JPH05258653A - Substrate type temperature fuse - Google Patents

Substrate type temperature fuse

Info

Publication number
JPH05258653A
JPH05258653A JP8805792A JP8805792A JPH05258653A JP H05258653 A JPH05258653 A JP H05258653A JP 8805792 A JP8805792 A JP 8805792A JP 8805792 A JP8805792 A JP 8805792A JP H05258653 A JPH05258653 A JP H05258653A
Authority
JP
Japan
Prior art keywords
insulating substrate
distance
side edge
electrode
temperature fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8805792A
Other languages
Japanese (ja)
Inventor
Ritsu Nishide
律 西出
Norisuke Hattori
教祐 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP8805792A priority Critical patent/JPH05258653A/en
Publication of JPH05258653A publication Critical patent/JPH05258653A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the direction of withstand voltage property at operation and improve the withstand voltage property by setting the distance between an electrode top end and an insulating substrate top end larger than the distance between the electrode top end part side edge and the insulating substrate lateral side edge. CONSTITUTION:A pair of vertical electrodes 2, 2 are provided on one surface of an insulating substrate 1, and a low melting point soluble alloy piece 3 is transversely bridged between the top end parts of the electrodes 2, 2. A flux 4 is applied along the alloy piece 3. The distance L1 between the top end of the electrode 2 and the top end of the insulating substrate 1 is set larger than the distance L2 between the top end part side edge of the electrode 2 and the lateral side edge of the insulating substrate 1. The distance L2 is varied depending on the kind, operating temperature, and wire diameter of the alloy piece 3. For example, in the case of an operation temperature of 50-170 deg.C and a wire diameter of 0.3-0.55mm, the distance L2 is 1.0-1.40mm, and the distance L1 is 1.1-1.3 times the distance L2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は基板型温度ヒュ−ズに関
するものである。
FIELD OF THE INVENTION The present invention relates to a substrate type temperature fuse.

【0002】[0002]

【従来の技術】合金型温度ヒュ−ズにおいては、ヒュ−
ズエレメントに低融点可溶合金片を使用しており、その
基本的な構成は、一対の電極間に低融点可溶合金片を橋
設し、その低融点可溶合金片上にフラックスを塗布し、
このフラックス塗布低融点可溶合金片を絶縁樹脂で被覆
した構造である。
2. Description of the Related Art In alloy type temperature fuses,
A low melting point fusible alloy piece is used for the element, and the basic structure is to bridge the low melting point fusible alloy piece between a pair of electrodes and apply flux onto the low melting point fusible alloy piece. ,
This flux-coated low melting point fusible alloy piece is covered with an insulating resin.

【0003】この合金型温度ヒュ−ズの作動機構は、保
護しようとする電気機器が過電流により発熱すると、そ
の発生熱の受熱により低融点可溶合金片が溶融し、この
溶融金属が溶融フラックスの共存下、球状化し、この球
状化の進行により溶融金属が分断し、この分断により機
器への通電を遮断することにある。
In the operating mechanism of this alloy type temperature fuse, when the electric equipment to be protected generates heat due to overcurrent, the low melting point fusible alloy piece is melted by receiving the generated heat, and this molten metal is melted by flux. In the coexistence of spheroidizing, the spheroidizing occurs, the molten metal is divided by the progress of the spheroidizing, and the electric current to the equipment is cut off by this dividing.

【0004】合金型温度ヒュ−ズとして、図3に示すよ
うな基板型温度ヒュ−ズが公知である。図3において、
1’は絶縁基板を、2’,2’は絶縁基板1’の片面に
設けた一対の箔状電極を、3’は電極2’,2’の先端
部間に橋設した低融点可溶合金片を、4’は低融点可溶
合金片3’上に塗布したフラックスを、5’,5’は電
極2’,2’に接続したリ−ド線を、6’は絶縁基板
1’の片面側に被覆した樹脂層をそれぞれ示し、フラッ
クスの電極(銅製)に対する優れた濡れ性のために、電
極先端部がフラックスで覆われている。
As an alloy type temperature fuse, a substrate type temperature fuse as shown in FIG. 3 is known. In FIG.
1'is an insulating substrate, 2'and 2'is a pair of foil-like electrodes provided on one side of the insulating substrate 1 ', and 3'is a low melting point fusible bridged between the tips of the electrodes 2'and 2'. An alloy piece, 4'is a flux applied on the low melting point alloy piece 3 ', 5', 5'is a lead wire connected to the electrodes 2 ', 2', and 6'is an insulating substrate 1 '. Each of the resin layers is shown on one side thereof, and the tip of the electrode is covered with the flux because of the excellent wettability of the flux with respect to the electrode (made of copper).

