JP3820674B2 - Resin-sealed electronic device and manufacturing method thereof - Google Patents

Resin-sealed electronic device and manufacturing method thereof Download PDF

Info

Publication number
JP3820674B2
JP3820674B2 JP10340197A JP10340197A JP3820674B2 JP 3820674 B2 JP3820674 B2 JP 3820674B2 JP 10340197 A JP10340197 A JP 10340197A JP 10340197 A JP10340197 A JP 10340197A JP 3820674 B2 JP3820674 B2 JP 3820674B2
Authority
JP
Japan
Prior art keywords
sealing resin
resin
stress
coating film
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10340197A
Other languages
Japanese (ja)
Other versions
JPH10294404A (en
Inventor
昌弘 山本
太一 谷方
将 愛知後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP10340197A priority Critical patent/JP3820674B2/en
Publication of JPH10294404A publication Critical patent/JPH10294404A/en
Application granted granted Critical
Publication of JP3820674B2 publication Critical patent/JP3820674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable resin sealed type electronic device by relieving the stresses applied between a primary sealing resin and a secondary sealing resin. SOLUTION: An IC package body 5 is constituted in such a way that a silicon chip 2 is mounted on a lead frame 1 and electrically connected to a lead frame 1a through a bonding wire 3. In addition, the wire 3 and chip 2 are molded with a primary sealing resin 4. Then the lead frame and chip 2 are molded with a secondary sealing resin 8. Between the primary and secondary sealing resins 4 and 8, a stress relaxing coating film 9 is arranged. Since the film 9 is made of rubber 10 containing scattered bubbles 11, the film 9 relaxes the stresses caused by the resins 4 and 8.

Description

【0001】
【発明の属する技術分野】
この発明は、樹脂封止型電子装置及びその製造方法に関するものである。
【0002】
【従来の技術】
図10に示すように、シリコンチップ等の電子部品41をリードフレーム40の上に搭載し、電子部品41を一次封止樹脂42にてモールドしてICパッケージ体43とするとともに、このICパッケージ体43をエポキシ等の二次封止樹脂44にてモールドすることが行われている。つまり、ICパッケージ体43を更に二次成形(トランスファー成形、ポッティング成形)することが行われている。
【0003】
この樹脂封止型電子装置においては、硬化収縮応力あるいは硬化後の熱応力により電子部品41が過大な応力を受け、その機能が低下するおそれがある。つまり、図10に示すように、ICパッケージ体43が二次封止樹脂44にて覆われている状態から図11に示すように高温になったり図12に示すように低温になった場合を考える。一次封止樹脂42の熱膨張率をαM とし二次封止樹脂44の熱膨張率をαE としたときαE >αM を満足する場合、図11の如く高温になると、二次封止樹脂44はICパッケージ体43から離れる方向に膨張する。また、図12の如く低温になると、二次封止樹脂44はICパッケージ体43を圧迫する方向に収縮する。このように、温度変化によりICパッケージ体43に応力が加わることになる。
【0004】
そこで、応力緩和のために、エポキシ等の二次封止樹脂自身の低応力化を図ったり、二次封止樹脂のボリュームを減らすといった構造的工夫が行われているが、製品のフレキシビリティ、その他の部位の信頼性確保といった点から限界があった。
【0005】
一方、2つの部材間に生じる応力を低減する一手法として2つの部材間にゴムを挟み込むことが一般的に行われている。
この手法を樹脂封止型電子装置において用いようとすると、一次封止樹脂42と二次封止樹脂44との間にゴムを介在させることとなり、この場合、本来ゴムは非圧縮性物質(ポアソン比がほぼ0.5)のため、ICパッケージ体43を二次封止樹脂44で完全に覆う樹脂封止型電子装置においては、変形空隙のない構造であるので、応力緩和の効果が現れない。即ち、二次封止樹脂44はその硬化時に収縮力を発生するとともに硬化後の冷熱サイクルを受けた時に多大な応力を発生するが、ゴム材において外部からの応力を分散させる効果があるのはゴムが変形しうる空隙が確保されている場合に限られている。
【0006】
【発明が解決しようとする課題】
そこで、この発明の目的は、一次封止樹脂と二次封止樹脂間に加わる応力を緩和して信頼性の高い樹脂封止型電子装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、一次封止樹脂と二次封止樹脂との間に配置される応力緩衝用コーティング膜として、母材として弾性体(例えばゴム)を用いるとともに、この母材中に気体を封止した中空球フィラーを混入させることにより容積が変化する気泡を散在させたものを用いたことを特徴としている。
