JPH0521971B2 - - Google Patents

Info

Publication number
JPH0521971B2
JPH0521971B2 JP59143789A JP14378984A JPH0521971B2 JP H0521971 B2 JPH0521971 B2 JP H0521971B2 JP 59143789 A JP59143789 A JP 59143789A JP 14378984 A JP14378984 A JP 14378984A JP H0521971 B2 JPH0521971 B2 JP H0521971B2
Authority
JP
Japan
Prior art keywords
copper powder
copper
dispersion
alloy
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59143789A
Other languages
Japanese (ja)
Other versions
JPS6123733A (en
Inventor
Hideo Kayano
Yoshiro Niimi
Yoshihiko Shingu
Kazuo Kato
Hideya Imamura
Tomiharu Matsushita
Masataka Noguchi
Kenichiro Oochi
Yoshio Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59143789A priority Critical patent/JPS6123733A/en
Publication of JPS6123733A publication Critical patent/JPS6123733A/en
Publication of JPH0521971B2 publication Critical patent/JPH0521971B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 分散強化型銅合金は、基地金属である銅の持つ
高導電性と、分散強化型合金の特長である耐熱性
を兼ね備えており、耐熱導電材料として極めて優
れた特性を有している。本発明は、この分散強化
型銅合金の製造方法に関するものである。 〔従来の技術〕 従来の分散強化型銅合金の製造方法としては、
内部酸化による方法,銅粉末と分散粒子とを機械
的に混合した後焼成する方法,および共沈法によ
つて得られた金属と分散粒子の混合物を焼成する
方法などがある。これらの方法は、分散粒子の均
一分散性が十分でなく、あるいは製造工程が複雑
になるなどの欠点があり、分散強化型銅合金の品
質を安定化させることはむつかしい。 最近になつて、これらの欠点を改良した新しい
分散強化型銅合金の製造方法が特公昭58−36660
号公報によつて開示された。この発明は、炭化
物,窒化物,炭窒化物,酸化物の中から選ばれる
何れか少なくとも一種を形成することができる金
属を含む錯化合物,アルコキシドの何れか少なく
とも一種と金属粉末あるいは合金粉末とを混合し
た混合物に、成型焼成する処理,溶融凝固させる
処理のうちから選ばれる何れか一種の処理を施
し、次いで必要により冷間あるいは熱間加工し、
前記錯化合物あるいはアルコキシド中に含まれる
金属の炭化物,窒化物,炭窒化物,酸化物の中か
ら選ばれる何れか少なくとも一種を基地金属或い
は合金中に分散させて基地を強化することを特徴
とする延性に優れた高強度耐熱性分散強化型金属
材料の製造方法に関するものである。 〔発明が解決しようとする課題〕 本発明者らは、上記方法を応用して分散強化型
銅合金を製造すべく種々の研究・検討を重ねた結
果、本合金の特性は使用する銅粉末の粒径および
比表面積に大きく影響を受けることを確認した。
即ち、使用する銅粉末が微細で比表面積が大きく
なる程本合金の特性が向上することを確認した。 〔課題を解決するための手段〕〔作用〕 本発明に係る分散強化型銅合金の製造方法は、
電解法で製造された平均粒径5〓m以下、比表面
積3500cm3/g以上の銅粉末に酸化物,炭化物,窒
化物,炭窒化物を形成することができる金属を含
む有機金属化合物を被覆し、これを熱処理するこ
とにより前記有機金属化合物中の金属の酸化物,
炭化物,窒化物,炭窒化物の一種以上を分散粒子
として前記銅粉末の表面に均一微細に生成せし
め、これを成形することを特徴とするものであ
る。 本発明に使用する銅粉末は、平均粒径が5〓m
以下と微細で、比表面積が3500cm2/g以上と大き
い銅粉末であるが、これを安定的にかつ、効率よ
く製造する方法としては、電解法が最も適してい
る。電解法で製造した銅粉末(一般に「電解銅
粉」と呼ばれている。)は、例えば平均粒径3〓
(フイツシヤーサブシーブサイザーによる測定値.
以下同じ)、比表面積4000cm2/g(BET法による
測定値.以下同じ)程度の銅粉末の場合、銅粉末
の厚みは1〓以下であり、電解法は微細な粉末の
製造が可能である。この銅粉末を用いて本発明の
方法で処理することにより、銅粉末の表面に0.1
〓以下の分散粒子を均一に形成させることができ
る。これを焼成して得られた銅合金中には、基地
金属である銅の中に約0.1〓以下の大きさの分散
粒子が1〓以下の間隔で均一に分散しており、分
散粒子の粒子径,分散状態ともに分散強化に寄与
するに十分である。電解法以外の方法で製造した
銅粉末は、電解法による粉末に比べて粒径は大き
くかつ球形に近い形状であつて比表面積が小さ
く、分散強化型銅合金用基地素材粉末としては実
用性に乏しい。 ところで、本発明に適用する電解銅粉末として
は、平均粒径5〓以下,比表面積3500cm2/g以上
のものを用いる必要がある。平均粒径が上記の値
より大きい場合あるいは比表面積が上記の値より
小さい場合には、焼成後、基地金属である銅中の
分散粒子の間隔が大きく、また分散粒子が凝集
し、合金の特性が著しく劣化するからである。 なお、実験室的には電解法によつて平均粒径5
〓以下、比表面積10000cm2/g程度のものまで得
ることが可能であるが、一般に市販されている電
解銅粉は比表面積5000cm2/g程度が最大であるか
ら、本発明を実施するに当つては、比表面積3500
〜5000cm2/gの範囲から選ぶことが好ましい。 銅粉末に被覆する有機金属化合物は、金属の錯
化合物例えばアセチルアセトナトキレート,トリ
メチレンジアミンキレート,プロピレンジアミン
キレート等のキレート化合物、メトキシド,エト
キシド,プロポキシド,ブトキシド等のアルコキ
シド、オクチル酸金属塩、カプリル酸塩、有機金
属脂肪酸、およびカルボン酸金属塩等である。な
お、この有機金属化合物に含まれる金属チタニウ
ム、ジルコニウム、アルミニウム、カドミウム、
シリコン、バナジウム、タンタル、クロム、モリ
ブデン、タングステン、マンガン、希土類元素等
の少なくとも一種を選択して適用すればよい。 本発明では銅粉末に前記有機金属化合物を被覆
する。この場合、有機金属化合物が常温で液状で
あればそのまま適用できる。一方、固形状であれ
ば加熱溶融あるいは溶媒に溶解して、均一な被覆
を行なつた後、乾燥させて溶媒を除去する方法で
適用する。 有機金属化合物の添加量はその化合物中に含ま
れる金属の量、目的とする合金組成により定まる
が、有機金属化合物として銅粉末の50wt%以上
添加することは好ましくない。50wt%以上添加
した場合、熱処理によつて生成する分散粒子が粗
大化し、かつ基地素材である銅の機械的特性およ
び物理的特性が希薄になり、導電性が著しく低下
し、あるいは延性が著しく低下するからである。 銅粉末に有機金属化合物を被覆した後、熱処理
によつて有機金属化合物中に含まれる金属の酸化
物、炭化物、窒化物、炭窒化物の分散粒子を生成
させるが、これらの内いずれの分散粒子が生成す
るかは有機金属化合物の種類、および熱処理の雰
囲気によつて定まる。熱処理温度は前記有機金属
が分解を始める300℃以上が必要であり、銅の融
点近傍までの温度が適用できる。通常、熱処理温
度は500〜700℃を適用する。 上記の方法で得られた粉末を成形することによ
り、分散強化型銅合金を得ることができる。成形
方法は目的によつて既存の方法が選択採用され
る。例えば型製品には、HIP法、長尺製品には熱
間押出し法など採用される。 〔効果〕 本発明に係る分散強化型銅合金の製造方法は、
基地素材粉末として電解法で製造された平均粒径
5〓m以下、比表面積3500cm2/g以上の銅粉末を
使用しているので、高導電性と耐熱性を兼ね備え
た分散強化型銅合金を得ることが出来る。従つ
て、この分散強化型銅合金からなる耐熱導電材料
は、極めて優れた特性を有するものである。 〔実施例〕 実施例及び比較例を挙げて本発明をより詳しく
説明すれば次の通りである。 実施例 1 平均粒径3〓m、比表面積3900cm2/gの電解銅
粉に石油エーテルに溶解したAl−プロポキシド
3wt%を混合した後、乾燥し、Al−プロポキシド
を電解銅粉の表面に被覆し、H2気流中で600℃30
分の熱処理を行ない、電解銅粉の表面にAl2O3
生成させた。該粉末を外径140〓,内径130〓の銅
ケースの中に圧入し、900℃に加熱して、圧力
6500Kg/cm2で外径20〓の棒状に押出した後、16〓