【0005】この基板型温度ヒュ−ズにおいては、温度
ヒュ−ズの作動時、溶融物(溶融合金と溶融フラックス
との混合物)が流出・飛散するのを防止するために、電
極先端と絶縁基板先端との間の距離L1’並びに電極先
端部側縁と絶縁基板の横側縁との間の距離L2’を通
常、約1.0mm程度に設定しているが、両距離には特
に差を付けず、等しくしている。
In this substrate type temperature fuse, in order to prevent the molten material (mixture of molten alloy and molten flux) from flowing out and scattering during operation of the temperature fuse, the electrode tip and the insulating substrate The distance L 1 'with the tip and the distance L 2 ' between the side edge of the electrode tip and the side edge of the insulating substrate are usually set to about 1.0 mm, but especially for both distances. They are equal without making a difference.

【0006】[0006]

【発明が解決しようとする課題】温度ヒュ−ズにおいて
は、機器のヒ−トサイクルのために、作動温度よりも5
0〜10℃低い温度と常温との間の温度範囲で加熱、冷
却に曝され、その加熱時にフラックスが溶融され、その
溶融フラックスの熱膨張のために絶縁基板状の絶縁被覆
層が圧力を受け、この加圧が多数回繰り返される間に、
絶縁被覆層の剥離の進行が避けられない。
In the temperature fuse, the temperature of the fuse is lower than the operating temperature because of the heat cycle of the equipment.
It is exposed to heating and cooling in a temperature range between 0 to 10 ° C lower and room temperature, the flux is melted at the time of heating, and the insulating coating layer in the form of an insulating substrate receives pressure due to thermal expansion of the molten flux. , While this pressurization is repeated many times,
The progress of peeling of the insulating coating layer cannot be avoided.

【0007】而るに、本発明者等においては、基板型温
度ヒュ−ズにおけるフラックスの熱膨張の繰返しによる
絶縁被覆層の剥離試験を行ったところ、フラックスの塗
布形状が横一直線の低融点可溶合金片を覆う横長であ
り、初期の剥離周縁形状が横長であっても、剥離の進行
に伴い剥離周縁形状が次第に円形化されていき、絶縁基
板の縦方向に向かう剥離量が絶縁基板の横方向に向かう
剥離量に較べて大きいことを知った。
However, the inventors of the present invention conducted a peeling test of the insulating coating layer by repeating the thermal expansion of the flux in the substrate type temperature fuse, and found that the flux coating shape was a horizontal straight line with a low melting point. Even if the initial peeling peripheral edge shape is horizontally long covering the molten alloy piece, the peeling peripheral edge shape is gradually circularized as the peeling progresses, and the peeling amount in the vertical direction of the insulating substrate is larger than that of the insulating substrate. It was found that the amount of peeling was larger than that in the lateral direction.

【0008】従って、上記電極先端と絶縁基板先端との
間の距離を電極先端部側縁と絶縁基板の横側縁との間の
距離に等しくしている従来の基板型温度ヒュ−ズにおい
ては、上記ヒ−トサイクル後、絶縁基板縦方向の絶縁基
板と絶縁被覆層との接着界面距離が同横方向の絶縁基板
と絶縁被覆層との接着界面距離に較べて短くなってしま
い、温度ヒュ−ズの作動時、絶縁基板の縦方向先端側か
ら溶融物の流出が生じ易い。
Therefore, in the conventional substrate temperature fuse in which the distance between the tip of the electrode and the tip of the insulating substrate is made equal to the distance between the side edge of the electrode tip and the side edge of the insulating substrate. After the heat cycle, the adhesive interface distance between the insulating substrate in the vertical direction of the insulating substrate and the insulating coating layer becomes shorter than the adhesive interface distance between the insulating substrate and the insulating coating layer in the horizontal direction, and the temperature During the operation of the melt, the melt easily flows out from the longitudinal tip side of the insulating substrate.

