JPH07188702A - Ag-base alloy powder and its production - Google Patents

Ag-base alloy powder and its production

Info

Publication number
JPH07188702A
JPH07188702A JP5329419A JP32941993A JPH07188702A JP H07188702 A JPH07188702 A JP H07188702A JP 5329419 A JP5329419 A JP 5329419A JP 32941993 A JP32941993 A JP 32941993A JP H07188702 A JPH07188702 A JP H07188702A
Authority
JP
Japan
Prior art keywords
alloy powder
based alloy
particle size
particles
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5329419A
Other languages
Japanese (ja)
Inventor
Isato Inada
勇人 稲田
Masayuki Tsuji
公志 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP5329419A priority Critical patent/JPH07188702A/en
Publication of JPH07188702A publication Critical patent/JPH07188702A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H2001/02378Composite material having a noble metal as the basic material and containing oxides containing iron-oxide as major component

Abstract

PURPOSE:To produce an Fe- or Co-containing Ag-base alloy powder capable of providing a high hardness wire having high electric conductivity. CONSTITUTION:This powder is an Ag-base alloy powder, in which grains of 0.01-1.0mum grain size, consisting of Fe and/or Fe oxide or Co and/or Co oxide, are dispersed in an Ag matrix and oxygen content is regulated to >=0.03wt.% and also the content of the above grains of 0.01-1.0mum grain size is regulated to 0.5-5.0wt.% expressed in terms of the amount of Fe or Co element. This Ag-base alloy powder can be produced by subjecting a molten mixture of Ag and Fe or a molten mixture of Ag and Co to rapid solidification by water atomization. Further, the alloy powder is heat-treated in an oxidizing atmosphere to undergo internal oxidation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば電気接点、電
極、モータ用ブラシ等に使用される導電性材料を製造す
るための原料として好適なAg基合金粉末及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Ag-based alloy powder suitable as a raw material for producing a conductive material used in, for example, electric contacts, electrodes, brushes for motors, etc., and a method for producing the same.

【0002】[0002]

【従来の技術】従来、電気接点、電極等に使用される導
電性材料用の原料として、Agマトリックス中にAgと二相
分離する金属からなる粒径0.01〜1.0 μmの粒子が分散
されているAg基合金粉末が知られていて、このAg基合金
粉末を原料として製造された接点材料は耐溶着性に優れ
ている。(特開昭63-238229 参照)Agと二相分離する代
表的な金属としては、Fe、Co、Niが挙げられ、なかでも
FeまたはCoを含有したAg基合金粉末はFe及びCoの融点が
Niより高いために耐熱性が要求される用途への適用が期
待されている。しかし、従来のFeまたはCoの粒子が分散
されているAg基合金粉末に関しては、この粉末を成形、
焼結し、次いで伸線して得られる線材は電気伝導度は優
れるが、硬度が十分でなく、そのために例えば電気接点
としたときに耐消耗性が不十分であるという問題があっ
た。
2. Description of the Related Art Conventionally, as a raw material for a conductive material used for electric contacts, electrodes, etc., particles having a particle diameter of 0.01 to 1.0 μm, which are made of a metal which is phase-separated from Ag, are dispersed in an Ag matrix. An Ag-based alloy powder is known, and a contact material produced from this Ag-based alloy powder as a raw material has excellent welding resistance. (See Japanese Patent Laid-Open No. 63-238229) Fe, Co, and Ni are typical metals that undergo two-phase separation from Ag.
Ag-based alloy powders containing Fe or Co have melting points of Fe and Co
Since it is higher than Ni, it is expected to be applied to applications requiring heat resistance. However, regarding the Ag-based alloy powder in which the particles of conventional Fe or Co are dispersed, this powder is molded,
The wire obtained by sintering and then drawing is excellent in electric conductivity, but has insufficient hardness, and therefore, there is a problem that the wear resistance is insufficient when it is used as an electrical contact, for example.

【0003】[0003]

【発明が解決しようとする課題】上記の事情に鑑みて、
本発明は高電気伝導度であって、かつ、高硬度である線
材が得られる、FeまたはCoを含有した粒子が分散されて
いるAg基合金粉末を提供することを課題とし、このよう
な有用なAg基合金粉末を得ることのできる製造方法を提
供することを第2の課題とする。
In view of the above circumstances,
It is an object of the present invention to provide an Ag-based alloy powder in which particles containing Fe or Co are dispersed, which is capable of obtaining a wire having high electrical conductivity and high hardness. A second object is to provide a manufacturing method capable of obtaining a stable Ag-based alloy powder.