に冷間抽伸し、800℃以下の温度で熱処理し第1
図の結果を得た。第1図は、成形材の導電率と硬
さの測定例を示すものである。800℃に加熱した
後も、硬さHv120、導電率94%IACS程度の特性
を有する耐熱性が確認された。 実施例 2 平均粒径3〓m、比表面積3900cm2/gの電解銅
粉に対して、3wt%のオクチル酸Alを約250℃に
加熱しながら混合し、これをH2気流中600℃、30
分熱処理し、電解銅粉の表面にAl2O3を生成させ
た。該粉末を外径28〓,肉厚1mmの銅管に充填
し、脱ガス封入した後、700℃,1000Kg/cm2で外
圧を負荷し、焼成させた後、内径16〓の円筒金型
で加圧力30tonでプレス成型し、硬さHv150の円
柱素材を得た。この成形材は、800℃に加熱した
後も、硬さHv125で、導電率は88%IACSであり、
これは電極チツプ素材として使用できる。 実施例 3 平均粒径4.5〓m、比表面積3700cm2/gの電解
銅粉を用いた以外は実施例1と同様にして棒状の
Cu−Al2O3合金成形材を得た。この成形材は800
℃に加熱した後も、硬さHv117、導電率90%
IACS程度の特性を有する耐熱性が確認された。 比較例 平均粒径7〓m、比表面積2500cm2/gの電解銅
粉を用いた以外は実施例1と同様にして棒状の
CuAl2O3合金成形材を得た。この成形材は800℃
に加熱した後、硬さHv75を示した。 表1に、上掲実施例1〜3及び比較例で得た各
合金の特性値を示す。なお、同表には参考値とし
て市販のCu−Cr合金(析出強化型銅合金)の特
性値を併せて示した。
[Industrial Application Fields] Dispersion-strengthened copper alloys have both the high conductivity of copper, which is the base metal, and the heat resistance, which is a feature of dispersion-strengthened alloys, and have extremely excellent properties as heat-resistant conductive materials. have. The present invention relates to a method for manufacturing this dispersion-strengthened copper alloy. [Conventional technology] Conventional methods for producing dispersion-strengthened copper alloys include:
Examples include a method using internal oxidation, a method in which copper powder and dispersed particles are mechanically mixed and then fired, and a method in which a mixture of metal and dispersed particles obtained by a coprecipitation method is fired. These methods have drawbacks such as insufficient uniform dispersion of dispersed particles or complicated manufacturing processes, and it is difficult to stabilize the quality of dispersion-strengthened copper alloys. Recently, a new method for producing dispersion-strengthened copper alloys that improves these drawbacks has been developed in the Japanese Patent Publication No. 58-36660.
It was disclosed by the publication no. The present invention provides at least one of a metal-containing complex compound or alkoxide capable of forming at least one selected from carbides, nitrides, carbonitrides, and oxides, and metal powder or alloy powder. The mixed mixture is subjected to one kind of treatment selected from molding and firing treatment, melting and solidification treatment, and then cold or hot processing as necessary,
It is characterized in that at least one selected from metal carbides, nitrides, carbonitrides, and oxides contained in the complex compound or alkoxide is dispersed in the base metal or alloy to strengthen the base. The present invention relates to a method for manufacturing a high-strength, heat-resistant, dispersion-strengthened metal material with excellent ductility. [Problems to be Solved by the Invention] The present inventors have conducted various studies and studies to produce a dispersion-strengthened copper alloy by applying the above method, and have found that the characteristics of this alloy are based on the copper powder used. It was confirmed that the particle size and specific surface area are greatly affected.
In other words, it was confirmed that the finer the copper powder used and the larger the specific surface area, the better the properties of the present alloy. [Means for solving the problem] [Operation] The method for producing a dispersion-strengthened copper alloy according to the present invention includes the following steps:
Copper powder produced by electrolytic method with an average particle size of 5 m or less and a specific surface area of 3500 cm 3 /g or more is coated with an organometallic compound containing a metal that can form oxides, carbides, nitrides, and carbonitrides. By heat-treating this, the metal oxide in the organometallic compound,
The method is characterized in that one or more types of carbides, nitrides, and carbonitrides are uniformly and finely produced on the surface of the copper powder as dispersed particles, and then molded. The copper powder used in the present invention has an average particle size of 5 m