【0009】本発明の目的は、基板型温度ヒュ−ズにお
いては、温度ヒュ−ズ作動前のヒ−トサイクルにより、
絶縁被覆層が縦方向に顕著に剥離されることを勘案し、
作動時の耐圧性の方向性をなくしてその耐圧性を向上す
ることにある。
An object of the present invention is, in a substrate type temperature fuse, a heat cycle before operating the temperature fuse,
Considering that the insulating coating layer is significantly peeled in the vertical direction,
The purpose is to improve the pressure resistance by eliminating the directionality of the pressure resistance during operation.

【0010】[0010]

【課題を解決するための手段】本発明の基板型温度ヒュ
−ズは、絶縁基板の片面に一対の縦方向層状電極を設
け、これら電極の先端部間に横方向に低融点可溶合金片
を橋設し、低融点可溶合金片上に沿ってフラックスを塗
布し、同絶縁基板の片面上に絶縁被覆を施した温度ヒュ
−ズにおいて、電極先端と絶縁基板先端との間の距離を
電極先端部側縁と絶縁基板の横側縁との間の距離よりも
大としたことを特徴とし、電極先端部を絶縁基板の横側
縁に臨む部分において欠切することができる。
According to the substrate type temperature fuse of the present invention, a pair of vertical layered electrodes are provided on one surface of an insulating substrate, and a low melting point fusible alloy strip is laterally provided between the tips of these electrodes. In the temperature fuse in which the flux is applied along the low melting point fusible alloy piece and the insulating coating is applied on one surface of the insulating substrate, the distance between the electrode tip and the insulating substrate tip is set to the electrode. It is characterized in that the distance is larger than the distance between the side edge of the tip and the lateral edge of the insulating substrate, and the tip of the electrode can be cut off at the portion facing the lateral edge of the insulating substrate.

【0011】[0011]

【作用】温度ヒュ−ズ作動前のヒ−トサイクルに伴うフ
ラックスの膨張圧力により、絶縁被覆層が横方向より縦
方向に顕著に剥離されても、電極先端と絶縁基板先端と
の間の距離を電極先端部側縁と絶縁基板の横側縁との間
の距離よりも大としてあるから、縦方向においても絶縁
基板と絶縁被覆層との接着界面距離を充分保持でき、温
度ヒュ−ズ作動時の溶融物に対する耐圧性を充分に保証
できる。
Function: Even if the insulating coating layer is significantly peeled in the vertical direction rather than in the horizontal direction due to the expansion pressure of the flux accompanying the heat cycle before the temperature fuse operation, the distance between the electrode tip and the insulating substrate tip Is larger than the distance between the side edge of the electrode tip and the side edge of the insulating substrate, the adhesive interface distance between the insulating substrate and the insulating coating layer can be sufficiently maintained even in the vertical direction, and the temperature fuse operation can be performed. The pressure resistance against the melt at the time can be sufficiently ensured.

【0012】[0012]

【実施例】以下、図面により本発明の実施例を説明す
る。図1は本発明の実施例を示す平面説明図である。図
1において、1は絶縁基板であり、例えば、セラミック
ス板を使用することができる。2,2は絶縁基板1の片
面に設けた一対の縦方向電極であり、銅箔積層絶縁板の
銅箔エッチングによって形成することができる。L1
電極先端と絶縁基板先端との間の距離を、L2は電極先
端部側縁と絶縁基板横側縁との間の距離をそれぞれ示
し、L1>L2としてある。3は電極先端部間に横方向に
橋設した低融点可溶合金片である。4は低融点可溶合金
片3上に沿って塗布したフラックスであり、電極材のフ
ラックスに対する優れた濡れ性のために電極先端部のほ
ぼ全面にフラックスが流延している。5,5は各電極
2,2の後端に接続したリ−ド線(絶縁被覆線)、6は
絶縁基板1の片面に設けた絶縁被覆層である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory plan view showing an embodiment of the present invention. In FIG. 1, reference numeral 1 is an insulating substrate, and for example, a ceramic plate can be used. Reference numerals 2 and 2 denote a pair of vertical electrodes provided on one surface of the insulating substrate 1, which can be formed by copper foil etching of a copper foil laminated insulating plate. L 1 indicates the distance between the electrode tip and the insulating substrate tip, and L 2 indicates the distance between the electrode tip side edge and the insulating substrate lateral edge, and L 1 > L 2 . Reference numeral 3 is a low melting point fusible alloy piece bridged laterally between the electrode tips. Reference numeral 4 denotes a flux applied along the low melting point fusible alloy piece 3, and the flux is cast on almost the entire surface of the electrode tip because of the excellent wettability of the electrode material with respect to the flux. Reference numerals 5 and 5 are lead wires (insulating coating wires) connected to the rear ends of the electrodes 2 and 2, and 6 is an insulating coating layer provided on one surface of the insulating substrate 1.