【0004】[0004]

【課題を解決するための手段】前記第1の課題を解決す
るために、請求項1記載の発明に係るAg基合金粉末は、
Agマトリックス中にFe及びFeの酸化物の少なくとも一方
からなる、粒径0.01〜1.0 μmの粒子が分散されてお
り、さらに、酸素含有量が0.03重量%以上であり、か
つ、前記の粒径0.01〜1.0 μmの粒子の含有量がFe元素
量換算で 0.5〜5.0重量%であることを特徴とし、請求
項2記載の発明に係るAg基合金粉末はAgマトリックス中
にCo及びCoの酸化物の少なくとも一方からなる、粒径0.
01〜1.0 μmの粒子が分散されており、さらに、酸素含
有量が0.03重量%以上であり、かつ、前記の粒径0.01〜
1.0 μmの粒子の含有量がCo元素量換算で 0.5〜5.0 重
量%であることを特徴としている。
In order to solve the first problem, the Ag-based alloy powder according to the invention of claim 1 is
Particles having a particle size of 0.01 to 1.0 μm, which are composed of at least one of Fe and an oxide of Fe, are dispersed in an Ag matrix, and further, the oxygen content is 0.03% by weight or more, and the particle size is 0.01. The content of particles of 1.0 μm to 1.0 μm is 0.5 to 5.0% by weight in terms of the amount of Fe element. The Ag-based alloy powder according to the invention of claim 2 comprises Co and Co oxides in the Ag matrix. Particle size 0, consisting of at least one.
Particles of 01 to 1.0 μm are dispersed, the oxygen content is 0.03% by weight or more, and the particle diameter is 0.01 to
The content of 1.0 μm particles is 0.5 to 5.0% by weight in terms of Co element content.

【0005】前記第2の課題を解決するために、請求項
3記載の発明に係るAg基合金粉末の製造方法は、請求項
1記載のAg基合金粉末の製造方法において、Ag及びFeの
混合溶湯を、水アトマイズ法で急冷凝固させてAg基合金
粉末を得ることを特徴とし、請求項4記載の発明に係る
Ag基合金粉末の製造方法は、請求項2記載のAg基合金粉
末の製造方法において、Ag及びCoの混合溶湯を、水アト
マイズ法で急冷凝固させてAg基合金粉末を得ることを特
徴とし、請求項5記載の発明に係るAg基合金粉末の製造
方法は、請求項1または請求項2記載のAg基合金粉末の
製造方法において、合金粉末を酸化雰囲気中で熱処理し
て内部酸化させる工程を経てAg基合金粉末を得ることを
特徴としている。
In order to solve the second problem, the method for producing Ag-based alloy powder according to the invention of claim 3 is the same as the method for producing Ag-based alloy powder according to claim 1, in which Ag and Fe are mixed. According to the invention of claim 4, characterized in that the molten metal is rapidly solidified by a water atomizing method to obtain an Ag-based alloy powder.
The method for producing an Ag-based alloy powder is characterized in that, in the method for producing an Ag-based alloy powder according to claim 2, a mixed molten metal of Ag and Co is rapidly solidified by a water atomizing method to obtain an Ag-based alloy powder, A method for producing an Ag-based alloy powder according to a fifth aspect of the present invention is the method for producing an Ag-based alloy powder according to the first or second aspect, which comprises a step of heat-treating the alloy powder in an oxidizing atmosphere for internal oxidation. It is characterized in that the Ag-based alloy powder is obtained after that.

【0006】以下本発明を詳細に説明する。本発明で粒
径0.01〜1.0 μmの粒子の含有量がFe元素量換算で 0.5
〜5.0 重量%であること、または粒径0.01〜1.0 μmの
粒子の含有量がCo元素量換算で 0.5〜5.0 重量%である
ことと限定しているのは、 0.5%未満では十分な硬度の
線材が得られなくなり、5.0 %を越えて含有させること
は製造面で困難なためである。すなわち、FeまたはCo
の、Ag溶湯中への固溶限界が5%であり、5%を越える
とアトマイズ後にFeまたはCoの粗大粒子が生成してしま
う。また、本発明で酸素含有量が0.03重量%以上である
ことと限定しているのは、酸素含有量が0.03重量%未満
と少ないと、Ag基合金粉末を成形、焼結し、次いで伸線
して得られる線材における、FeまたはCoの酸化物の含有
量が少なくなり、その結果十分な硬度の線材が得られな
いためである。
The present invention will be described in detail below. In the present invention, the content of particles having a particle size of 0.01 to 1.0 μm is 0.5 in terms of the amount of Fe element.
~ 5.0 wt%, or the content of particles with a particle size of 0.01 ~ 1.0 μm is 0.5 ~ 5.0 wt% in terms of Co element amount is limited to less than 0.5% of sufficient hardness. This is because it becomes difficult to obtain a wire rod, and it is difficult to contain more than 5.0% in terms of manufacturing. Ie Fe or Co
However, the solid solution limit in the Ag melt is 5%, and if it exceeds 5%, coarse particles of Fe or Co will be formed after atomization. Further, the oxygen content is limited to 0.03 wt% or more in the present invention, the oxygen content is less than 0.03 wt%, the Ag-based alloy powder is molded, sintered, and then drawn. This is because the content of the oxide of Fe or Co in the wire rod thus obtained is small, and as a result, a wire rod having a sufficient hardness cannot be obtained.

【0007】本発明における、Ag基合金粉末の平均粒径
については、特に限定はないが、2〜45μmであるこ
とが好ましい。この理由は2μm未満のAg基合金粉末を
製造することは製造面で困難であり、45μmを越える
と焼結性が劣化するという問題が生じるためである。
The average particle size of the Ag-based alloy powder in the present invention is not particularly limited, but is preferably 2 to 45 μm. The reason for this is that it is difficult to manufacture Ag-based alloy powder of less than 2 μm in terms of manufacturing, and if it exceeds 45 μm, sinterability deteriorates.