【0008】
よって、温度変化等によって一次封止樹脂と二次封止樹脂との間に応力が加わった際に、応力緩衝用コーティング膜における母材である弾性体が変形して、散在した気泡の容積が変化する。この気泡の容積変化にて一次封止樹脂と二次封止樹脂との間の応力が吸収され、半導体チップ等の電子部品に加わる応力が緩和される。
【0009】
つまり、温度変化等により一次と二次の封止樹脂の間に応力が加わった際において、応力緩衝用コーティング膜中の気泡が変形代(潰し代)になって応力緩和が図られる。また、請求項2に記載のように、前記中空球フィラーは、前記応力緩衝用コーティング膜の内側に存在する。
【0010】
請求項に記載の発明によれば、第1工程により、基材の上に配置された電子部品が一次封止樹脂にてモールドされる。そして、第2工程により、一次封止樹脂の表面が、母材としての弾性体中に気体を封止した中空球フィラーを混入させることにより容積が変化する気泡を散在させた応力緩衝用コーティング膜にてコーティングされる。さらに、第3工程により、前記応力緩衝用コーティング膜の外周側において前記基材および電子部品が二次封止樹脂にてモールドされる。
【0011】
その結果、請求項1に記載の樹脂封止型電子装置が製造される。
ここで、請求項に記載のように、前記第2工程において、液状弾性素材に中空球フィラーを混入させた溶液を、前記一次封止樹脂の表面にコーティングすると、実用上好ましいものになる。
【0012】
【発明の実施の形態】
以下、この発明を具体化した実施の形態を図面に従って説明する。
図1には、本実施形態における樹脂封止型電子装置の断面図を示す。本装置は、ガソリンエンジンの点火コイルおよび点火回路を樹脂モールドしたものである。
【0013】
図1において、基材としてのリードフレーム1の上には電子部品としてのシリコンチップ2が搭載され、ボンディグワイヤ3にてシリコンチップ2とリードフレーム1aとが電気的に接続されている。このボンディグワイヤ3とシリコンチップ2とは一次封止樹脂4にてモールドされている。このようしてICパッケージ体(モールド体)5が構成されている。
【0014】
なお、シリコンチップ2以外にも、アルミナ基板を用いた回路基板(プリント基板)をリードフレーム1上に搭載したパッケージ体に具体化してもよい。
一方、樹脂封止型電子装置の筐体(ハウジング)6の内部における下部には点火コイル7が配置されるとともに、同じく筐体6の内部における点火コイル7の上方には前述のICパッケージ体5が配置されている。筐体6の内部には二次封止樹脂8が充填され、点火コイル7および前述のICパッケージ体5が二次封止樹脂8にてモールドされている。二次封止樹脂8には注型エポキシ樹脂を用いている。この注型エポキシにおいては、硬化収縮応力や硬化後の熱応力によりICパッケージ体5が過大な応力を受け、その機能が低下するおそれがある。これについては図10〜図12を用いて説明したのでここでは説明は省略するが、要は図11の如く高温になると、二次封止樹脂8はICパッケージ体5から離れる方向に膨張し、図12の如く低温になると、二次封止樹脂8はICパッケージ体5を圧迫する方向に収縮する。このように、温度変化によりICパッケージ体5に応力が加わることになる。
【0015】
そこで、図1に示すように、一次封止樹脂4と二次封止樹脂8との間には、両封止樹脂間に加わる応力を緩和するための応力緩衝用コーティング膜9が配置されている。応力緩衝用コーティング膜9は、図2に示すように、母材として弾性体、本実施形態ではゴム10を用いるとともに、この母材中に気泡11を散在させたものを用いている。応力緩衝用コーティング膜9の膜厚は、0.5mm程度である。
【0016】
この応力緩衝用コーティング膜9は、図10〜図12において緩衝領域となり、ICパッケージ体5の熱的変形および二次封止樹脂8の熱的変形に伴いその体積が変化する。
【0017】
つまり、各部の熱的変形は拘束のない場合には定変位量だけ変形することから、例えば緩衝領域が全くその変形に拘束を与えないなら、一次封止樹脂4と二次封止樹脂8との熱膨張率の不整合による熱応力は発生しない。これを満足させる緩和層としては体積変化できることが必要となる。
【0018】
即ち、図3に示すように、応力緩衝用コーティング膜9が無い場合には、特性線P1にて示す如くICパッケージ体5には歪み量δに比例した力Fが加わるが、応力緩衝用コーティング膜9を設けることにより気泡11が潰れ代となり、特性線P2にて示す如く所定の歪み量δ1までは殆ど力FがICパッケージ体5に加わらない。
【0019】
また、図1に示すように、リードフレーム1aは筐体6を貫通するリード端子12に接続され、リード端子12にて外部からの接続が行われるようになっている。また、リードフレーム1は点火コイル7のリード端子7aと接続されている。そして、リード端子12を介してシリコンチップ2に形成された回路にバッテリ電圧が供給され、所定の点火タイミングにて点火コイル7により高電圧を生成して点火プラグに高電圧を供給するようになっている。
【0020】
次に、製造方法を説明する。
図4に示すように、リードフレーム1の上にシリコンチップ2を搭載し、ワイヤ3にてシリコンチップ2とリードフレーム1aとをボンディングする。そして、ボンディグワイヤ3とシリコンチップ2とを一次封止樹脂4にてモールドして、ICパッケージ体5とする。
【0021】
引き続き、図5に示すように、ICパッケージ体5を応力緩衝用コーティング膜9にて被覆する。応力緩衝用コーティング膜9によるコーティグ処理は、図6に示す3つの工程よりなる。
【0022】
まず、液状弾性素材である液状シリコーン樹脂を用意するとともに、図7に示す中空球フィラー(カプセル)20を用意する。中空球フィラー20は、その径Dが80μm程度の微粒体である。液状シリコーン樹脂としては、例えば、東レ社製CY52ー227を用い、また、中空球フィラー20としては、例えば、日本フィライト社製DU−80を用いる。そして、液状シリコーン樹脂と適量の中空球フィラー20とを混合させる。ここで、液状シリコーン樹脂に対する中空球フィラー20の混合比は、40vol%程度とする。
【0023】
