JP4154491B2 - Cu / In-based metal powder and production method thereof - Google Patents

Cu / In-based metal powder and production method thereof Download PDF

Info

Publication number
JP4154491B2
JP4154491B2 JP2002126877A JP2002126877A JP4154491B2 JP 4154491 B2 JP4154491 B2 JP 4154491B2 JP 2002126877 A JP2002126877 A JP 2002126877A JP 2002126877 A JP2002126877 A JP 2002126877A JP 4154491 B2 JP4154491 B2 JP 4154491B2
Authority
JP
Japan
Prior art keywords
powder
metal powder
indium
metal
copper powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002126877A
Other languages
Japanese (ja)
Other versions
JP2003321701A (en
Inventor
吉行 正地
正行 仁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2002126877A priority Critical patent/JP4154491B2/en
Publication of JP2003321701A publication Critical patent/JP2003321701A/en
Application granted granted Critical
Publication of JP4154491B2 publication Critical patent/JP4154491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は,導電ペーストやろう材のフイラーに適したCu・In系金属粉体に関する。
【0002】
【従来の技術】
熱伝導性および導電性の良好な金属粉体をフイラーとしてビヒクル(通常はバインダー樹脂と溶媒とからなる)中に分散させてなる導電ペーストは,各種基板の導電回路や電極を形成する手段として多用されている。このような導電ペーストは,通常は塗布またはホールに充填されたあと,高温に加熱されることによって,溶媒および樹脂成分が蒸発もしくは分解除去され,フイラーの金属粉体が焼結して導体を形成する。また,融点の低い金属粉末の場合にはろう材としても使用される。ろう材の場合は金属粉体が融点以上に加熱されることによって導体を形成する。
【0003】
このような導電ペーストまたはろう材に用いる熱伝導性および導電性の良好な金属粉体は,一般に,その使用温度に至るまでに酸化し難いこと,すなわち耐酸化性に優れることが要求される。導電ペーストの場合には,金属粉体の焼結温度に至るまでに表面が酸化すると焼結が不良となることがあり,その酸化物が導電性を阻害することになりかねない。ろう材の場合にも,酸化物が生成すると導電性および濡れ性を阻害する要因となる。
【0004】
金属粉末に耐酸化性を付与する処法としては,粒子表面をコーティングすることが一般に行われている。そのうち,熱伝導性および導電性を有する粉体に金属コーティングを施すことを意図する場合には原理的には電気めっき法が適する。銅粉に銀やニッケルなどを電気めっきする方法の例は,例えば特公昭61−40319号公報に記載されている。実際には,各金属粒子の表面に均一に電気めっきすることは非常に難しい。
【0005】
他方,特開平4−237952号公報には,亜鉛合金粉末にInを添加し混合攪拌し加熱して亜鉛合金粒子にInをコーティングする方法が記載されている。特開平4−350102号公報には,金属箔(例えば銅箔)に機械的混合力によって例えば銀を被覆させる方法が記載されている。特開平10−212501号公報にはEDTA錯体を用いて例えば銅粉の表面に銀をコーティングする方法が記載されている。
【0006】
【発明が解決しようとする課題】
金属粒子の表面に金属をコーティングする処法として,前記のように電気めっき法,機械的被覆法,湿式法等の種々の方法が知られているが,いずれも一長一短があり,処理操作が複雑であるにも拘わらず均一なコーティングを得るには困難を伴うものが多い。特開平10−212501号公報のような湿式法は制御性がよいが,この方法では銅よりEDTA錯体が安定な金属をコーティングすることはできない。例えばインジウムの方が銅よりもEDTA錯体が安定であるので,銅粉にインジウムをコーティングすることができない。
【0007】
したがって,本発明は簡単な処法によって耐酸化性のよいペーストフイラーまたはろう材としての金属粉末を得ることを課題としたものである。
【0008】
【課題を解決するための手段】