【0008】本発明の請求項3または請求項4記載の発
明に係るAg基合金粉末の製造方法では、混合溶湯を、水
アトマイズ法で急冷凝固させてAg基合金粉末を得る構成
になっている。この方法での融液温度としては1200
〜1800℃が好ましく、急冷凝固の冷却速度は102
〜108 ℃/秒が好ましい。冷却速度が102 ℃/秒未
満ではFeまたはCoの析出粒子径が大きくなり、108
/秒を越える冷却速度で行なうことは性能的には問題が
ないが、実用的には108 ℃/秒程度が冷却速度の限界
である。そして、水アトマイズ法で急冷凝固させて得ら
れるAg基合金粉末は、Agマトリックス中に酸素を含有し
ているので、Ag基合金粉末を焼結する工程において、含
有している酸素によりFeまたはCoの酸化物が形成され
る。すなわち、水アトマイズ法以外の他の方法に比べ水
アトマイズ法による方法は工程数を少なくして(Agマト
リックス中に酸素を含有させる工程が不要)本発明のAg
基合金粉末が製造できるという利点がある。
In the method for producing the Ag-based alloy powder according to the third or fourth aspect of the present invention, the mixed molten metal is rapidly cooled and solidified by the water atomizing method to obtain the Ag-based alloy powder. . The melt temperature in this method is 1200
~ 1800 ° C is preferable, and the cooling rate for rapid solidification is 10 2
It is preferably 10 8 ° C / sec. If the cooling rate is less than 10 2 ° C / sec, the precipitated particle size of Fe or Co will be large and 10 8 ° C
Although there is no problem in terms of performance if the cooling rate is higher than 10 s / sec, the limit of the cooling rate is practically about 10 8 ° C / sec. Then, the Ag-based alloy powder obtained by rapid solidification by the water atomizing method contains oxygen in the Ag matrix, so in the step of sintering the Ag-based alloy powder, Fe or Co depending on the oxygen contained. Oxides are formed. That is, compared with other methods other than the water atomizing method, the method by the water atomizing method has a smaller number of steps (the step of incorporating oxygen in the Ag matrix is unnecessary).
There is an advantage that a base alloy powder can be manufactured.

【0009】本発明の請求項5記載の発明に係るAg基合
金粉末の製造方法は、例えばガスアトマイズ法で得られ
た合金粉末を酸化雰囲気中で熱処理して内部酸化させて
Agマトリックス中に酸素を含有させるようにしている。
熱処理の温度については、特に限定するものではない
が、300〜450℃で行なうのが好ましい。なぜなら
ば、300℃未満では内部酸化速度が遅く、450℃を
越えると合金粉末の凝集が生じるという問題がある。
A method for producing an Ag-based alloy powder according to a fifth aspect of the present invention is that the alloy powder obtained by, for example, a gas atomizing method is heat-treated in an oxidizing atmosphere to be internally oxidized.
Oxygen is contained in the Ag matrix.
The temperature of the heat treatment is not particularly limited, but it is preferably 300 to 450 ° C. This is because if the temperature is lower than 300 ° C, the internal oxidation rate is slow, and if the temperature exceeds 450 ° C, the alloy powder agglomerates.

【0010】[0010]

【作用】Ag基合金粉末において、粒径0.01〜1.0 μmの
FeまたはCo(またはこれらの酸化物)の粒子をできるだ
け多く均一に分散させることは、得られる線材を高電気
伝導度であって、高硬度なものにする働きをする。
[Function] Ag-based alloy powder with a grain size of 0.01-1.0 μm
Evenly dispersing as many Fe or Co (or oxides thereof) particles as possible serves to make the resulting wire material have high electrical conductivity and high hardness.

【0011】本発明に係るAg基合金粉末の製造方法で、
水アトマイズ法によって急冷凝固させることは、Feまた
はCo(またはこれらの酸化物)の粒子を微細に分散させ
る働きと共に、水の分解によってAgマトリックス中に酸
素を含有させる働きをする。
In the method for producing an Ag-based alloy powder according to the present invention,
The rapid solidification by the water atomization method serves to finely disperse Fe or Co (or oxides thereof) particles, and also to cause oxygen to be contained in the Ag matrix due to water decomposition.

【0012】また、本発明に係るAg基合金粉末の製造方
法において、合金粉末を酸化雰囲気中で熱処理して内部
酸化させることは、Agマトリックス中に酸素を含有させ
る働きをする。水アトマイズ法以外の急冷凝固法、例え
ば、ガスアトマイズ法によって合金粉末を作製した場
合、合金粉末に酸素を含有させることができないが、こ
のような場合に、内部酸化によりAgマトリックス中にFe
またはCoの酸化物を生成させることによりAgマトリック
ス中に酸素成分を含有させることができるようになる。
Further, in the method for producing an Ag-based alloy powder according to the present invention, heat treating the alloy powder in an oxidizing atmosphere to internally oxidize it functions to make oxygen contained in the Ag matrix. A rapid solidification method other than the water atomization method, for example, when the alloy powder is produced by the gas atomization method, it is not possible to contain oxygen in the alloy powder, in such a case, Fe in the Ag matrix due to internal oxidation.
Alternatively, the oxygen component can be contained in the Ag matrix by generating an oxide of Co.