Copper powder is very fine, with a specific surface area of 3,500 cm 2 /g or more, and electrolysis is the most suitable method for producing it stably and efficiently. Copper powder produced by electrolytic method (generally called "electrolytic copper powder") has an average particle size of 3, for example.
(Measurement value using Fisher Subsieve Sizer.
In the case of copper powder with a specific surface area of about 4000 cm 2 /g (measured by BET method; the same applies below), the thickness of the copper powder is less than 1 mm, and the electrolytic method can produce fine powder. . By using this copper powder and treating it with the method of the present invention, 0.1
The following dispersed particles can be uniformly formed. In the copper alloy obtained by firing this, dispersed particles with a size of about 0.1〓 or less are uniformly dispersed at intervals of 1〓 or less in the base metal copper, and the particles of the dispersed particles Both the diameter and the dispersion state are sufficient to contribute to dispersion reinforcement. Copper powder produced by methods other than electrolysis has a larger particle size, a nearly spherical shape, and a smaller specific surface area than powder produced by electrolysis, making it less practical as a base material powder for dispersion-strengthened copper alloys. poor. Incidentally, the electrolytic copper powder to be used in the present invention must have an average particle size of 5 mm or less and a specific surface area of 3500 cm 2 /g or more. If the average particle size is larger than the above value or the specific surface area is smaller than the above value, the distance between the dispersed particles in the copper base metal will be large after firing, and the dispersed particles will aggregate, which will affect the properties of the alloy. This is because it deteriorates significantly. In addition, in the laboratory, an average particle size of 5
〓It is possible to obtain a specific surface area of up to 10,000 cm 2 /g, but since generally commercially available electrolytic copper powder has a maximum specific surface area of 5,000 cm 2 /g, it is necessary to carry out the present invention. In other words, the specific surface area is 3500
It is preferable to select from the range of ~5000 cm 2 /g. The organometallic compound coated on the copper powder includes metal complex compounds such as chelate compounds such as acetylacetonate chelate, trimethylene diamine chelate, and propylene diamine chelate, alkoxides such as methoxide, ethoxide, propoxide, and butoxide, metal salts of octylate, These include caprylates, organometallic fatty acids, and carboxylic acid metal salts. Note that the metals contained in this organometallic compound include titanium, zirconium, aluminum, cadmium,
At least one of silicon, vanadium, tantalum, chromium, molybdenum, tungsten, manganese, rare earth elements, etc. may be selected and applied. In the present invention, copper powder is coated with the organometallic compound. In this case, if the organometallic compound is liquid at room temperature, it can be applied as is. On the other hand, if it is in solid form, it is applied by heating and melting it or dissolving it in a solvent to form a uniform coating, and then drying it to remove the solvent. The amount of the organometallic compound to be added is determined by the amount of metal contained in the compound and the intended alloy composition, but it is not preferable to add more than 50 wt% of the copper powder as the organometallic compound. If more than 50wt% is added, the dispersed particles generated by heat treatment will become coarser, and the mechanical and physical properties of the copper base material will be diluted, resulting in a significant decrease in conductivity or ductility. Because it does. After coating copper powder with an organometallic compound, dispersion particles of metal oxides, carbides, nitrides, and carbonitrides contained in the organometallic compound are generated by heat treatment. Whether or not is generated depends on the type of organometallic compound and the atmosphere of the