本発明によれば,Cuの粒子表面をInで被覆してなるCu・In系の金属粉体を提供する。この金属粉体を導電ペーストのフイラーとして使用する場合には銅粒子の表面を被覆するIn量としては0.1〜30重量%であることができ,この金属粉体をろう材として使用する場合には,銅粒子の表面を被覆するIn量としては0.1〜50重量%,好ましくは0.1〜30重量%であるのがよい。この金属粉体は,Cu粒子の表面にInの一部または全部がIn−Cuの合金相として存在することができる。
【0009】
このCu・In系の金属粉体は,金属銅粉を懸濁したインジウム塩溶液中にインジウムより卑な金属を投入することにより,金属銅粉の表面にインジウム金属を析出させ,得られたインジウム被着銅粉を液から分離するという簡単な方法によって得ることができる。
【0010】
【発明の実施の形態】
銅粉の粒子表面にIn金属を適量被覆すると,銅粉の酸化を防止することができる。酸化開始温度が170℃近辺に金属銅粉に対して,Inを被覆した本発明のCu・In系の金属粉体は酸化開始温度は250℃を超えるようになり,本発明者らの経験によると300℃を超えても酸化を開始しない。
【0011】
このため,この金属粉体を導電ペーストのフイラーとした場合,少なくとも250℃までは酸化を抑制できる。そして,Inは低融点金属で且つCuと固溶体を形成し易いので,銅粉に比べて焼結温度を低下させることができる。したがって,銅粉系の導電ペーストであっても,耐酸化性に優れ且つ焼結温度の低い導電ペーストを得ることができる。この場合,Inの被覆量としては0.1重量%〜30重量%であるのがよい。In量が0.1重量%以下では十分な耐酸化性を銅粉に付与することができないし,30重量%を超えるInを被覆しても耐酸化性の効果は飽和する一方,価格面での負担増が大きくなるからである。
【0012】
他方,この金属粉体をろう材のフイラーとした場合には,銅を含有する粉体であっても,比較的低温で粒子表面のIn同士が融着してろう材として機能する。このCu・In金属粉体がろう材として機能するには,粒子表面に被着するIn量は4重量%以上を必要とする。しかし,In量があまり多量になっても銅系の粉体としての特質が失われるのでIn量は50重量%以下,好ましくは30重量%以下であるのがよい。
【0013】
Inを被覆するのに用いる銅粉(元粉)については,その粒径や形状については特に限定されないが,導電ペーストやろう材として適する粒径や形状のものであるのが実際には好ましい。元粉の粒径としては例えば平均粒径が0.1〜10μmの範囲にあるものが導電ペースト用として好ましい。形状は球状,板状,フレーク状など任意の形状のものが使用できる。ろう材用のCu・In系金属粉体を得る場合には,平均粒径が1〜50μmの範囲にある元粉にInを被着処理するのがよい。
【0014】
本発明に従うCu・In系金属粉体は水中のインジウムイオンを銅粒子表面において還元析出させる湿式還元法によって有利に製造することができる。具体的には,原料として使用する銅粉の表面を洗浄(酸化膜除去)する工程,インジウムイオンを含む液中に銅粉を懸濁させて還元剤を投入する還元処理工程,得られたIn被着銅粉を液から分離する固液分離工程,該粉体を洗浄乾燥し乾燥物を解粒する工程を順に経ることによって製造することができる。
【0015】
酸洗工程では,原料として使用する銅粉の表面に生成している酸化膜を酸洗液で除去する。この酸洗液としてインジウムイオンを溶解した酸性液を使用することができ,この場合には酸洗処理のあと,次の還元工程にそのまま移行できるので便利である。もっとも,銅粉表面に酸化膜が形成されていない銅粉原料を用いる場合には,例えば湿式還元法などによって製造されたままの銅粉を用いる場合には,とくに酸洗工程を必要としないこともある。
【0016】
次いで,本発明の最も特徴的なインジウムイオンの湿式還元処理を実施するが,この還元工程は,インジウムイオンを溶解した液中に銅粉を懸濁させ,還元剤を投入してインジウムイオンを金属インジウムに還元すると同時にその金属インジウムを銅粉表面に析出させる工程である。酸洗工程においてインジウム塩溶液を用いればそのままこの工程を行うことができる。
【0017】
インジウムイオンを溶解した液を得るには,インジウム塩を水に溶解させるのが便宜であり,インジウム塩としては非酸化性の塩,代表的には塩酸塩,硫酸塩などを使用することができ,好ましくはpHが0.5〜2の範囲のものがよい。pHが0.5より低いと溶液中へのインジウムの溶解度が増してしまい,被着に寄与しないインジウム量が増えてしまう。また,pHが2より高い場合には水酸化インジウムや酸化インジウムが生成してしまい,不純物の混入のおそれがある。また,置換還元反応のために添加元素(還元剤)としてはインジウムよりも卑な金属,例えばアルミニウムや亜鉛などを用いる。この還元剤としては,反応性を上げるために粉末状のものを使用することが望ましい。還元剤の投入量は,インジウムイオンを金属インジウムに還元する価数変化の当量程度であればよく,好ましくは 0.8 から 1.5 当量である。
【0018】
インジウムイオンと添加金属との置換反応を行わせるには,室温から90℃までの温度で実施するのが望ましい。より好ましくは室温から60℃までである。攪拌については,銅粉が溶液中に均一に分散しており,置換還元反応が有利に進行する程度の攪拌強度があればよい。また,大気中からの酸素の混入を避けるために,不活性ガス(窒素ガスやアルゴンガス)でパージした不活性ガス雰囲気下でこの置換還元反応を行うのが好ましい。