【0013】[0013]

【実施例】以下に、本発明の具体的な実施例及び比較例
を示す。 (実施例1)Ag及びFeを、Ag96.5重量部、Fe3.5
重量部の割合で坩堝に入れ、高周波溶解によって融液温
度を1650℃とした。次にこの溶融物(混合溶湯)を
水圧800kgf/cm2 で水アトマイズ法によって急冷凝固
させ、Ag基合金粉末を得た。このようにして得られたAg
基合金粉末は、表1に示す平均粒径であり、Agマトリッ
クス中に微細なFe粒子が均一に分散した組織であった。
そして、Agマトリックス中のFe粒子は表1に示す平均粒
径であり、その殆どが粒径0.01〜1.0 μmの範囲内にあ
ることが確認された。また、得られたAg基合金粉末の含
有酸素量を燃焼−赤外吸収法により測定した結果を表1
に示す。
EXAMPLES Specific examples and comparative examples of the present invention will be shown below. (Example 1) Ag and Fe, Ag 96.5 parts by weight, Fe3.5
Part by weight was placed in a crucible and the melt temperature was adjusted to 1650 ° C. by high frequency melting. Next, this melt (mixed molten metal) was rapidly solidified by a water atomizing method at a water pressure of 800 kgf / cm 2 to obtain Ag-based alloy powder. Ag obtained in this way
The base alloy powder had the average particle size shown in Table 1 and had a structure in which fine Fe particles were uniformly dispersed in the Ag matrix.
It was confirmed that the Fe particles in the Ag matrix had the average particle size shown in Table 1, and most of them were in the range of particle size 0.01 to 1.0 μm. The results of measuring the oxygen content of the obtained Ag-based alloy powder by the combustion-infrared absorption method are shown in Table 1.
Shown in.

【0014】(実施例2)Ag及びFeを、Ag95重量部、
Fe5重量部の割合で坩堝に入れ、高周波溶解によって融
液温度を1650℃とした。次にこの溶融物(混合溶
湯)を水圧800kgf/cm2 で水アトマイズ法によって急
冷凝固させ、Ag基合金粉末を得た。このようにして得ら
れたAg基合金粉末は、表1に示す平均粒径であり、Agマ
トリックス中に微細なFe粒子が均一に分散した組織であ
った。そして、Agマトリックス中のFe粒子は表1に示す
平均粒径であり、その殆どが粒径0.01〜1.0 μmの範囲
内にあることが確認された。また、得られたAg基合金粉
末の含有酸素量を燃焼−赤外吸収法により測定した結果
を表1に示す。
(Example 2) Ag and Fe in an amount of 95 parts by weight of Ag,
5 parts by weight of Fe was put into the crucible, and the melt temperature was adjusted to 1650 ° C. by high frequency melting. Next, this melt (mixed molten metal) was rapidly solidified by a water atomizing method at a water pressure of 800 kgf / cm 2 to obtain Ag-based alloy powder. The Ag-based alloy powder thus obtained had the average particle size shown in Table 1 and had a structure in which fine Fe particles were uniformly dispersed in the Ag matrix. It was confirmed that the Fe particles in the Ag matrix had the average particle size shown in Table 1, and most of them were in the range of particle size 0.01 to 1.0 μm. In addition, Table 1 shows the results of measuring the oxygen content in the obtained Ag-based alloy powder by the combustion-infrared absorption method.

【0015】(実施例3)Ag及びCoを、Ag96.5重量
部、Co3.5重量部の割合で坩堝に入れ、高周波溶解に
よって融液温度を1650℃とした。次にこの溶融物
(混合溶湯)を水圧800kgf/cm2 で水アトマイズ法に
よって急冷凝固させ、Ag基合金粉末を得た。このように
して得られたAg基合金粉末は、表1に示す平均粒径であ
り、Agマトリックス中に微細なCo粒子が均一に分散した
組織であった。そして、Agマトリックス中のCo粒子は表
1に示す平均粒径であり、その殆どが粒径0.01〜1.0 μ
mの範囲内にあることが確認された。また、得られたAg
基合金粉末の含有酸素量を燃焼−赤外吸収法により測定
した結果を表1に示す。
Example 3 Ag and Co were put in a crucible at a ratio of 96.5 parts by weight of Ag and 3.5 parts by weight of Co, and the melt temperature was adjusted to 1650 ° C. by high frequency melting. Next, this melt (mixed molten metal) was rapidly solidified by a water atomizing method at a water pressure of 800 kgf / cm 2 to obtain Ag-based alloy powder. The Ag-based alloy powder thus obtained had the average particle size shown in Table 1 and had a structure in which fine Co particles were uniformly dispersed in the Ag matrix. The Co particles in the Ag matrix have the average particle size shown in Table 1, and most of them have a particle size of 0.01 to 1.0 μm.
It was confirmed to be within the range of m. Also, the obtained Ag
Table 1 shows the results of measuring the oxygen content in the base alloy powder by the combustion-infrared absorption method.

