhesive by filling it with a material having a high thermal conductivity.

【0008】例えば、図4(a)のように、樹脂のマト
リックス3に対し、球状の粒子の充填材2を分散させた
ときの複合系の熱伝導率Kaは、粒子どうしの相互作用
がなければ
For example, as shown in FIG. 4 (a), the thermal conductivity Ka of the composite system when the filler 2 of spherical particles is dispersed in the resin matrix 3 is such that there is no interaction between particles. If

【0009】[0009]

【表1】 [Table 1]

【0010】と表される。ここで、Km:マトリックス
樹脂の熱伝導率 Kf:充填材の熱伝導率 rf:充填材の体積含有比 である。一方、図4(b)のように、充填材2の一部が
樹脂のマトリックス3の一端から他端にに連続するよう
に充填したときの熱伝導率Kbは、
It is expressed as Here, Km is the thermal conductivity of the matrix resin, Kf is the thermal conductivity of the filler, and rf is the volume content ratio of the filler. On the other hand, as shown in FIG. 4B, the thermal conductivity Kb when a part of the filler 2 is continuously filled from one end to the other end of the resin matrix 3 is

【0011】[0011]

【表2】 [Table 2]

【0012】と表される。したがって、Kf〉〉Kmで
ある同一充填材を選択して熱伝導率を比較すると、
(2)式による改善効果の方が明かに大きい。
It is expressed as Therefore, when selecting the same filler with Kf >> Km and comparing the thermal conductivities,
The improvement effect by the formula (2) is obviously greater.

【0013】本発明では、充填材2は互いに独立した繊
維、または糸マリ状態の繊維であり、樹脂のマトリック
ス3の熱経路方向に連続している。したがって、接着剤
全体の熱の伝導は図4(b)のようなモデルで表現でき
る。
In the present invention, the filler 2 is a fiber which is independent of each other or a fiber in a yarn mull state, and is continuous in the heat path direction of the resin matrix 3. Therefore, the heat conduction of the entire adhesive can be represented by a model as shown in FIG.

【0014】[0014]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0015】図1は本発明の第1の実施例を用いたモジ
ュールの構成図である。第1の実施例は、図1に示すよ
うに、互いに独立した炭素繊維が充填材2として未硬化
または半硬化状樹脂すなわちマトリックス3に充填され
ており、使用前に攪拌などの必要がないフィルムあるい
はシートとして供給される。また、未硬化または半硬化
状樹脂のマトリックス3は、熱硬化性の樹脂によって構
成され、充填材2の体積含有率は約20%である。モジ
ュールは、電子デバイス4とヒートシンク5との間に接
着材1を配置して加熱することにより接着が行われて形
成される。
FIG. 1 is a block diagram of a module using the first embodiment of the present invention. In the first embodiment, as shown in FIG. 1, carbon fibers which are independent of each other are filled as a filler 2 in an uncured or semi-cured resin, that is, a matrix 3, and a film which does not need stirring before use. Alternatively, it is supplied as a sheet. The uncured or semi-cured resin matrix 3 is made of a thermosetting resin, and the volume content of the filler 2 is about 20%. The module is formed by arranging the adhesive material 1 between the electronic device 4 and the heat sink 5 and heating the same to bond them.

【0016】このようにして形成されたモジュールは、
電子デバイス4内部で発生した発生熱が接着剤1の充填
材2とマトリックス3を通りヒートシンク5により外部
へ熱放散される。ここで充填材2は、電子デバイス4内
部で発生した発生熱をヒートシンク5へ伝達する熱経路
の方向に互いに独立して連続しており放熱硬化を高め
る。この接着剤1の熱伝導率は、前式(2)から概算す
ると約1.42W/m・Kとなり、同じ含有率で粒子を
含有した従来の接着剤の前式(1)から概算した熱伝導
率0.23W/m・Kで比べると6倍以上改善されたこ
とになる。
The module thus formed is
The heat generated inside the electronic device 4 is dissipated to the outside by the heat sink 5 through the filler 2 of the adhesive 1 and the matrix 3. Here, the filler 2 is continuous independently of each other in the direction of the heat path for transmitting the heat generated inside the electronic device 4 to the heat sink 5, and enhances heat radiation curing. The thermal conductivity of this adhesive 1 is approximately 1.42 W / mK when estimated from the above equation (2), and the heat conductivity estimated from the above equation (1) of the conventional adhesive containing particles at the same content rate. Compared with the conductivity of 0.23 W / m · K, this means an improvement of 6 times or more.