【0019】
ついで,固液分離するが,反応の終了時には還元剤として投入したインジウムより卑な金属粉末が消耗した状態となるのが好ましく,この場合には,還元反応終了後に直ちに固液分離しても,In被着銅粉だけを液から分離できる。液中に卑な金属粉末が固形分として残存している場合には,これを液中に溶解させてから固液分離するか,澱物を固液分離したあとで卑な金属粉末を分離する操作を加えればよい。
【0020】
還元終了後,固液分離する前にIn被着銅粉を熟成する工程を挿入すると,未反応の還元剤を液中に溶解させることができる。この熟成は,還元反応を実施した温度に例えば10〜120 分程度保持すればよく,これによって,還元剤を確実に反応に寄与させることができる。このため,不純物となる未反応の還元剤の混入を最小限に抑えることができる。
【0021】
固液分離したIn被着銅粉は水洗したのち,真空乾燥を行うと銀白色の凝集体を得る。この乾燥は50℃以下で行うのがよい。得られた乾燥物は,解粒機により解粒することでインジウムが粒子表面に被着したCu・In系金属粉体を得ることができる。このCu・In系金属粉体を好ましくは100℃以上の温度で熱処理すると安定した合金相が生成する。
【0022】
【実施例】
〔実施例1〕
濃度 25 g/Lの塩化インジウム溶液4L(pH=0.5)に,銅粉(平均粒径D50=1.86μm)を 500g 投入し,液温50℃で10分間攪拌して銅粉を酸洗した。その後, この懸濁液に還元剤として1当量のアルミニウム粉(23.5g :平均粒径D50=75μm)を30分間かけて添加した。還元剤の添加後, 液温を50℃に保持しながら30分間攪拌し,液中のインジウムイオンを金属インジウムに還元する処理を行った。
【0023】
次いで,澱物を液からろ別し,水洗したあと40℃真空乾燥させた。得られた乾燥品を解粒して粉体とし,この粉体を,X線回折,熱重量測定,In量の化学分析およびマイクロトラックによる粒度分布測定に供した。それらの結果を図1(X線回折)と図2(熱重量測定)および表1(化学分析)と表2(粒度分布)に示した。
【0024】
なお,平均粒径D50 (μm) とは,マイクロトラックによる粒度分布測定結果を,横軸に粒径D (μm) をとり,粒径Dμm以下の粒子が存在する容積% (Q%) を縦軸とした累積粒度曲線で表したときに,Q=50%に対応する粒径D (μm) の値を言う。図1〜2には,本例の処理に供した元粉(未コート銅粉)の測定結果も未コート銅粉として併せて示した。さらに,図2には,特開平10−212501号公報の実施例に従って得た10%銀コーティング銅粉について熱重量測定した結果を「比較例」として併記した。
【0025】
〔実施例2〕
濃度が 37.5 g/Lの塩化インジウム溶液を使用し, 且つ溶液中のインジウムの量に対して1当量のアルミニウム粉(35.2g) を添加した以外は, 実施例1を繰り返した。得られた粉体をX線回折,熱重量測定,In量の化学分析および粒度分布測定に供し,これらの結果を図1〜2および表1〜2に併記した。
【0026】
〔実施例3〕
平均粒径D50= 6.4μmの銅粉を用いた以外は,実施例1を繰り返した。得られた粉体をX線回折,熱重量測定,In量の化学分析および粒度分布測定に供し,これらの結果を図1と図3および表1〜2に併記した。図3には,比較のために,本例に用いた元粉(D50= 6.4μmの未コート銅粉)についての熱重量測定結果も併記した。また,本例で得られた粉体についてその1個の粒子断面のEPMA測定を行った結果を図5に示した。図5の上段はCu,下段はInの分析像である。
【0027】
〔実施例4〕
還元剤として 1.5当量のアルミニウム粉(35.3g )を添加した以外は,実施例1を繰り返した。得られた粉体をX線回折,熱重量測定,In量の化学分析および粒度分布測定に供し,これらの結果を図1〜2および表1と2に併記した。
【0028】
〔実施例5〕
反応容器内に窒素ガスを2L/分の流量で流すことにより,容器内を窒素パージしながら,液中のインジウムイオンを金属インジウムに還元する処理を行った以外は,実施例3を繰り返した。得られた粉体をX線回折,熱重量測定,In量の化学分析および粒度分布測定に供し,これらの結果を図1と図3および表1と2に併記した。さらに,本例で得られた粉体を大気中80℃,100℃,120℃で熱処理し,それらの熱処理品を粉末X線回折に供した。得られたX線回折結果を図4に示した。
【0029】
【表1】

Figure 0004154491
【0030】
【表2】
Figure 0004154491
【0031】
図1に見られるように,実施例1で得られたCu・In系金属粉体は金属Cuと金属Inの回折ピークのみならず,Cu−In合金(CuIn)からの回折ピークを有している。このCuIn合金相の回折ピークはICDDカード(351150) において報告されているものに相当している。実施例2〜5で得られたCu・In系金属粉体も実施例1のものと実質的に同一である。
【0032】