【0016】(実施例4)Ag及びCoを、Ag95重量部、
Co5重量部の割合で坩堝に入れ、高周波溶解によって融
液温度を1600℃とした。次にこの溶融物(混合溶
湯)をガス圧100kgf/cm2 でN2 ガスによる高圧ガス
アトマイズ法によって急冷凝固させて合金粉末を得た。
次いで得られた合金粉末を350℃で24時間、3気圧
の酸素雰囲気中で加熱処理して、内部酸化させてAg基合
金粉末を得た。このようにして得られたAg基合金粉末
は、表1に示す平均粒径であり、Agマトリックス中にCo
及びCoの酸化物の微細な粒子が均一に分散した組織であ
った。そして、Agマトリックス中のCo及びCoの酸化物の
微細な粒子は表1に示す平均粒径であり、その殆どが粒
径0.01〜1.0 μmの範囲内にあることが確認された。ま
た、内部酸化前のAg基合金粉末の含有酸素量及び内部酸
化後のAg基合金粉末の含有酸素量をそれぞれ燃焼−赤外
吸収法により測定した。内部酸化前のAg基合金粉末の含
有酸素量は0.01重量%であり、内部酸化後のAg基合
金粉末の含有酸素量は表1に示すように1.5重量%で
あった。
(Example 4) Ag and Co were added in an amount of 95 parts by weight of Ag,
5 parts by weight of Co was put in a crucible and the melt temperature was adjusted to 1600 ° C. by high frequency melting. Next, this melt (mixed molten metal) was rapidly cooled and solidified at a gas pressure of 100 kgf / cm 2 by a high pressure gas atomizing method using N 2 gas to obtain an alloy powder.
Next, the obtained alloy powder was heat-treated at 350 ° C. for 24 hours in an oxygen atmosphere of 3 atm and internally oxidized to obtain an Ag-based alloy powder. The Ag-based alloy powder thus obtained had the average particle size shown in Table 1 and contained Co in the Ag matrix.
And a structure in which fine particles of Co oxide were uniformly dispersed. It was confirmed that the fine particles of Co and Co oxide in the Ag matrix had the average particle diameter shown in Table 1, and most of them were in the particle diameter range of 0.01 to 1.0 μm. The oxygen content in the Ag-based alloy powder before internal oxidation and the oxygen content in the Ag-based alloy powder after internal oxidation were measured by the combustion-infrared absorption method. The oxygen content of the Ag-based alloy powder before internal oxidation was 0.01% by weight, and the oxygen content of the Ag-based alloy powder after internal oxidation was 1.5% by weight as shown in Table 1.

【0017】(実施例5)Ag及びFeを、Ag95重量部、
Fe5重量部の割合で坩堝に入れ、高周波溶解によって融
液温度を1600℃とした。次にこの溶融物(混合溶
湯)をガス圧100kgf/cm2 でN2 ガスによる高圧ガス
アトマイズ法によって急冷凝固させて合金粉末を得た。
次いで得られた合金粉末を350℃で24時間、3気圧
の酸素雰囲気中で加熱処理して、内部酸化させてAg基合
金粉末を得た。このようにして得られたAg基合金粉末
は、表1に示す平均粒径であり、Agマトリックス中にFe
及びFeの酸化物の微細な粒子が均一に分散した組織であ
った。そして、Agマトリックス中のFe及びFeの酸化物の
微細な粒子は表1に示す平均粒径であり、その殆どが粒
径0.01〜1.0 μmの範囲内にあることが確認された。ま
た、内部酸化前のAg基合金粉末の含有酸素量及び内部酸
化後のAg基合金粉末の含有酸素量をそれぞれ燃焼−赤外
吸収法により測定した。内部酸化前のAg基合金粉末の含
有酸素量は0.01重量%であり、内部酸化後のAg基合
金粉末の含有酸素量は表1に示すように1.5重量%で
あった。
Example 5 Ag and Fe were added in an amount of 95 parts by weight of Ag,
5 parts by weight of Fe was put into the crucible and the melt temperature was adjusted to 1600 ° C. by high frequency melting. Next, this melt (mixed molten metal) was rapidly cooled and solidified at a gas pressure of 100 kgf / cm 2 by a high pressure gas atomizing method using N 2 gas to obtain an alloy powder.
Next, the obtained alloy powder was heat-treated at 350 ° C. for 24 hours in an oxygen atmosphere of 3 atm and internally oxidized to obtain an Ag-based alloy powder. The Ag-based alloy powder thus obtained had the average particle size shown in Table 1 and Fe in the Ag matrix.
It had a structure in which fine particles of Fe oxide and Fe were uniformly dispersed. It was confirmed that the fine particles of Fe and Fe oxide in the Ag matrix had the average particle size shown in Table 1, and most of them were in the range of 0.01 to 1.0 μm. The oxygen content in the Ag-based alloy powder before internal oxidation and the oxygen content in the Ag-based alloy powder after internal oxidation were measured by the combustion-infrared absorption method. The oxygen content of the Ag-based alloy powder before internal oxidation was 0.01% by weight, and the oxygen content of the Ag-based alloy powder after internal oxidation was 1.5% by weight as shown in Table 1.