heat treatment. The heat treatment temperature must be 300° C. or higher, at which the organic metal begins to decompose, and a temperature close to the melting point of copper can be applied. Usually, the heat treatment temperature is 500 to 700°C. A dispersion-strengthened copper alloy can be obtained by molding the powder obtained by the above method. As the molding method, existing methods are selected and adopted depending on the purpose. For example, the HIP method is used for molded products, and the hot extrusion method is used for long products. [Effects] The method for producing a dispersion-strengthened copper alloy according to the present invention has the following effects:
Since we use copper powder produced by electrolytic method as the base material powder with an average particle size of 5〓m or less and a specific surface area of 3500cm 2 /g or more, we can create a dispersion-strengthened copper alloy that has both high conductivity and heat resistance. You can get it. Therefore, the heat-resistant conductive material made of this dispersion-strengthened copper alloy has extremely excellent properties. [Examples] The present invention will be described in more detail with reference to Examples and Comparative Examples. Example 1 Al-propoxide dissolved in petroleum ether in electrolytic copper powder with an average particle size of 3 m and a specific surface area of 3900 cm 2 /g
After mixing 3wt%, dry, coat the surface of the electrolytic copper powder with Al-propoxide, and heat at 600℃30 in H2 stream.
Heat treatment was performed for several minutes to generate Al 2 O 3 on the surface of the electrolytic copper powder. The powder was press-fitted into a copper case with an outer diameter of 140〓 and an inner diameter of 130〓, heated to 900℃, and put under pressure.
After extruding it into a rod shape with an outer diameter of 20〓 at 6500Kg/ cm2 , it becomes 16〓
cold drawn and heat treated at a temperature of 800℃ or less.
We obtained the results shown in the figure. FIG. 1 shows an example of measuring the electrical conductivity and hardness of a molded material. Even after heating to 800°C, heat resistance was confirmed, with hardness of Hv120 and electrical conductivity of 94% IACS. Example 2 Electrolytic copper powder with an average particle size of 3 m and a specific surface area of 3900 cm 2 /g was mixed with 3 wt% Al octylate while heating to about 250°C, and then heated at 600°C in a H 2 stream. 30
A heat treatment was performed to generate Al 2 O 3 on the surface of the electrolytic copper powder. The powder was filled into a copper tube with an outer diameter of 28㎜ and a wall thickness of 1 mm, degassed and sealed, and then an external pressure was applied at 700℃ and 1000Kg/cm 2 and baked. Press molding was performed with a pressure of 30 tons to obtain a cylindrical material with a hardness of Hv150. Even after heating to 800℃, this molded material has a hardness of Hv125 and an electrical conductivity of 88% IACS.
This can be used as an electrode chip material. Example 3 A rod-shaped product was prepared in the same manner as in Example 1, except that electrolytic copper powder with an average particle size of 4.5 m and a specific surface area of 3700 cm 2 /g was used.
A Cu-Al 2 O 3 alloy molded material was obtained. This molding material is 800
Hardness Hv117, conductivity 90% even after heating to °C
Heat resistance with properties comparable to IACS was confirmed. Comparative Example A rod-shaped product was prepared in the same manner as in Example 1, except that electrolytic copper powder with an average particle size of 7 m and a specific surface area of 2500 cm 2 /g was used.
A CuAl 2 O 3 alloy molded material was obtained. This molded material is heated to 800℃
After heating to , it showed a hardness of Hv75. Table 1 shows the characteristic values of each alloy obtained in Examples 1 to 3 and Comparative Example above. The table also shows the characteristic values of a commercially available Cu-Cr alloy (precipitation-strengthened copper alloy) as reference values.