図2の結果から,未コート銅粉(元粉)はほぼ170℃付近から酸化が起こったと見られる急激な重量増加が始まっているのに対し,実施例1,2および4で得られたCu・In系金属粉体はそのような重量増加は300℃でも起こっていないことがわかる。また,銀コートした比較例のものは酸化開始温度が250℃まで上昇しているが,それでも,その耐酸化性は実施例のCu・In系金属粉末のものには及ばない。
【0033】
図3は,実施例3と5のCu・In系金属粉体と未コート銅粉(元粉)の熱重量測定結果を対比したものであるが,実施例のものは,未コート銅粉のような酸化は起こっておらず,300℃を超えても酸化は開始しないことがわかる。
【0034】
図4の結果から,Cu・In系金属粉体を100℃以上で熱処理すると,Cu−Inの合金相が他の合金相に転移(CuIn→Cu11In9)していることがわかる。このCu11In9合金相の回折ピークはICDDカード(410883) に報告されている。
【0035】
図5の結果から,本発明に従うCu・In系金属粉体の粒子はCuコアの周囲にIn被覆がほぼ均一に被着していることがわかる。
【0036】
【発明の効果】
以上説明したように,本発明によると耐酸化性に優れたCu・In系金属粉体が得られる。このものは導電ペーストのフイラーとして,或いはろう材のフイラーとして有用な用途を有する。そして,このCu・In系金属粉体は湿式による置換還元法によって製造性よく製造することができる。
【図面の簡単な説明】
【図1】本発明に従うCu・In系金属粉体のX線回折結果を銅粉のそれと対比して示した図である。
【図2】本発明に従うCu・In系金属粉体の大気雰囲気中での示差熱分析結果を銅粉のそれと対比して示した図である。
【図3】本発明に従う他の例のCu・In系金属粉体の大気雰囲気中での示差熱分析結果を銅粉のそれと対比して示した図である。
【図4】本発明に従うCu・In系金属粉体をさらに熱処理した場合のX線回折結果を熱処理温度毎に対比して示した図である。
【図5】本発明に従うCu・In系金属粒子のEPMA分析結果を示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Cu • In-based metal powder suitable for a conductive paste or a filler filler.
[0002]
[Prior art]
Conductive paste in which metal powder with good thermal conductivity and conductivity is dispersed as a filler in a vehicle (usually composed of a binder resin and a solvent) is widely used as a means to form conductive circuits and electrodes on various substrates. Has been. Such a conductive paste is usually applied or filled into a hole and then heated to a high temperature to evaporate or decompose the solvent and resin components, and the filler metal powder sinters to form a conductor. To do. It is also used as a brazing material in the case of metal powder with a low melting point. In the case of a brazing material, a metal powder is heated to a melting point or higher to form a conductor.
[0003]
In general, a metal powder having good thermal conductivity and conductivity used for such a conductive paste or brazing material is required to be difficult to oxidize before reaching its use temperature, that is, excellent in oxidation resistance. In the case of a conductive paste, if the surface is oxidized before reaching the sintering temperature of the metal powder, the sintering may be poor, and the oxide may hinder the conductivity. Even in the case of brazing filler metal, the formation of oxides becomes a factor that hinders conductivity and wettability.