【0018】(比較例1)平均粒径10μmのAg粉末及
び平均粒径10μmのCo粉末をAg95重量部、Co5重量
部の割合で混合し、Ag−Co混合粉末を得た。このAg−Co
混合粉末中のCo粉末は表2に示すように平均粒径は10
μmであり、その殆どが粒径1〜20μmの範囲内であ
ることが確認された。また、Ag−Co混合粉末の含有酸素
量を燃焼−赤外吸収法により測定した結果を表2に示
す。
Comparative Example 1 Ag powder having an average particle size of 10 μm and Co powder having an average particle size of 10 μm were mixed at a ratio of 95 parts by weight of Ag and 5 parts by weight of Co to obtain an Ag-Co mixed powder. This Ag-Co
The Co powder in the mixed powder has an average particle size of 10 as shown in Table 2.
It was confirmed that the average particle size was in the range of 1 to 20 μm. Table 2 shows the results of measuring the oxygen content of the Ag-Co mixed powder by the combustion-infrared absorption method.

【0019】(比較例2)平均粒径10μmのAg粉末及
び平均粒径10μmのFe粉末をAg95重量部、Fe5重量
部の割合で混合し、Ag−Fe混合粉末を得た。このAg−Fe
混合粉末中のFe粉末は表2に示すように平均粒径は10
μmであり、その殆どが粒径1〜20μmの範囲内であ
ることが確認された。また、Ag−Fe混合粉末の含有酸素
量を燃焼−赤外吸収法により測定した結果を表2に示
す。
Comparative Example 2 Ag powder having an average particle size of 10 μm and Fe powder having an average particle size of 10 μm were mixed at a ratio of 95 parts by weight of Ag and 5 parts by weight of Fe to obtain an Ag-Fe mixed powder. This Ag-Fe
The Fe powder in the mixed powder has an average particle size of 10 as shown in Table 2.
It was confirmed that the average particle size was in the range of 1 to 20 μm. Table 2 shows the results of measuring the oxygen content of the Ag-Fe mixed powder by the combustion-infrared absorption method.

【0020】(比較例3)Ag及びCoを、Ag95重量部、
Co5重量部の割合で坩堝に入れ、高周波溶解によって融
液温度を1600℃とした。次にこの溶融物(混合溶
湯)をガス圧100kgf/cm2 でN2 ガスによる高圧ガス
アトマイズ法によって急冷凝固させてAg基合金粉末を得
た。(実施例4の内部酸化前の合金粉末に同じ)このよ
うにして得られたAg基合金粉末は、表2に示す平均粒径
であり、Agマトリックス中に微細なCo粒子が均一に分散
した組織であった。そして、Agマトリックス中のCo粒子
は表2に示す平均粒径であり、その殆どが粒径0.01〜1.
0 μmの範囲内にあることが確認された。また、Ag基合
金粉末の含有酸素量を燃焼−赤外吸収法により測定した
結果を表2に示す。
Comparative Example 3 Ag and Co were added in an amount of 95 parts by weight of Ag,
5 parts by weight of Co was put in a crucible and the melt temperature was adjusted to 1600 ° C. by high frequency melting. Next, this melt (mixed molten metal) was rapidly solidified by a high pressure gas atomization method using N 2 gas at a gas pressure of 100 kgf / cm 2 to obtain Ag-based alloy powder. (The same as the alloy powder before internal oxidation in Example 4) The thus obtained Ag-based alloy powder had the average particle size shown in Table 2, and the fine Co particles were uniformly dispersed in the Ag matrix. It was an organization. The Co particles in the Ag matrix have the average particle size shown in Table 2, and most of them have a particle size of 0.01 to 1.
It was confirmed to be in the range of 0 μm. Table 2 shows the results of measuring the oxygen content of the Ag-based alloy powder by the combustion-infrared absorption method.

【0021】(比較例4)Ag及びFeを、Ag95重量部、
Fe5重量部の割合で坩堝に入れ、高周波溶解によって融
液温度を1600℃とした。次にこの溶融物(混合溶
湯)をガス圧100kgf/cm2 でN2 ガスによる高圧ガス
アトマイズ法によって急冷凝固させてAg基合金粉末を得
た。(実施例5の内部酸化前の合金粉末に同じ)このよ
うにして得られたAg基合金粉末は、表2に示す平均粒径
であり、Agマトリックス中に微細なFe粒子が均一に分散
した組織であった。そして、Agマトリックス中のFe粒子
は表2に示す平均粒径であり、その殆どが粒径0.01〜1.
0 μmの範囲内にあることが確認された。また、Ag基合
金粉末の含有酸素量を燃焼−赤外吸収法により測定した
結果を表2に示す。
(Comparative Example 4) Ag and Fe were added in an amount of 95 parts by weight of Ag,
5 parts by weight of Fe was put into the crucible and the melt temperature was adjusted to 1600 ° C. by high frequency melting. Next, this melt (mixed molten metal) was rapidly solidified by a high pressure gas atomization method using N 2 gas at a gas pressure of 100 kgf / cm 2 to obtain Ag-based alloy powder. (The same as the alloy powder before internal oxidation of Example 5) The Ag-based alloy powder thus obtained had the average particle size shown in Table 2, and the fine Fe particles were uniformly dispersed in the Ag matrix. It was an organization. The Fe particles in the Ag matrix have the average particle size shown in Table 2, and most of them have a particle size of 0.01 to 1.
It was confirmed to be in the range of 0 μm. Table 2 shows the results of measuring the oxygen content of the Ag-based alloy powder by the combustion-infrared absorption method.