そして、液状シリコーン樹脂に中空球フィラー20を混入させた溶液中にICパッケージ体5をディッピングして一次封止樹脂4の表面にコーティングする(図6に示す塗膜工程)。引き続き、150℃、20分間の加熱にて硬化させる(図6に示す熱硬化工程)。その結果、液状シリコーン樹脂に中空球フィラー20が分散した状態のまま固化される。なお、応力緩衝用コーティング膜9においてゴム10中に気泡11が散在することは応力緩衝用コーティング膜9の断面写真により確認している。
【0024】
このように中空球フィラー20を液状樹脂に混合させ塗膜することにより下記のような効果を奏する。
(1)中空球フィラー20の添加量を調整することにより、応力緩衝用コーティング膜9中の気泡11の総量を調整でき、適切な応力緩和が可能となる。
【0025】
このように、中空球フィラー20の含有率、粒径を選択することにより、目的とする塗膜の体積変化率を設定でき、材料混合により応力緩和効果を容易にコントロールできる。
(2)液状樹脂を用いた塗膜であるため(例えばディッピング法により塗膜するため)、ICパッケージ体5のリード端子1aの部分等も完全にコーティングすることができる。つまり、ディッピング法ではなく図8に示すように弾性を有するキャップ材30にてICパッケージ体5を覆う場合には、ICパッケージ体5のリード端子1aの部分はキャップ材30にて覆いにくい部分となるが、ディッピング法を用いればリード端子1aの部分も完全に覆うことができる。このことは、その後の二次成形時液状樹脂ポッティングを例えば真空注入する場合、コーティング膜9の内部に樹脂が浸入することなく緩衝効果が確保できる。
【0026】
このように、塗膜される構造物は、必要部位を塗膜形成することができる。
(3)液状樹脂を用いた塗膜であるため(例えばディッピング法により塗膜するため)、角部を有するICパッケージ体5においてもその角部になだらかな曲面をもたせて成形できる。このことから、応力集中が緩和でき、二次ポッティング材のクラック発生を抑制することができる。
【0027】
このように、塗膜される構造物は、その形状によらなず塗膜形成することができる。
(4)塗膜中の気泡11は単独で存在するため、後工程での例えばエポキシ含浸等の工程においても気泡11が埋まることはない。
【0028】
なお、ディップ材は特に液状シリコーン樹脂である必要はなく、液状柔エポキシ剤(例えば、セメンダイン社製EPー001)でもよい。このようにすると、二次ポッティング材がエポキシの場合、共材のためその化学的密着性が確保でき、熱伝導及び応力分散の観点から更に優れたものとなる。
【0029】
製造工程の説明に戻り、ICパッケージ体5を応力緩衝用コーティング膜9にてコーティングした後において、図1に示すように、筐体6内に点火コイル7を装着するとともに、ICパッケージ体5を配置する。さらに、液状のエポキシ樹脂8を筐体6内に充填して硬化(固化)させる。
【0030】
なお、応力緩衝用コーティング膜9のコーティングはディップ以外にもスプレー、キャスティング、リキッドインジェクションモールド等にて行ってもよい。次に、図9を用いてエポキシ樹脂8の硬化収縮応力の低減効果について説明する。
【0031】
まず、図9(a)に示すように、応力緩衝用コーティング膜9のない場合には、ICパッケージ体5において受ける応力により発生する表面歪εは、−200μsである。ここで、表面歪εとは、単位長さの材料が20℃から150℃に温度変化した際の材料の長さの変化量を指す。即ち、20℃において長さLであったものが150℃において長さL’に変化した場合においては、
ε=(L−L’)/L
にて定義されるものである。
【0032】
また、図9(b)に示すように、中空球フィラーを含有しないシリコーンゴム35を厚さ0.5mm塗膜した場合には、上記表面歪εは、−120μsとなる。
【0033】
さらに、図9(c)に示すように、中空球フィラーを含有したシリコーンゴム(コーティング膜9)を厚さ0.5mm塗膜した場合には、上記表面歪εは、0〜−10μsとなる。
【0034】
このように、通常上記液状シリコーン樹脂を硬化してなる硬化物は、ゴム弾性を示すが、その機械的性質は非弾性変形、非圧縮性変形をもつことになるが、応力緩和層としてのゴム弾性体は体積変化が求められるが、その非圧縮性により応力緩和性が十分発揮できないが、気泡11を散在することにより応力を緩和することができようになる。つまり、シリコーンゴム等の非圧縮性物質を緩衝層として使用するに際し、気体を封止した中空球フィラー20を混入させることにより、そのゴム弾性を残しつつ、緩衝層として圧縮性をもたせることにより応力緩和層として優れたものとなる。
【0035】
このように本実施の形態は、下記の特徴を有する。
(イ)一次封止樹脂4と二次封止樹脂8との間に配置される応力緩衝用コーティング膜9として、母材としてゴム10を用いるとともに、この母材中に気泡11を散在させたものを用いたので、温度変化等によって一次封止樹脂4と二次封止樹脂8との間に応力が加わった際に、応力緩衝用コーティング膜9における母材であるゴム10が変形して、散在した気泡11の容積が変化する。この気泡11の容積変化にて一次封止樹脂4と二次封止樹脂8の間の応力が吸収され、シリコンチップ2に加わる応力が緩和される。つまり、温度変化等により一次と二次の封止樹脂4,8との間に応力が加わった際において、応力緩衝用コーティング膜9中の気泡11が変形代(潰し代)になって応力緩和が図られる。
(ロ)リードフレーム1の上に配置されたシリコンチップ2を一次封止樹脂4にてモールドし、一次封止樹脂4の表面を、母材としてのゴム10中に気泡11を散在させた応力緩衝用コーティング膜9にてコーティングし、さらに、応力緩衝用コーティング膜9の外周側においてリードフレーム1およびシリコンチップ2を二次封止樹脂8にてモールドするようにした。その結果、上記(イ)の樹脂封止型電子装置が得られる。
(ハ)応力緩衝用コーティング膜9の成膜工程として、液状弾性素材に中空球フィラー20を混入させた溶液を、一次封止樹脂4の表面にコーティングすると、前述したように実用上好ましいものになる。
【0036】
なお、封止樹脂の硬化は加熱を用いたが、紫外線照射等の手法により行ってもよい。
【図面の簡単な説明】
【図1】 実施の形態における樹脂封止型電子装置の断面図。
【図2】 応力緩衝用コーティング膜の断面図。
【図3】 歪み量と力との関係を示す図。
【図4】 樹脂封止型電子装置の製造工程を説明するための断面図。
【図5】 樹脂封止型電子装置の製造工程を説明するための断面図。
【図6】 樹脂封止型電子装置の製造工程を説明するための工程図。
【図7】 中空球フィラーの断面図。
【図8】 比較のための樹脂封止型電子装置の断面図。
【図9】 封止樹脂により加わる応力を説明するための断面図。
【図10】 封止樹脂により加わる応力を説明するための断面図。