[0004]
As a method of imparting oxidation resistance to metal powder, coating of the particle surface is generally performed. Among them, electroplating is suitable in principle when it is intended to apply a metal coating to a powder having thermal conductivity and conductivity. An example of a method for electroplating silver or nickel on copper powder is described in, for example, Japanese Patent Publication No. 61-40319. Actually, it is very difficult to uniformly electroplate the surface of each metal particle.
[0005]
On the other hand, Japanese Patent Application Laid-Open No. 4-237952 describes a method of coating In on zinc alloy particles by adding In to zinc alloy powder, mixing and stirring. Japanese Patent Laid-Open No. 4-350102 describes a method of coating metal foil (for example, copper foil) with, for example, silver by mechanical mixing force. Japanese Patent Application Laid-Open No. 10-212501 describes a method of coating silver, for example, on the surface of copper powder using an EDTA complex.
[0006]
[Problems to be solved by the invention]
As described above, various methods such as electroplating, mechanical coating, and wet methods are known as methods for coating the surface of metal particles, but all have advantages and disadvantages and complicated processing operations. Nevertheless, it is often difficult to obtain a uniform coating. A wet method such as that disclosed in Japanese Patent Application Laid-Open No. 10-212501 has good controllability, but this method cannot coat a metal whose EDTA complex is more stable than copper. For example, since indium is more stable in EDTA complex than copper, it is not possible to coat copper powder with indium.
[0007]
Accordingly, an object of the present invention is to obtain a metal powder as a paste filler or brazing material having good oxidation resistance by a simple treatment method.
[0008]
[Means for Solving the Problems]
According to the present invention, there is provided a Cu · In-based metal powder obtained by coating the surface of Cu particles with In. When this metal powder is used as a conductive paste filler, the amount of In covering the surface of the copper particles can be 0.1 to 30% by weight. When this metal powder is used as a brazing material The amount of In coating the surface of the copper particles is 0.1 to 50% by weight, preferably 0.1 to 30% by weight. In this metal powder, a part or all of In can be present as an In—Cu alloy phase on the surface of Cu particles.
[0009]
This Cu / In-based metal powder is obtained by depositing indium metal on the surface of the metal copper powder by introducing a metal lower than indium into an indium salt solution in which the metal copper powder is suspended. It can be obtained by a simple method of separating the deposited copper powder from the liquid.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
When an appropriate amount of In metal is coated on the surface of the copper powder particles, oxidation of the copper powder can be prevented. According to the experience of the present inventors, the Cu / In-based metal powder of the present invention coated with In has an oxidation start temperature exceeding 250 ° C. with respect to the metal copper powder at an oxidation start temperature of around 170 ° C. When the temperature exceeds 300 ° C., oxidation does not start.
[0011]
Therefore, when this metal powder is used as a conductive paste filler, oxidation can be suppressed at least up to 250 ° C. Since In is a low melting point metal and easily forms a solid solution with Cu, the sintering temperature can be lowered compared to copper powder. Therefore, even if it is a copper-powder type electrically conductive paste, the electrically conductive paste which is excellent in oxidation resistance and low in sintering temperature can be obtained. In this case, the coating amount of In is preferably 0.1% by weight to 30% by weight. If the amount of In is less than 0.1% by weight, sufficient oxidation resistance cannot be imparted to the copper powder, and even if it exceeds 30% by weight, the effect of oxidation resistance is saturated, but in terms of price This is because the increase in the burden on the company will increase.
[0012]
On the other hand, when this metal powder is used as a filler of brazing material, even if the powder contains copper, In on the surface of the particles is fused together at a relatively low temperature to function as a brazing material. In order for this Cu • In metal powder to function as a brazing material, the amount of In deposited on the particle surface needs to be 4% by weight or more. However, since the characteristics as a copper-based powder are lost even if the amount of In becomes too large, the amount of In is preferably 50% by weight or less, and preferably 30% by weight or less.
[0013]
The copper powder (original powder) used for coating In is not particularly limited in particle size or shape, but it is actually preferable to have a particle size or shape suitable as a conductive paste or brazing material. As the particle size of the base powder, for example, those having an average particle size in the range of 0.1 to 10 μm are preferable for the conductive paste. Any shape such as a spherical shape, a plate shape, or a flake shape can be used. When obtaining a Cu • In-based metal powder for brazing filler metal, it is preferable to apply In to the base powder having an average particle diameter in the range of 1 to 50 μm.