【0022】上記実施例1〜5及び比較例1〜4で得ら
れたAg基合金粉末または混合粉末を、加圧力30kgf/mm
2 で加圧して成形し、次いで850℃−2時間の焼成
(真空雰囲気中)と420℃−90kgf/mm2 の熱間圧縮
を2回繰り返して焼結体を得た。次に、焼結体予熱温度
800℃、金型温度420℃で熱間押し出しにより、直
径8mmに押し出した後、スウェージング加工、引抜き
加工によって直径2mmの線材を得た。得られた線材の
硬度をマイクロビッカース硬度計を用いて、300gの
荷重を15秒間加える条件で測定し、その結果を表1及
び表2に示した。また、得られた線材の電気伝導度を直
流四端子法によって測定し、その結果を同じく表1及び
表2に示した。
The Ag-based alloy powder or the mixed powder obtained in Examples 1 to 5 and Comparative Examples 1 to 4 was applied with a pressure of 30 kgf / mm.
Pressurized with 2 by molding, and then to obtain a 850 ° C. calcination -2 hours (vacuum atmosphere) and 420 ℃ -90kgf / mm 2 of the hot compressed twice repeated sintered body. Next, a sintered body was preheated at a temperature of 800 ° C. and a mold temperature of 420 ° C. and hot extruded to a diameter of 8 mm, and then swaged and drawn to obtain a wire having a diameter of 2 mm. The hardness of the obtained wire rod was measured using a micro Vickers hardness meter under the condition that a load of 300 g was applied for 15 seconds, and the results are shown in Tables 1 and 2. The electric conductivity of the obtained wire was measured by the DC four-terminal method, and the results are also shown in Tables 1 and 2.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表1及び表2の結果で明らかなように、実
施例1〜5のAg基合金粉末を用いた線材の硬度は高く、
また電気伝導度も高い値となっている。
As is clear from the results of Tables 1 and 2, the hardness of the wire rods using the Ag-based alloy powders of Examples 1 to 5 is high,
The electric conductivity is also high.

【0026】[0026]

【発明の効果】請求項1または請求項2記載の発明に係
るAg基合金粉末は、上記のように構成されているため、
このAg基合金粉末を用いることにより、高電気伝導度で
あって、かつ、高硬度である線材が得られる。
The Ag-based alloy powder according to the invention of claim 1 or 2 is constituted as described above,
By using this Ag-based alloy powder, a wire having high electrical conductivity and high hardness can be obtained.

【0027】また、請求項3〜請求項5記載の発明に係
るAg基合金粉末の製造方法によれば、高電気伝導度であ
って、かつ、高硬度である線材が得られる有用なAg基合
金粉末を製造することが可能になる。
Further, according to the method for producing an Ag-based alloy powder according to the inventions of claims 3 to 5, a useful Ag-based material which can obtain a wire having high electric conductivity and high hardness. It becomes possible to produce alloy powder.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Agマトリックス中にFe及びFeの酸化物の
少なくとも一方からなる、粒径0.01〜1.0 μmの粒子が
分散されており、さらに、酸素含有量が0.03重量%以上
であり、かつ、前記の粒径0.01〜1.0 μmの粒子の含有
量がFe元素量換算で 0.5〜5.0 重量%であるAg基合金粉
末。
1. Particles having a particle size of 0.01 to 1.0 μm, which are composed of at least one of Fe and an oxide of Fe, are dispersed in an Ag matrix, and further have an oxygen content of 0.03% by weight or more, and An Ag-based alloy powder in which the content of the particles having a particle size of 0.01 to 1.0 μm is 0.5 to 5.0% by weight in terms of the amount of Fe element.
【請求項2】 Agマトリックス中にCo及びCoの酸化物の
少なくとも一方からなる、粒径0.01〜1.0 μmの粒子が
分散されており、さらに、酸素含有量が0.03重量%以上
であり、かつ、前記の粒径0.01〜1.0 μmの粒子の含有
量がCo元素量換算で 0.5〜5.0 重量%であるAg基合金粉
末。
2. Ag particles in which particles of at least one of Co and Co oxide and having a particle size of 0.01 to 1.0 μm are dispersed, and the oxygen content is 0.03% by weight or more, and An Ag-based alloy powder in which the content of the particles having a particle size of 0.01 to 1.0 μm is 0.5 to 5.0% by weight in terms of the amount of Co element.
【請求項3】 請求項1記載のAg基合金粉末の製造方法
において、Ag及びFeの混合溶湯を、水アトマイズ法で急
冷凝固させてAg基合金粉末を得ることを特徴とするAg基
合金粉末の製造方法。
3. The Ag-based alloy powder according to claim 1, wherein the mixed molten Ag and Fe is rapidly solidified by a water atomizing method to obtain Ag-based alloy powder. Manufacturing method.
【請求項4】 請求項2記載のAg基合金粉末の製造方法
において、Ag及びCoの混合溶湯を、水アトマイズ法で急
冷凝固させてAg基合金粉末を得ることを特徴とするAg基
合金粉末の製造方法。
4. The Ag-based alloy powder according to claim 2, wherein the molten alloy of Ag and Co is rapidly solidified by a water atomizing method to obtain Ag-based alloy powder. Manufacturing method.
【請求項5】 請求項1または請求項2記載のAg基合金
粉末の製造方法において、合金粉末を酸化雰囲気中で熱
処理して内部酸化させる工程を経てAg基合金粉末を得る
Ag基合金粉末の製造方法。
5. The method for producing an Ag-based alloy powder according to claim 1 or 2, wherein the Ag-based alloy powder is obtained through a step of heat-treating the alloy powder in an oxidizing atmosphere to internally oxidize it.
Manufacturing method of Ag-based alloy powder.
JP5329419A 1993-12-27 1993-12-27 Ag-base alloy powder and its production Withdrawn JPH07188702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5329419A JPH07188702A (en) 1993-12-27 1993-12-27 Ag-base alloy powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5329419A JPH07188702A (en) 1993-12-27 1993-12-27 Ag-base alloy powder and its production