【図11】 封止樹脂により加わる応力を説明するための断面図。
【図12】 封止樹脂により加わる応力を説明するための断面図。
【符号の説明】
1…リードフレーム、2…シリコンチップ、4…一次封止樹脂、8…二次封止樹脂、9…応力緩衝用コーティング膜、10…ゴム、11…気泡
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin-sealed electronic device and a method for manufacturing the same.
[0002]
[Prior art]
As shown in FIG. 10, an electronic component 41 such as a silicon chip is mounted on a lead frame 40, and the electronic component 41 is molded with a primary sealing resin 42 to form an IC package body 43. This IC package body 43 is molded with a secondary sealing resin 44 such as epoxy. That is, the IC package 43 is further subjected to secondary molding (transfer molding or potting molding).
[0003]
In this resin-encapsulated electronic device, the electronic component 41 may be subjected to excessive stress due to curing shrinkage stress or thermal stress after curing, and the function thereof may be degraded. That is, as shown in FIG. 10, when the IC package body 43 is covered with the secondary sealing resin 44, the temperature becomes high as shown in FIG. 11 or low as shown in FIG. Think. When αE> αM is satisfied when the thermal expansion coefficient of the primary sealing resin 42 is αM and the thermal expansion coefficient of the secondary sealing resin 44 is αE, when the temperature becomes high as shown in FIG. It expands in a direction away from the IC package body 43. Further, when the temperature becomes low as shown in FIG. 12, the secondary sealing resin 44 contracts in a direction in which the IC package body 43 is pressed. In this way, stress is applied to the IC package body 43 due to temperature changes.
[0004]
Therefore, in order to relieve stress, structural contrivances such as reducing the stress of the secondary sealing resin itself such as epoxy and reducing the volume of the secondary sealing resin have been performed, but the flexibility of the product, There was a limit in terms of ensuring the reliability of other parts.
[0005]
On the other hand, as a technique for reducing stress generated between two members, it is generally performed to sandwich rubber between the two members.
If this method is used in a resin-sealed electronic device, rubber is interposed between the primary sealing resin 42 and the secondary sealing resin 44. In this case, the rubber is originally an incompressible substance (Poisson). In the resin-encapsulated electronic device that completely covers the IC package body 43 with the secondary encapsulating resin 44, since the structure has no deformation gap, the effect of stress relaxation does not appear. . That is, the secondary sealing resin 44 generates a shrinkage force when it is cured and generates a great amount of stress when it is subjected to a cooling cycle after curing, but the rubber material has an effect of dispersing the external stress. This is limited to the case where a void that can deform the rubber is secured.