【0017】図2は本発明の第2の実施例の断面図であ
る。第2の実施例は、図2に示すように、互いにからま
って糸まり状態である炭素繊維が充填材2として未硬化
または半硬化状樹脂すなわちマトリックス3に充填され
ており、使用前に攪拌などの必要がないフィルムあるい
はシートとして供給される。また、未硬化または半硬化
状樹脂のマトリックス3は熱硬化性の樹脂によって構成
され、充填材2の体積含有率は20%である。モジュー
ルは、電子デバイス4とヒートシンク5との間に接着剤
1を配置して加熱することにより接着が行われて形成さ
れる。
FIG. 2 is a sectional view of the second embodiment of the present invention. In the second embodiment, as shown in FIG. 2, uncured or semi-cured resin, that is, matrix 3 is filled with carbon fibers which are in a threaded state and are entangled with each other before use. It is supplied as a film or sheet that does not require. The matrix 3 of uncured or semi-cured resin is composed of a thermosetting resin, and the volume content of the filler 2 is 20%. The module is formed by arranging the adhesive 1 between the electronic device 4 and the heat sink 5 and heating the same to bond them.

【0018】このようにして形成されたモジュールは、
電子デバイス4内部で発生した発生熱が接着材1の充填
材2とマトリックス3を通りヒートシンク5により外部
へ熱放散される。ここで充填材2は、電子デバイスで発
生した発生熱をヒートシンク5へ伝達する熱経路方向に
糸まり状で連続しており放熱効果を高める。この接着剤
1の熱伝導率は、前式(2)から概算すると約1.42
W/m・Kとなり、同じ含有率で粒子を含有した従来の
接着剤の前式(1)から概算した熱伝導率0.23W/
m・Kと比べると6倍以上に改善されたことになる。
The module thus formed is
The heat generated inside the electronic device 4 passes through the filler 2 of the adhesive 1 and the matrix 3 and is dissipated to the outside by the heat sink 5. Here, the filler 2 is continuous in the form of a string in the direction of the heat path that transfers the heat generated by the electronic device to the heat sink 5, and enhances the heat radiation effect. The thermal conductivity of this adhesive 1 is approximately 1.42 when estimated from the above equation (2).
W / m · K, and the thermal conductivity of the conventional adhesive containing particles at the same content is approximately 0.23 W /
Compared to m ・ K, this means a 6 times improvement.

【0019】図3は本発明の実施例の供給方法を説明す
る斜視図である。上述した第1,第2の実施例は未硬化
または半硬化状樹脂で粘着性があるので取扱いには十分
注意することが必要であるので図3に示すように、離型
シート6に挟んで供給する必要がある。
FIG. 3 is a perspective view for explaining the supply method according to the embodiment of the present invention. Since the first and second embodiments described above are uncured or semi-cured resins and have adhesiveness, it is necessary to handle them with care. Therefore, as shown in FIG. Need to supply.

【0020】[0020]

【発明の効果】以上説明したように本発明は、接着剤の
熱伝導率を効果的に高められるので、従来と同様の充填
率で熱伝導率を大きくすることが可能となる。あるいは
充填率を高めて更に熱伝導性を改良し電子デバイスの信
頼性を向上できるという効果がある。
As described above, according to the present invention, the thermal conductivity of the adhesive can be effectively increased, so that the thermal conductivity can be increased at the same filling rate as in the conventional case. Alternatively, there is an effect that the filling rate can be increased to further improve the thermal conductivity and improve the reliability of the electronic device.

【0021】また、未硬化のシートまたはフィルムとし
て供給されるため混練,塗布といった工程が省ける上、
接着面積に応じて切り取るだけでよく、また成形する際
の接着剤の厚みが均一で組立精度を高めることができる
という効果がある。
Further, since it is supplied as an uncured sheet or film, steps such as kneading and coating can be omitted, and
It is only necessary to cut out according to the bonding area, and there is an effect that the thickness of the adhesive at the time of molding is uniform and the assembling accuracy can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を用いたモジュールの構
成図である。
FIG. 1 is a configuration diagram of a module using a first embodiment of the present invention.