【表】 なお、表1の結果から、電解銅粉の平均粒径が
5〓mを越え、比表面積が3500cm2/gを下廻ると
得られる合金の耐熱性が劣化し市販のCu−Cr合
金と大差がなくなることが解る。
[Table] From the results in Table 1, it can be seen that when the average particle size of the electrolytic copper powder exceeds 5〓m and the specific surface area falls below 3500 cm 2 /g, the heat resistance of the resulting alloy deteriorates, compared to commercially available Cu-Cr. It can be seen that there is no big difference from the alloy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1における成形材の導電率と
硬さとの測定例を示す図である。
FIG. 1 is a diagram showing an example of measuring the electrical conductivity and hardness of a molded material in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1 電解法で製造された平均粒径5〓m以下、比
表面積3500cm3/g以上の銅粉末に酸化物,炭化
物,窒化物,炭窒化物を形成することができる金
属を含む有機金属化合物を被覆し、これを熱処理
することにより前記有機金属化合物中の金属の酸
化物,炭化物,窒化物,炭窒化物の一種以上を分
散粒子として前記銅粉末の表面に均一微細に生成
せしめ、これを成形することを特徴とする分散強
化型銅合金の製造方法。
1. Adding an organometallic compound containing a metal capable of forming oxides, carbides, nitrides, and carbonitrides to copper powder produced by an electrolytic method and having an average particle size of 5 m or less and a specific surface area of 3500 cm 3 /g or more. By coating the copper powder and heat-treating it, one or more of the metal oxides, carbides, nitrides, and carbonitrides in the organometallic compound are uniformly and finely generated on the surface of the copper powder as dispersed particles, and then molded. A method for producing a dispersion-strengthened copper alloy.
JP59143789A 1984-07-10 1984-07-10 Production of dispersion strengthened copper alloy Granted JPS6123733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59143789A JPS6123733A (en) 1984-07-10 1984-07-10 Production of dispersion strengthened copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59143789A JPS6123733A (en) 1984-07-10 1984-07-10 Production of dispersion strengthened copper alloy