[0014]
The Cu • In-based metal powder according to the present invention can be advantageously produced by a wet reduction method in which indium ions in water are reduced and deposited on the surface of copper particles. Specifically, the process of cleaning the surface of copper powder used as a raw material (removing oxide film), the reduction process of suspending copper powder in a liquid containing indium ions and introducing a reducing agent, the obtained In It can manufacture by passing through the solid-liquid separation process which isolate | separates a to-be-coated copper powder from a liquid, and the process of wash-drying this powder and pulverizing a dried material in order.
[0015]
In the pickling process, the oxide film formed on the surface of the copper powder used as a raw material is removed with a pickling solution. As this pickling solution, an acidic solution in which indium ions are dissolved can be used. In this case, after the pickling treatment, it can be transferred to the next reduction process as it is, which is convenient. However, when using a copper powder raw material with no oxide film formed on the surface of the copper powder, for example, when using copper powder as produced by a wet reduction method, a pickling process is not particularly required. There is also.
[0016]
Next, the most characteristic wet reduction treatment of indium ions of the present invention is carried out. In this reduction step, copper powder is suspended in a solution in which indium ions are dissolved, and a reducing agent is added to convert the indium ions into metal. In this step, the metal indium is deposited on the surface of the copper powder simultaneously with reduction to indium. If an indium salt solution is used in the pickling step, this step can be performed as it is.
[0017]
In order to obtain a solution in which indium ions are dissolved, it is convenient to dissolve the indium salt in water. As the indium salt, a non-oxidizing salt, typically hydrochloride, sulfate, etc. can be used. , Preferably the pH is in the range of 0.5-2. If the pH is lower than 0.5, the solubility of indium in the solution increases, and the amount of indium that does not contribute to deposition increases. On the other hand, when the pH is higher than 2, indium hydroxide or indium oxide is generated, and there is a risk of impurities being mixed. In addition, a base metal, such as aluminum or zinc, is used as an additive element (reducing agent) for the substitution reduction reaction. As this reducing agent, it is desirable to use a powdery one in order to increase the reactivity. The input amount of the reducing agent may be about the equivalent of the valence change for reducing indium ions to metallic indium, and is preferably 0.8 to 1.5 equivalents.
[0018]
In order to perform the substitution reaction between the indium ions and the added metal, it is preferable to carry out at a temperature from room temperature to 90 ° C. More preferably, it is from room temperature to 60 ° C. As for stirring, it is sufficient that the copper powder is uniformly dispersed in the solution and has a stirring strength that allows the substitution reduction reaction to proceed advantageously. In order to avoid the mixing of oxygen from the atmosphere, this substitution reduction reaction is preferably performed in an inert gas atmosphere purged with an inert gas (nitrogen gas or argon gas).
[0019]
Next, solid-liquid separation is performed, but at the end of the reaction, it is preferable that the base metal powder is consumed rather than indium charged as a reducing agent. In this case, even if solid-liquid separation is performed immediately after the completion of the reduction reaction, Only the In-coated copper powder can be separated from the liquid. If base metal powder remains in the liquid as solids, dissolve it in the liquid and then separate it into solid or liquid, or separate the base metal powder after solid-liquid separation of the starch. Just add an operation.
[0020]
If a step of aging the In-coated copper powder is inserted after the reduction and before solid-liquid separation, the unreacted reducing agent can be dissolved in the solution. For this aging, it is only necessary to maintain, for example, about 10 to 120 minutes at the temperature at which the reduction reaction is carried out, whereby the reducing agent can surely contribute to the reaction. For this reason, mixing of the unreacted reducing agent which becomes an impurity can be minimized.
[0021]
Solid-liquid separated In-coated copper powder is washed with water and then vacuum dried to obtain silver-white aggregates. This drying is preferably performed at 50 ° C. or lower. The obtained dried product is pulverized by a pulverizer to obtain a Cu • In-based metal powder in which indium is deposited on the particle surface. When this Cu • In-based metal powder is heat-treated at a temperature of preferably 100 ° C. or higher, a stable alloy phase is generated.
[0022]
【Example】
[Example 1]
Add 500 g of copper powder (average particle size D50 = 1.86 μm) to 4 L of indium chloride solution (pH = 0.5) with a concentration of 25 g / L, and stir the solution for 10 minutes at a liquid temperature of 50 ° C. did. Thereafter, 1 equivalent of aluminum powder (23.5 g: average particle diameter D50 = 75 μm) was added to the suspension as a reducing agent over 30 minutes. After the addition of the reducing agent, the solution was stirred for 30 minutes while maintaining the liquid temperature at 50 ° C. to reduce the indium ions in the liquid to metallic indium.