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly reliable resin-encapsulated electronic device by relieving stress applied between a primary sealing resin and a secondary sealing resin.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 uses an elastic body (for example, rubber) as a base material as a stress buffer coating film disposed between the primary sealing resin and the secondary sealing resin, and in the base material. A hollow sphere filler sealed with a gas is mixed with air bubbles that change in volume .
[0008]
Therefore, when a stress is applied between the primary sealing resin and the secondary sealing resin due to a temperature change or the like, the elastic body, which is a base material in the stress buffer coating film, is deformed, and the volume of scattered bubbles is reduced. Change. Due to the volume change of the bubbles, the stress between the primary sealing resin and the secondary sealing resin is absorbed, and the stress applied to the electronic component such as a semiconductor chip is relieved.
[0009]
That is, when a stress is applied between the primary and secondary sealing resins due to a temperature change or the like, the bubbles in the stress buffer coating film become a deformation allowance (squeeze allowance), and stress relaxation is achieved. According to a second aspect of the present invention, the hollow sphere filler is present inside the stress buffer coating film.
[0010]
According to invention of Claim 3 , the electronic component arrange | positioned on a base material is molded by primary sealing resin by a 1st process. Then, in the second step, the surface of the primary sealing resin has a coating film for stress buffering, in which air bubbles whose volume changes are scattered by mixing a hollow sphere filler in which gas is sealed in an elastic body as a base material It is coated with. Further, in the third step, the base material and the electronic component are molded with a secondary sealing resin on the outer peripheral side of the stress buffer coating film.
[0011]
As a result, the resin-sealed electronic device according to claim 1 is manufactured.
Here, as described in claim 4 , it is practically preferable to coat the surface of the primary sealing resin with a solution in which a hollow sphere filler is mixed in a liquid elastic material in the second step.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view of a resin-encapsulated electronic device according to this embodiment. In this apparatus, an ignition coil and an ignition circuit of a gasoline engine are resin-molded.
[0013]
In FIG. 1, a silicon chip 2 as an electronic component is mounted on a lead frame 1 as a base material, and the silicon chip 2 and the lead frame 1 a are electrically connected by a bonding wire 3. The bonding wire 3 and the silicon chip 2 are molded with a primary sealing resin 4. In this way, an IC package body (mold body) 5 is configured.
[0014]
In addition to the silicon chip 2, a circuit board (printed board) using an alumina substrate may be embodied in a package body mounted on the lead frame 1.
On the other hand, an ignition coil 7 is disposed in the lower part of the housing (housing) 6 of the resin-encapsulated electronic device, and the IC package 5 is also disposed above the ignition coil 7 in the housing 6. Is arranged. The casing 6 is filled with a secondary sealing resin 8, and the ignition coil 7 and the IC package 5 described above are molded with the secondary sealing resin 8. A cast epoxy resin is used for the secondary sealing resin 8. In this cast epoxy, the IC package 5 is subjected to excessive stress due to curing shrinkage stress or thermal stress after curing, and its function may be reduced. Since this has been described with reference to FIGS. 10 to 12, the description thereof is omitted here. In short, when the temperature becomes high as shown in FIG. 11, the secondary sealing resin 8 expands away from the IC package body 5. When the temperature becomes low as shown in FIG. 12, the secondary sealing resin 8 contracts in the direction of pressing the IC package body 5. In this way, stress is applied to the IC package body 5 due to temperature changes.
[0015]
Therefore, as shown in FIG. 1, a stress buffer coating film 9 is disposed between the primary sealing resin 4 and the secondary sealing resin 8 to relieve stress applied between the two sealing resins. Yes. As shown in FIG. 2, the stress buffer coating film 9 uses an elastic body as a base material, rubber 10 in this embodiment, and a material in which bubbles 11 are scattered in the base material. The film thickness of the stress buffer coating film 9 is about 0.5 mm.
[0016]
The stress buffer coating film 9 becomes a buffer region in FIGS. 10 to 12, and its volume changes with the thermal deformation of the IC package body 5 and the thermal deformation of the secondary sealing resin 8.
[0017]
That is, since the thermal deformation of each part is deformed by a constant displacement amount when there is no constraint, for example, if the buffer region does not constrain the deformation at all, the primary sealing resin 4 and the secondary sealing resin 8 Thermal stress due to the mismatch of the thermal expansion coefficient of each other does not occur. As a relaxation layer that satisfies this requirement, it is necessary that the volume can be changed.
[0018]
That is, as shown in FIG. 3, when there is no stress buffering coating film 9, a force F proportional to the strain amount δ is applied to the IC package 5 as indicated by the characteristic line P1, but the stress buffering coating is applied. By providing the film 9, the bubble 11 becomes a crushing margin, and almost no force F is applied to the IC package 5 up to a predetermined strain amount δ1 as shown by the characteristic line P2.