Publications (2)

Publication Number Publication Date
JPS6123733A JPS6123733A (en) 1986-02-01
JPH0521971B2 true JPH0521971B2 (en) 1993-03-26

Family

ID=15347024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59143789A Granted JPS6123733A (en) 1984-07-10 1984-07-10 Production of dispersion strengthened copper alloy

Country Status (1)

Country Link
JP (1) JPS6123733A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756928B2 (en) * 1995-03-27 1998-05-25 科学技術庁金属材料技術研究所長 Method for producing HfC dispersion strengthened W alloy
JP5376389B2 (en) * 2006-04-11 2013-12-25 住友電気工業株式会社 Nitride dispersion strengthened Cu alloy, method for producing the same and conductor wire
CN110184488B (en) * 2019-06-24 2020-09-18 北京科技大学 Method for preparing metal dispersion strengthened copper in short process

Also Published As

Publication number Publication date
JPS6123733A (en) 1986-02-01

Similar Documents

Publication Publication Date Title
WO2005102568A2 (en) Binary rhenium alloys
CN109843479A (en) Metal increasing material manufacturing metal powder and the molding made using the metal powder
JP3277823B2 (en) Production method of metal powder
EP2343719A1 (en) Electrode material for vacuum circuit breaker and method for producing same
CN1940116A (en) Zero-sintering and hydrogen-expansion nano-diffusion reinforced Cu-Al2O3 alloy and its production
JP2002544375A (en) Metal powder produced by reduction of oxides using gaseous magnesium
CN111996405B (en) Method for preparing high-strength and high-conductivity copper alloy through metal injection molding
CN107159878A (en) A kind of metal charge body and its preparation method and application
CN109576529A (en) High-performance disperse copper alloy and preparation method thereof
JP3859348B2 (en) Method for producing alumina dispersion strengthened copper powder
Korać et al. Sintered materials based on copper and alumina powders synthesized by a novel method
JPH0521971B2 (en)
JP6539520B2 (en) Nickel fine particle containing composition and method for producing the same
US3375109A (en) Process for preparing rheniumrefractory alloys
US3982906A (en) Production of aluminum-aluminum oxide dispersion composite conductive material and product thereof
US4304600A (en) Manufacture of high-strength metallic articles
JPH0379401B2 (en)
JP4154491B2 (en) Cu / In-based metal powder and production method thereof
JPH0892672A (en) Production of dispersion strengthened alloy
JP6558750B2 (en) Nickel fine particle-containing composition and method for producing the same
JPH07188702A (en) Ag-base alloy powder and its production
JPH1046208A (en) Production of ti-ni base alloy sintered body
Scheithauer Jr et al. The Manufacture and Properties of High-Conductivity High-Strength Cu-ThO2
KR910008029B1 (en) The making method of w-cu fusion alloy
JPH0379402B2 (en)