【0013】上記基板型温度ヒュ−ズにおいては、当該
温度ヒュ−ズによって保護しようとする電気機器に取着
して使用される。従って、電気機器のヒ−トサイクルに
より繰返して加熱、冷却に曝され、この間、フラックス
が溶融され、溶融フラックスによる加圧が繰り返され
る。従って、絶縁基板と絶縁被覆層との接着界面の剥離
が促され、この場合、初期の剥離周縁形状がフラックス
の塗布形状とほぼ相似の横長であっても、剥離の進行に
伴い剥離周縁形状が次第に円形化されていき、絶縁基板
の縦方向に向かう剥離量が絶縁基板の横方向に向かう剥
離量に較べて大きくなる。
The substrate type temperature fuse is attached to an electric device to be protected by the temperature fuse for use. Therefore, it is repeatedly exposed to heating and cooling by the heat cycle of the electric device, during which the flux is melted and the pressurization by the molten flux is repeated. Therefore, peeling at the adhesive interface between the insulating substrate and the insulating coating layer is promoted. The shape is gradually circularized, and the amount of peeling of the insulating substrate in the vertical direction becomes larger than the amount of peeling of the insulating substrate in the horizontal direction.

【0014】しかし、本発明の基板型温度ヒュ−ズにお
いては、電極先端と絶縁基板先端との間の距離L1を、
電極先端部側縁と絶縁基板横側縁との間の距離L2より
も大きくしてあるから、上記の剥離にもかかわらず、縦
方向においても絶縁基板と絶縁被覆層との接着界面距離
を充分に保持できる。従って、温度ヒュ−ズ作動時での
溶融金属と溶融フラックスとの混合物の圧力に対する耐
圧性を、絶縁基板縦方向においても横方向と同程度に保
持させることができ、溶融物の流出・飛散をよく防止で
きる。
However, in the substrate type temperature fuse of the present invention, the distance L 1 between the electrode tip and the insulating substrate tip is
Since the distance L 2 between the side edge of the electrode tip and the side edge of the insulating substrate is set larger than the distance L 2 , the adhesive interface distance between the insulating substrate and the insulating coating layer is increased even in the vertical direction despite the peeling. Can hold enough. Therefore, the pressure resistance against the pressure of the mixture of the molten metal and the molten flux during the operation of the temperature fuse can be maintained in the vertical direction of the insulating substrate to the same extent as in the horizontal direction, and the outflow and scattering of the molten product can be prevented. Can be well prevented.

【0015】上記において、距離L2は、低融点可溶合
金片の種類または作動温度,低融点可溶合金片の線径等
により異なるが、例えば、作動温度50〜170℃、線
径0.3〜0.55mmのもとでは、1.0mm〜1.
40mmとされる。
In the above description, the distance L 2 varies depending on the type or operating temperature of the low melting point fusible alloy piece, the wire diameter of the low melting point fusible alloy piece, and the like. For example, the operating temperature is 50 to 170 ° C., the wire diameter is 0. Under 3 to 0.55 mm, 1.0 mm to 1.
It is set to 40 mm.