[0019]
As shown in FIG. 1, the lead frame 1 a is connected to a lead terminal 12 that penetrates the housing 6, and the lead terminal 12 is connected from the outside. The lead frame 1 is connected to a lead terminal 7 a of the ignition coil 7. Then, the battery voltage is supplied to the circuit formed on the silicon chip 2 via the lead terminal 12, and a high voltage is generated by the ignition coil 7 at a predetermined ignition timing to supply the high voltage to the spark plug. ing.
[0020]
Next, a manufacturing method will be described.
As shown in FIG. 4, the silicon chip 2 is mounted on the lead frame 1, and the silicon chip 2 and the lead frame 1 a are bonded by the wire 3. Then, the bonding wire 3 and the silicon chip 2 are molded with the primary sealing resin 4 to form an IC package body 5.
[0021]
Subsequently, as shown in FIG. 5, the IC package body 5 is covered with a stress buffer coating film 9. The coating process using the stress buffer coating film 9 includes three steps shown in FIG.
[0022]
First, a liquid silicone resin, which is a liquid elastic material, is prepared, and a hollow sphere filler (capsule) 20 shown in FIG. 7 is prepared. The hollow sphere filler 20 is a fine particle having a diameter D of about 80 μm. As the liquid silicone resin, for example, CY52-227 manufactured by Toray Industries, Inc. is used. As the hollow sphere filler 20, for example, DU-80 manufactured by Nippon Philite Co., Ltd. is used. Then, the liquid silicone resin and an appropriate amount of the hollow sphere filler 20 are mixed. Here, the mixing ratio of the hollow sphere filler 20 to the liquid silicone resin is about 40 vol%.
[0023]
Then, the IC package body 5 is dipped in a solution in which the hollow sphere filler 20 is mixed in a liquid silicone resin to coat the surface of the primary sealing resin 4 (coating process shown in FIG. 6). Subsequently, it is cured by heating at 150 ° C. for 20 minutes (thermosetting step shown in FIG. 6). As a result, the hollow sphere filler 20 is solidified while being dispersed in the liquid silicone resin. It is confirmed from the cross-sectional photograph of the stress buffer coating film 9 that the bubbles 11 are scattered in the rubber 10 in the stress buffer coating film 9.
[0024]
Thus, the following effects are produced by mixing the hollow sphere filler 20 with the liquid resin and coating it.
(1) By adjusting the addition amount of the hollow sphere filler 20, the total amount of the bubbles 11 in the stress buffer coating film 9 can be adjusted, and appropriate stress relaxation becomes possible.
[0025]
Thus, the volume change rate of the target coating film can be set by selecting the content rate and particle size of the hollow sphere filler 20, and the stress relaxation effect can be easily controlled by mixing the materials.
(2) Since it is a coating film using a liquid resin (for example, coating by a dipping method), the lead terminal 1a portion of the IC package body 5 and the like can be completely coated. That is, when the IC package body 5 is covered with the cap material 30 having elasticity as shown in FIG. 8 instead of the dipping method, the lead terminal 1a portion of the IC package body 5 is difficult to cover with the cap material 30. However, if the dipping method is used, the portion of the lead terminal 1a can be completely covered. This means that when the liquid resin potting in the subsequent secondary molding is performed by, for example, vacuum injection, a buffering effect can be ensured without the resin entering the coating film 9.
[0026]
As described above, the structure to be coated can form a coating on a necessary portion.
(3) Since it is a coating film using a liquid resin (for example, for coating by a dipping method), the IC package 5 having a corner portion can be molded with a gentle curved surface at the corner portion. From this, the stress concentration can be relaxed, and the occurrence of cracks in the secondary potting material can be suppressed.
[0027]
Thus, the structure to be coated can form a coating regardless of its shape.
(4) Since the air bubbles 11 in the coating film exist alone, the air bubbles 11 are not buried in a subsequent process such as epoxy impregnation.
[0028]
Note that the dip material does not need to be a liquid silicone resin, and may be a liquid soft epoxy agent (for example, EP-001 manufactured by Cementine Co.). In this case, when the secondary potting material is epoxy, its chemical adhesion can be ensured because it is a co-material, which is further excellent from the viewpoint of heat conduction and stress distribution.
[0029]
Returning to the description of the manufacturing process, after the IC package body 5 is coated with the stress buffer coating film 9, as shown in FIG. 1, the ignition coil 7 is mounted in the housing 6, and the IC package body 5 is mounted. Deploy. Furthermore, the liquid epoxy resin 8 is filled in the housing 6 and cured (solidified).
[0030]
The stress buffer coating film 9 may be coated by spraying, casting, liquid injection molding, or the like in addition to dipping. Next, the effect of reducing the curing shrinkage stress of the epoxy resin 8 will be described with reference to FIG.