[0023]
Next, the starch was filtered from the solution, washed with water, and then vacuum dried at 40 ° C. The obtained dried product was pulverized into powder, and the powder was subjected to X-ray diffraction, thermogravimetry, chemical analysis of In amount, and particle size distribution measurement by Microtrac. The results are shown in FIG. 1 (X-ray diffraction), FIG. 2 (thermogravimetry), Table 1 (chemical analysis) and Table 2 (particle size distribution).
[0024]
The average particle size D50 (μm) is the result of particle size distribution measurement by Microtrac, the horizontal axis is the particle size D (μm), and the volume% (Q%) in which particles with a particle size of Dμm or less exist is the vertical axis. This is the value of particle size D (μm) corresponding to Q = 50% when expressed by the cumulative particle size curve. In FIGS. 1-2, the measurement result of the base powder (uncoated copper powder) used for the process of this example was also shown as uncoated copper powder. Further, in FIG. 2, the results of thermogravimetric measurement of 10% silver-coated copper powder obtained according to the example of JP-A-10-212501 are also shown as “Comparative Example”.
[0025]
[Example 2]
Example 1 was repeated except that an indium chloride solution with a concentration of 37.5 g / L was used and that 1 equivalent of aluminum powder (35.2 g) was added to the amount of indium in the solution. The obtained powder was subjected to X-ray diffraction, thermogravimetry, In amount chemical analysis and particle size distribution measurement, and the results are shown in FIGS.
[0026]
Example 3
Example 1 was repeated except that copper powder having an average particle size D50 = 6.4 μm was used. The obtained powder was subjected to X-ray diffraction, thermogravimetry, chemical analysis of In amount and particle size distribution measurement, and these results are shown in FIGS. 1 and 3 and Tables 1 and 2 together. For comparison, FIG. 3 also shows the thermogravimetric measurement results for the base powder (D50 = 6.4 μm uncoated copper powder) used in this example. Further, FIG. 5 shows the result of EPMA measurement of one particle cross section of the powder obtained in this example. The upper part of FIG. 5 is an analysis image of Cu and the lower part is an analysis image of In.
[0027]
Example 4
Example 1 was repeated except that 1.5 equivalents of aluminum powder (35.3 g) was added as a reducing agent. The obtained powder was subjected to X-ray diffraction, thermogravimetry, chemical analysis of In amount and particle size distribution measurement, and these results are shown in FIGS.
[0028]
Example 5
Example 3 was repeated except that nitrogen gas was allowed to flow into the reaction vessel at a flow rate of 2 L / min to perform a treatment for reducing indium ions in the liquid to metallic indium while purging the vessel with nitrogen. The obtained powder was subjected to X-ray diffraction, thermogravimetry, chemical analysis of In amount and particle size distribution measurement. These results are shown in FIGS. 1 and 3 and Tables 1 and 2. Furthermore, the powder obtained in this example was heat-treated at 80 ° C., 100 ° C. and 120 ° C. in the atmosphere, and those heat-treated products were subjected to powder X-ray diffraction. The obtained X-ray diffraction results are shown in FIG.
[0029]
[Table 1]
Figure 0004154491
[0030]
[Table 2]
Figure 0004154491
[0031]
As seen in FIG. 1, the Cu • In-based metal powder obtained in Example 1 has not only diffraction peaks of metal Cu and metal In but also a diffraction peak from a Cu—In alloy (CuIn). Yes. The diffraction peak of this CuIn alloy phase corresponds to that reported in the ICDD card (351150). The Cu • In-based metal powders obtained in Examples 2 to 5 are substantially the same as those in Example 1.
[0032]
From the results shown in FIG. 2, the uncoated copper powder (original powder) started to increase in weight from about 170 ° C., whereas the Cu weight obtained in Examples 1, 2, and 4 started. It can be seen that such weight increase does not occur even at 300 ° C. for the In-based metal powder. Moreover, although the oxidation start temperature of the comparative example coated with silver rose to 250 ° C., its oxidation resistance is not as good as that of the Cu • In based metal powder of the example.
[0033]
FIG. 3 is a comparison of the results of thermogravimetry of the Cu · In-based metal powders of Examples 3 and 5 and the uncoated copper powder (original powder). It can be seen that such oxidation does not occur and the oxidation does not start even when the temperature exceeds 300 ° C.