【0016】上記の距離L1は、距離L2の1.1倍〜
1.3倍とされる。1.1倍以下では、上記ヒ−トサイ
クル下での基板縦方向の接着界面距離を保証し難く、
1.3倍以上では縦方向長さが必要以上に長くなって基
板型温度ヒュ−ズの小型化を保持できない。
The distance L 1 is 1.1 times the distance L 2
It is supposed to be 1.3 times. If it is 1.1 times or less, it is difficult to guarantee the adhesive interface distance in the longitudinal direction of the substrate under the heat cycle,
If it is 1.3 times or more, the length in the vertical direction becomes unnecessarily long and the miniaturization of the substrate type temperature fuse cannot be maintained.

【0017】図2は本発明の別実施例を示す平面説明図
であり、電極先端部を絶縁基板の横側縁に臨む部分にお
いて欠切してある(符号20で示してある)。
FIG. 2 is an explanatory plan view showing another embodiment of the present invention, in which the electrode tip portion is cut away at a portion facing the lateral side edge of the insulating substrate (denoted by reference numeral 20).

【0018】温度ヒュ−ズに使用されるフラックスにお
いては、絶縁基板(セラミックス)に対するに濡れ性が
電極材(銅)に対する濡れ性に較べて悪く、低融点可溶
合金片上に塗布したフラックスが絶縁基板上にまで広が
ることが殆どないから、この別実施例においては、欠切
縁端と絶縁基板横側縁との間の距離L3が上記溶融物に
対するシ−ル距離となり、絶縁基板巾の同一下、L2
3、L3<L1とすることができ、図1に示す基板型温
度ヒュ−ズに対し、耐シ−ル性を向上できる。
In the flux used in the temperature fuse, the wettability with respect to the insulating substrate (ceramics) is worse than that with respect to the electrode material (copper), and the flux applied on the low melting point fusible alloy piece is insulated. In this alternative embodiment, the distance L 3 between the notched edge and the lateral side edge of the insulating substrate is the seal distance for the melt, since it hardly spreads over the substrate, and thus the width of the insulating substrate is reduced. Under the same condition, L 2 <
L 3, L 3 <can be L 1, the substrate type thermal fuse shown in Figure 1 - to's,耐Shi - can be improved Le resistance.

【0019】図2において、1は絶縁基板を、2は電極
を、3は低融点可溶合金片を、4はフラックスを、5,
5はリ−ド線を、6は絶縁被覆層をそれぞれ示してい
る。
In FIG. 2, 1 is an insulating substrate, 2 is an electrode, 3 is a low melting point fusible alloy piece, 4 is flux, and 5 is
Reference numeral 5 indicates a lead wire, and 6 indicates an insulating coating layer.

【0020】[0020]

【発明の効果】本発明の基板型温度ヒュ−ズにおいて
は、上述した通り、温度ヒュ−ズ作動前のヒ−トサイク
ルによるフラックスの熱膨張で絶縁被覆層の剥離が絶縁
基板の横方向よりも縦方向に大きく発生することを勘案
して、電極先端と絶縁基板先端との間の距離を電極先端
部側縁と絶縁基板横側縁との間の距離よりも大としてい
るから、温度ヒュ−ズ作動時の耐圧性を両方向ともに同
等にでき、方向性のない耐圧性を保証できる。
As described above, in the substrate type temperature fuse of the present invention, the peeling of the insulating coating layer is caused from the lateral direction of the insulating substrate due to the thermal expansion of the flux due to the heat cycle before the operation of the temperature fuse. The distance between the tip of the electrode and the tip of the insulating substrate is set larger than the distance between the side edge of the electrode tip and the side edge of the insulating substrate. -The pressure resistance during operation can be made equal in both directions, and pressure resistance without directionality can be guaranteed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す平面説明図である。FIG. 1 is an explanatory plan view showing an embodiment of the present invention.

【図2】本発明の別実施例を示す平面説明図である。FIG. 2 is an explanatory plan view showing another embodiment of the present invention.