[0031]
First, as shown in FIG. 9A, in the case where the stress buffer coating film 9 is not provided, the surface strain ε generated by the stress received in the IC package 5 is −200 μs. Here, the surface strain ε refers to the amount of change in the length of the material when the material of the unit length changes in temperature from 20 ° C. to 150 ° C. That is, when the length L at 20 ° C. is changed to the length L ′ at 150 ° C.,
ε = (L−L ′) / L
As defined in.
[0032]
Further, as shown in FIG. 9B, when the silicone rubber 35 containing no hollow sphere filler is coated with a thickness of 0.5 mm, the surface strain ε is −120 μs.
[0033]
Furthermore, as shown in FIG. 9 (c), when a silicone rubber (coating film 9) containing a hollow sphere filler is applied to a thickness of 0.5 mm, the surface strain ε is 0 to −10 μs. .
[0034]
As described above, a cured product obtained by curing the above liquid silicone resin usually exhibits rubber elasticity, but its mechanical properties are inelastic deformation and incompressible deformation, but rubber as a stress relaxation layer. Although the elastic body is required to change in volume, the stress relaxation property cannot be sufficiently exhibited due to its incompressibility, but the stress can be relaxed by scattering the bubbles 11. That is, when an incompressible substance such as silicone rubber is used as a buffer layer, by mixing the hollow sphere filler 20 in which gas is sealed, the rubber elasticity remains and the compressive layer is made compressible. It becomes an excellent relaxation layer.
[0035]
Thus, the present embodiment has the following features.
(A) As the stress buffer coating film 9 disposed between the primary sealing resin 4 and the secondary sealing resin 8, rubber 10 is used as a base material, and bubbles 11 are scattered in the base material. Since a material is used, when a stress is applied between the primary sealing resin 4 and the secondary sealing resin 8 due to a temperature change or the like, the rubber 10 as a base material in the stress buffer coating film 9 is deformed. The volume of the scattered bubbles 11 changes. The stress between the primary sealing resin 4 and the secondary sealing resin 8 is absorbed by the volume change of the bubbles 11 and the stress applied to the silicon chip 2 is relaxed. That is, when stress is applied between the primary and secondary sealing resins 4 and 8 due to temperature change or the like, the bubbles 11 in the stress buffer coating film 9 become deformation allowance (squeeze allowance) to relieve stress. Is planned.
(B) Stress in which the silicon chip 2 disposed on the lead frame 1 is molded with the primary sealing resin 4 and the surface of the primary sealing resin 4 is dispersed with the bubbles 11 in the rubber 10 as the base material. Coating is performed with the buffer coating film 9, and the lead frame 1 and the silicon chip 2 are molded with the secondary sealing resin 8 on the outer peripheral side of the stress buffer coating film 9. As a result, the resin-sealed electronic device of (A) is obtained.
(C) As a film forming step of the stress buffer coating film 9, when the surface of the primary sealing resin 4 is coated with a solution in which the hollow sphere filler 20 is mixed in a liquid elastic material, as described above, a practically preferable one is obtained. Become.
[0036]
In addition, although hardening was used for hardening of sealing resin, you may carry out by methods, such as ultraviolet irradiation.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a resin-encapsulated electronic device according to an embodiment.
FIG. 2 is a cross-sectional view of a stress buffer coating film.
FIG. 3 is a diagram showing the relationship between strain and force.
FIG. 4 is a cross-sectional view for explaining a manufacturing process of a resin-encapsulated electronic device.
FIG. 5 is a cross-sectional view for explaining a manufacturing process of a resin-encapsulated electronic device.
FIG. 6 is a process diagram for explaining a manufacturing process of a resin-encapsulated electronic device.
FIG. 7 is a cross-sectional view of a hollow sphere filler.
FIG. 8 is a cross-sectional view of a resin-sealed electronic device for comparison.
FIG. 9 is a cross-sectional view for explaining the stress applied by the sealing resin.
FIG. 10 is a cross-sectional view for explaining stress applied by a sealing resin.
FIG. 11 is a cross-sectional view for explaining a stress applied by a sealing resin.
FIG. 12 is a cross-sectional view for explaining the stress applied by the sealing resin.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Lead frame, 2 ... Silicon chip, 4 ... Primary sealing resin, 8 ... Secondary sealing resin, 9 ... Stress-buffering coating film, 10 ... Rubber, 11 ... Air bubble

Claims (4)

基材の上に配置された電子部品をモールドする一次封止樹脂と、
前記一次封止樹脂によりモールドされた前記基材および電子部品をモールドする二次封止樹脂と、
前記一次封止樹脂と二次封止樹脂との間に配置され、両封止樹脂間に加わる応力を緩和するための応力緩衝用コーティング膜と、
を備えた樹脂封止型電子装置において、
前記応力緩衝用コーティング膜として、母材として弾性体を用いるとともに、この母材中に気体を封止した中空球フィラーを混入させることにより容積が変化する気泡を散在させたものを用いたことを特徴とする樹脂封止型電子装置。
A primary sealing resin for molding an electronic component disposed on a substrate;
A secondary sealing resin for molding the base material and the electronic component molded by the primary sealing resin;
A stress buffering coating film that is disposed between the primary sealing resin and the secondary sealing resin, and relieves stress applied between the two sealing resins;
In a resin-encapsulated electronic device comprising:
As the stress buffer coating film, an elastic body is used as a base material, and a material in which bubbles whose volume is changed is mixed by mixing a hollow sphere filler sealed with gas in the base material is used. A resin-sealed electronic device.