【図2】本発明の第2の実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】本発明の実施例の供給方法を説明する斜視図で
ある。
FIG. 3 is a perspective view illustrating a supply method according to an embodiment of the present invention.

【図4】(a),(b)は熱伝導率算出のためにモデル
化された充填材粒子を分散させたときと充填材を一端か
ら他端に連続させたときの接着剤の断面図である。
4A and 4B are cross-sectional views of the adhesive when the filler particles modeled for calculating the thermal conductivity are dispersed and when the filler is continuously formed from one end to the other end. Is.

【符号の説明】[Explanation of symbols]

1 接着剤 2 充填材 3 マトリックス 4 電子デバイス 5 ヒートシンク 6 離型シート 1 Adhesive 2 Filling Material 3 Matrix 4 Electronic Device 5 Heat Sink 6 Release Sheet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガラス繊維と炭素繊維とアルミナ繊維を
含む無機繊維と、ポリアミド繊維とポリエステル繊維を
含む有機繊維と、金属繊維とのうちのいずれか一種の充
填材と、未硬化または光硬化状樹脂とを含有することを
特徴とする電子デバイス用接着剤。
1. An inorganic fiber containing a glass fiber, a carbon fiber and an alumina fiber, an organic fiber containing a polyamide fiber and a polyester fiber, and a metal fiber, and an uncured or photocurable filler. An adhesive for electronic devices, which comprises a resin.
【請求項2】 前記充填材の繊維が熱経路方向に互いに
独立して連続していることを特徴とする請求項1記載の
電子デバイス用接着剤。
2. The adhesive for electronic devices according to claim 1, wherein the fibers of the filler are continuous in the heat path direction independently of each other.
【請求項3】 前記充填材の繊維が熱経路方向に糸まり
状で連続していることを特徴とする請求項1記載の電子
デバイス用接着剤。
3. The adhesive for an electronic device according to claim 1, wherein the fibers of the filler are continuous in the form of a thread in the heat path direction.
JP5083685A 1993-04-12 1993-04-12 Adhesive for electronic devices Expired - Lifetime JP2880875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5083685A JP2880875B2 (en) 1993-04-12 1993-04-12 Adhesive for electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5083685A JP2880875B2 (en) 1993-04-12 1993-04-12 Adhesive for electronic devices

Publications (2)

Publication Number Publication Date
JPH06299129A true JPH06299129A (en) 1994-10-25
JP2880875B2 JP2880875B2 (en) 1999-04-12

Family

ID=13809353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5083685A Expired - Lifetime JP2880875B2 (en) 1993-04-12 1993-04-12 Adhesive for electronic devices

Country Status (1)

Country Link
JP (1) JP2880875B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040431A1 (en) * 1997-03-11 1998-09-17 Amoco Corporation Thermally conductive film and method for the preparation thereof
JP2000191998A (en) * 1998-12-28 2000-07-11 Polymatech Co Ltd Thermally conductive adhesive, method of adhesion and semiconductor device
JP2001081418A (en) * 1999-09-10 2001-03-27 Polymatech Co Ltd Heat conductive adhesive film and its production and electronic part
CN100364081C (en) * 2003-11-08 2008-01-23 鸿富锦精密工业(深圳)有限公司 Radiator and producing method thereof
WO2019168848A1 (en) * 2018-03-02 2019-09-06 Northrop Grumman Systems Corporation Thermal gasket with high transverse thermal conductivity