【図3】従来例を示す平面説明図である。FIG. 3 is an explanatory plan view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 絶縁基板 2 層状電極 20 切欠 3 低融点可溶合金片 4 フラックス 6 絶縁被覆層 L1 電極先端と絶縁基板先端との間の距離 L2 電極先端部側縁と絶縁基板横側縁との間の距離 L3 電極先端部側縁と絶縁基板横側縁との間の距離1 Insulating substrate 2 Layered electrode 20 Notch 3 Low melting point fusible alloy piece 4 Flux 6 Insulating coating layer L 1 Distance between electrode tip and insulating substrate tip L 2 Between electrode edge side edge and insulating substrate lateral edge Distance between L 3 electrode tip side edge and insulating substrate side edge

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板の片面に一対の縦方向層状電極を
設け、これら電極の先端部間に横方向に低融点可溶合金
片を橋設し、低融点可溶合金片上に沿ってフラックスを
塗布し、同絶縁基板の片面上に絶縁被覆を施した温度ヒ
ュ−ズにおいて、電極先端と絶縁基板先端との間の距離
を電極先端部側縁と絶縁基板横側縁との間の距離よりも
大としたことを特徴とする基板型温度ヒュ−ズ。
1. A pair of vertical layered electrodes is provided on one surface of an insulating substrate, and a low melting point fusible alloy piece is bridged laterally between the tips of these electrodes, and a flux is formed along the low melting point fusible alloy piece. In a temperature fuse in which an insulating coating is applied on one side of the same insulating substrate, the distance between the electrode tip and the insulating substrate tip is the distance between the electrode tip side edge and the insulating substrate lateral side edge. Substrate type temperature fuse characterized by being made larger than.
【請求項2】電極先端部が絶縁基板の横側縁に臨む部分
において欠切されている請求項1記載の基板型温度ヒュ
−ズ。
2. The substrate type temperature fuse according to claim 1, wherein the electrode tip portion is notched at a portion facing the lateral side edge of the insulating substrate.
JP8805792A 1992-03-12 1992-03-12 Substrate type temperature fuse Pending JPH05258653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8805792A JPH05258653A (en) 1992-03-12 1992-03-12 Substrate type temperature fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8805792A JPH05258653A (en) 1992-03-12 1992-03-12 Substrate type temperature fuse

Publications (1)

Publication Number Publication Date
JPH05258653A true JPH05258653A (en) 1993-10-08

Family

ID=13932218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8805792A Pending JPH05258653A (en) 1992-03-12 1992-03-12 Substrate type temperature fuse

Country Status (1)

Country Link
JP (1) JPH05258653A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838971B2 (en) * 2001-05-21 2005-01-04 Matsushita Electric Industrial Co., Ltd. Thermal fuse
US7116208B2 (en) 2000-03-14 2006-10-03 Rohm Co., Ltd. Printed-circuit board with fuse
US7554432B2 (en) * 2005-05-27 2009-06-30 Infineon Technologies Ag Fuse element with trigger assistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116208B2 (en) 2000-03-14 2006-10-03 Rohm Co., Ltd. Printed-circuit board with fuse
US6838971B2 (en) * 2001-05-21 2005-01-04 Matsushita Electric Industrial Co., Ltd. Thermal fuse
US7554432B2 (en) * 2005-05-27 2009-06-30 Infineon Technologies Ag Fuse element with trigger assistance

Similar Documents

Publication Publication Date Title
JPH05258653A (en) Substrate type temperature fuse
JPH0719075Y2 (en) Substrate type thermal fuse
JP3252025B2 (en) Substrate type temperature fuse
JP3889855B2 (en) Substrate type temperature fuse
JPH0312192Y2 (en)
JP2799996B2 (en) Temperature sensor
JP2004172518A (en) Circuit protection element and manufacture thereof
JP4112297B2 (en) Thermo protector and method of manufacturing thermo protector
EP0515037A1 (en) Fuse
JPH086354Y2 (en) Alloy type thermal fuse
JP4234818B2 (en) Resistance thermal fuse and manufacturing method thereof
JP2872525B2 (en) Circuit protection element
JP3267740B2 (en) Substrate type temperature fuse
JPH0436035Y2 (en)
JPH0436025Y2 (en)
JPH0514433Y2 (en)
JPH0436530Y2 (en)
JP2002321399A (en) Thermal head and its production method
JPH076604Y2 (en) Current fuse
JP4267332B2 (en) Protective element
JP3434897B2 (en) Substrate type resistance / temperature fuse
JPH0142907Y2 (en)
JPH042023A (en) Resistance/thermal fuse and manufacture thereof
JPH0343925A (en) Flat thermal fuse
JPH10106425A (en) Thin type fuse