前記中空球フィラーは、前記応力緩衝用コーティング膜の内側に存在する請求項1記載の樹脂封止型電子装置。The resin-encapsulated electronic device according to claim 1, wherein the hollow sphere filler is present inside the stress buffer coating film. 基材の上に配置された電子部品を一次封止樹脂にてモールドする第1工程と、A first step of molding an electronic component placed on a substrate with a primary sealing resin;
前記一次封止樹脂の表面を、母材としての弾性体中に気体を封止した中空球フィラーを混入させることにより容積が変化する気泡を散在させた応力緩衝用コーティング膜にてコーティングする第2工程と、The surface of the primary sealing resin is coated with a stress buffer coating film in which air bubbles whose volume changes are scattered by mixing a hollow sphere filler in which gas is sealed in an elastic body as a base material. Process,
前記応力緩衝用コーティング膜の外周側において前記基材および電子部品を二次封止樹脂にてモールドする第3工程と、A third step of molding the base material and the electronic component with a secondary sealing resin on the outer peripheral side of the stress buffer coating film;
を備えたことを特徴とする樹脂封止型電子装置の製造方法。A method for manufacturing a resin-encapsulated electronic device, comprising:
前記第2工程は、液状弾性素材に中空球フィラーを混入させた溶液を、前記一次封止樹脂の表面にコーティングするものである請求項3記載の樹脂封止型電子装置の製造方法。4. The method of manufacturing a resin-encapsulated electronic device according to claim 3, wherein the second step is to coat the surface of the primary sealing resin with a solution in which a hollow sphere filler is mixed with a liquid elastic material.
JP10340197A 1997-04-21 1997-04-21 Resin-sealed electronic device and manufacturing method thereof Expired - Lifetime JP3820674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10340197A JP3820674B2 (en) 1997-04-21 1997-04-21 Resin-sealed electronic device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10340197A JP3820674B2 (en) 1997-04-21 1997-04-21 Resin-sealed electronic device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10294404A JPH10294404A (en) 1998-11-04
JP3820674B2 true JP3820674B2 (en) 2006-09-13

Family

ID=14353041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10340197A Expired - Lifetime JP3820674B2 (en) 1997-04-21 1997-04-21 Resin-sealed electronic device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3820674B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477301B2 (en) * 2011-01-06 2014-04-23 株式会社デンソー Semiconductor device
JP2014110249A (en) * 2012-11-30 2014-06-12 Shindengen Electric Mfg Co Ltd Structure for embedding semiconductor device, and method of embedding semiconductor device
JP6028592B2 (en) * 2013-01-25 2016-11-16 三菱電機株式会社 Semiconductor device
CN113977835A (en) * 2021-10-26 2022-01-28 海鹰企业集团有限责任公司 Ultrasonic transducer probe encapsulating method

Also Published As

Publication number Publication date
JPH10294404A (en) 1998-11-04

Similar Documents

Publication Publication Date Title
US6321734B1 (en) Resin sealed electronic device and method of fabricating the same and ignition coil for internal combustion engine using the same
JP5415823B2 (en) Electronic circuit device and manufacturing method thereof
JP3581268B2 (en) Semiconductor device with heat sink and method of manufacturing the same
US20030042615A1 (en) Stacked microelectronic devices and methods of fabricating same
JPS60257546A (en) Semiconductor device and manufacture thereof
JPH11505962A (en) Method of transfer molding electronic package and package by the same method
US4888634A (en) High thermal resistance bonding material and semiconductor structures using same
US6507122B2 (en) Pre-bond encapsulation of area array terminated chip and wafer scale packages
JP3820674B2 (en) Resin-sealed electronic device and manufacturing method thereof
JP7091696B2 (en) Physical quantity sensor and semiconductor device
JP2010067852A (en) Method of manufacturing circuit device
JP3916026B2 (en) Semiconductor device package and manufacturing method thereof
CN110301042A (en) Semiconductor packages with wire bonding net
JP4366700B2 (en) Method for manufacturing semiconductor device package
JPS6077446A (en) Sealed semiconductor device
JPH04211150A (en) Circuit board
JPH0258357A (en) Pin grid array type semiconductor device
TW591727B (en) Method for producing a protection for chip edges and arrangement for the protection of chip edges
JP3650748B2 (en) Semiconductor package and manufacturing method thereof
JPH0526760Y2 (en)
JP2002076198A (en) Manufacturing method of semiconductor device
CN115985859A (en) Cavity formed in semiconductor package molding compound and method of forming
JPH077107A (en) Semiconductor device
JPH09148353A (en) Semiconductor device, manufacturing method and manufacturing apparatus thereof
JPS61240664A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term