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553462A (en) * 1978-06-26 1980-01-11 Hitachi Ltd Silver paste
JPS5528220A (en) * 1978-08-17 1980-02-28 Fuji Electric Co Ltd Small oil breaker with fuse
JPS60144378A (en) * 1984-01-06 1985-07-30 Matsushita Electric Works Ltd Bonding glass cloth
JPS6369883A (en) * 1986-09-12 1988-03-29 Mitsubishi Gas Chem Co Inc Adhesive composition having thermal and electrical conductivity
JPS6452247U (en) * 1987-09-26 1989-03-31
JPH05179210A (en) * 1991-04-24 1993-07-20 Ciba Geigy Ag Thermally conductive adhesive film, laminate having thermally conductive adhesive layer, and article made by using them
JPH05209157A (en) * 1992-01-29 1993-08-20 Nec Corp Adhesive electronic device
JPH06212137A (en) * 1990-05-07 1994-08-02 E I Du Pont De Nemours & Co Thermally conductive adhesive material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553462A (en) * 1978-06-26 1980-01-11 Hitachi Ltd Silver paste
JPS5528220A (en) * 1978-08-17 1980-02-28 Fuji Electric Co Ltd Small oil breaker with fuse
JPS60144378A (en) * 1984-01-06 1985-07-30 Matsushita Electric Works Ltd Bonding glass cloth
JPS6369883A (en) * 1986-09-12 1988-03-29 Mitsubishi Gas Chem Co Inc Adhesive composition having thermal and electrical conductivity
JPS6452247U (en) * 1987-09-26 1989-03-31
JPH06212137A (en) * 1990-05-07 1994-08-02 E I Du Pont De Nemours & Co Thermally conductive adhesive material
JPH05179210A (en) * 1991-04-24 1993-07-20 Ciba Geigy Ag Thermally conductive adhesive film, laminate having thermally conductive adhesive layer, and article made by using them
JPH05209157A (en) * 1992-01-29 1993-08-20 Nec Corp Adhesive electronic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040431A1 (en) * 1997-03-11 1998-09-17 Amoco Corporation Thermally conductive film and method for the preparation thereof
JP2000191998A (en) * 1998-12-28 2000-07-11 Polymatech Co Ltd Thermally conductive adhesive, method of adhesion and semiconductor device
JP2001081418A (en) * 1999-09-10 2001-03-27 Polymatech Co Ltd Heat conductive adhesive film and its production and electronic part
CN100364081C (en) * 2003-11-08 2008-01-23 鸿富锦精密工业(深圳)有限公司 Radiator and producing method thereof
WO2019168848A1 (en) * 2018-03-02 2019-09-06 Northrop Grumman Systems Corporation Thermal gasket with high transverse thermal conductivity
US10595440B2 (en) 2018-03-02 2020-03-17 Northrop Grumman Systems Corporation Thermal gasket with high transverse thermal conductivity
JP2021515385A (en) * 2018-03-02 2021-06-17 ノースロップ グラマン システムズ コーポレーション Thermal gasket with high lateral thermal conductivity
TWI814781B (en) * 2018-03-02 2023-09-11 美商諾斯洛普格拉曼系統公司 Electronic apparatus, passive heat transfer apparatus and method for making the same

Also Published As

Publication number Publication date
JP2880875B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
US7473995B2 (en) Integrated heat spreader, heat sink or heat pipe with pre-attached phase change thermal interface material and method of making an electronic assembly
US8081469B2 (en) Thermal interface material and method of using the same and electronic assembly having the same
US8437136B2 (en) Thermal interface material and method of using the same and electronic assembly having the same
JPH05209157A (en) Adhesive electronic device
US6478997B2 (en) Polymer heat pipe with carbon core
ATE128168T1 (en) ELECTRONIC SYSTEM CONTAINING COMPONENTS CONNECTED BY A THERMALLY CONDUCTIVE ADHESIVE.
JPH06299129A (en) Adhesive for electronic device
US20160282067A1 (en) High thermal conductivity composite base plate
US6367509B1 (en) Thermal harness using encased carbon-based fiber and end attachment brackets
JP4051402B2 (en) Flexible heat transfer device and method for manufacturing the same
JP2001217359A (en) Radiator fin, manufacturing method thereof, and semiconductor device
JPS60137041A (en) Resin-sealed semiconductor device
JP2638461B2 (en) Heat dissipation material
JP2000183279A (en) Package for semiconductor element and manufacture thereof
CN216650312U (en) Heat dissipation plate and electronic device
JP3820674B2 (en) Resin-sealed electronic device and manufacturing method thereof
JPH06196885A (en) Heat sink
JPH05299545A (en) Heat dissipation body
CN208540363U (en) A kind of dissipation from electronic devices expanding unit
JPH10173112A (en) Apparatus for mounting electronic elements
JP2001237355A (en) Heat transmitting method, heat sink and manufacturing method therefor
US20110228481A1 (en) Thermally conductive interface means
JPH05226528A (en) Resin-sealed semiconductor device and manufacture thereof
RU2208266C2 (en) High-flexibility heat-transfer device
JPH04105333A (en) Semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960917