Publications (1)

Publication Number Publication Date
JPH07188702A true JPH07188702A (en) 1995-07-25

Family

ID=18221191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5329419A Withdrawn JPH07188702A (en) 1993-12-27 1993-12-27 Ag-base alloy powder and its production

Country Status (1)

Country Link
JP (1) JPH07188702A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774524A1 (en) * 1995-11-20 1997-05-21 Degussa Aktiengesellschaft Silver-iron material for electrical switch contacts
WO1997033288A1 (en) * 1996-03-05 1997-09-12 Siemens Aktiengesellschaft Contact material of silver and active components, moulded piece produced therefrom and process for the production of said moulded piece
WO2017073057A1 (en) * 2015-10-30 2017-05-04 Dowaエレクトロニクス株式会社 Silver powder and method for producing same
JP2017082327A (en) * 2015-10-30 2017-05-18 Dowaエレクトロニクス株式会社 Silver powder and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774524A1 (en) * 1995-11-20 1997-05-21 Degussa Aktiengesellschaft Silver-iron material for electrical switch contacts
WO1997033288A1 (en) * 1996-03-05 1997-09-12 Siemens Aktiengesellschaft Contact material of silver and active components, moulded piece produced therefrom and process for the production of said moulded piece
WO2017073057A1 (en) * 2015-10-30 2017-05-04 Dowaエレクトロニクス株式会社 Silver powder and method for producing same
JP2017082327A (en) * 2015-10-30 2017-05-18 Dowaエレクトロニクス株式会社 Silver powder and method for producing the same
KR20180075582A (en) * 2015-10-30 2018-07-04 도와 일렉트로닉스 가부시키가이샤 Silver powder and method for producing the same
US20180326497A1 (en) * 2015-10-30 2018-11-15 Dowa Electronics Materials Co., Ltd. Silver powder and method for producing same
US10828702B2 (en) 2015-10-30 2020-11-10 Dowa Electronics Materials Co., Ltd. Silver powder and method for producing same
JP2021075799A (en) * 2015-10-30 2021-05-20 Dowaエレクトロニクス株式会社 Silver powder and method for producing the same
TWI734710B (en) * 2015-10-30 2021-08-01 日商同和電子科技有限公司 Silver powder and method for producing same
US11407030B2 (en) 2015-10-30 2022-08-09 Dowa Electronics Materials Co., Ltd. Silver powder and method for producing same

Similar Documents

Publication Publication Date Title
AU598815B2 (en) Circuit breaker contact containing silver and graphite fibers
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
JP3763006B2 (en) Copper tungsten alloy and method for producing the same
US4999050A (en) Dispersion strengthened materials
US4752333A (en) Alloys having high electrical and mechanical characteristics, the production thereof and the uses thereof in particular in the electrical, electronic and connection arts
US4452651A (en) Electrical contact materials and their production method
US3438753A (en) Tungsten-copper composites
JPH07188702A (en) Ag-base alloy powder and its production
JP2531701B2 (en) Manufacturing method of dispersion strengthened copper alloy
US3505065A (en) Method of making sintered and infiltrated refractory metal electrical contacts
US3525609A (en) Copper alloy material
KR970001558B1 (en) Method for composite powder
JPS6148573B2 (en)
JPH01180901A (en) Silver nickel composite powder for electric contact material and manufacture thereof
JPS621835A (en) Manufacture of ag-nio electric contact point material
US6056916A (en) Process for producing a product made of a contact material based on silver, contact material and product made of the contact material
JPH10195556A (en) Production of electric contact material
JP3168635B2 (en) Manufacturing method of electrode material
US4427625A (en) Silver cadmium oxide electrical contacts
JPH08127829A (en) Electric contact material and its production
JPH01164730A (en) Superconducting material and its production
JP3106609B2 (en) Manufacturing method of electrode material
JPS6026621A (en) Manufacture of heat resistant molybdenum material
KR910002952B1 (en) Making process for contact of air circuit breaker
JP2000319734A (en) Composite material produced by powder metallurgy, and its production

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306