[0034]
From the results of FIG. 4, it can be seen that when the Cu · In-based metal powder is heat-treated at 100 ° C. or higher, the Cu—In alloy phase is changed to another alloy phase (CuIn → Cu 11 In 9 ). The diffraction peak of this Cu 11 In 9 alloy phase is reported in the ICDD card (410883).
[0035]
From the results shown in FIG. 5, it can be seen that the Cu coating of the Cu / In-based metal powder according to the present invention has an almost uniform In coating around the Cu core.
[0036]
【The invention's effect】
As described above, according to the present invention, a Cu • In-based metal powder excellent in oxidation resistance can be obtained. This has a useful application as a filler of conductive paste or as a filler of brazing material. And this Cu * In type metal powder can be manufactured with good manufacturability by a wet substitution reduction method.
[Brief description of the drawings]
FIG. 1 is a diagram showing the X-ray diffraction result of a Cu • In-based metal powder according to the present invention compared with that of a copper powder.
FIG. 2 is a diagram showing the results of differential thermal analysis of a Cu • In-based metal powder according to the present invention in an air atmosphere in comparison with that of a copper powder.
FIG. 3 is a diagram showing the results of differential thermal analysis of an Cu / In-based metal powder of another example according to the present invention in an air atmosphere in comparison with that of copper powder.
FIG. 4 is a diagram showing X-ray diffraction results for each heat treatment temperature when Cu · In metal powder according to the present invention is further heat treated.
FIG. 5 is a diagram showing an EPMA analysis result of Cu • In-based metal particles according to the present invention.

Claims (9)

Cuの粒子表面をInで被覆してなり、Inの一部がCuとの合金相を形成している導電ペーストまたはろう材のフイラー用Cu・In系金属粉体。Cu / In-based metal powder for fillers of conductive paste or brazing material, in which the surface of Cu particles is coated with In, and a part of In forms an alloy phase with Cu. Inの含有量が0.1〜30重量%である請求項1に記載の金属粉体。  The metal powder according to claim 1, wherein the content of In is 0.1 to 30% by weight. 酸化開始温度が250℃以上である請求項1または2に記載の金属粉体。  The metal powder according to claim 1 or 2, wherein the oxidation start temperature is 250 ° C or higher. 前記合金相がCu11In9である請求項1〜3のいずれかに記載の金属粉体。The metal powder according to claim 1, wherein the alloy phase is Cu 11 In 9 . 請求項1ないし4のいずれかに記載の金属粉体をフイラーとしたペースト。  The paste which used the metal powder in any one of Claim 1 thru | or 4 as a filler. 請求項1ないし4のいずれかに記載の金属粉体をフイラーとしたろう材。  A brazing material using the metal powder according to any one of claims 1 to 4 as a filler. 金属銅粉を懸濁したpH0.5〜2のインジウム塩溶液中で酸洗処理し引き続いて該液中にインジウムより卑な金属を投入することにより該金属銅粉の表面にインジウム金属を析出させ、得られたインジウム被着銅粉を液から分離する導電ペーストまたはろう材のフイラー用Cu・In系金属粉体の製法。By pickling in an indium salt solution having a pH of 0.5 to 2 in which metallic copper powder is suspended, and subsequently introducing a metal lower than indium into the liquid, indium metal is deposited on the surface of the metallic copper powder. A method for producing a Cu / In-based metal powder for a filler of a conductive paste or a brazing material for separating the obtained indium-coated copper powder from a liquid. インジウムより卑な金属はアルミニウムまたは亜鉛である請求項7に記載の製法。  The manufacturing method according to claim 7, wherein the base metal is aluminum or zinc. インジウム被着銅粉はさらに100℃以上の温度で熱処理される請求項7または8に記載の製法。  The method according to claim 7 or 8, wherein the indium-coated copper powder is further heat-treated at a temperature of 100 ° C or higher.
JP2002126877A 2002-04-26 2002-04-26 Cu / In-based metal powder and production method thereof Expired - Fee Related JP4154491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002126877A JP4154491B2 (en) 2002-04-26 2002-04-26 Cu / In-based metal powder and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002126877A JP4154491B2 (en) 2002-04-26 2002-04-26 Cu / In-based metal powder and production method thereof

Publications (2)

Publication Number Publication Date
JP2003321701A JP2003321701A (en) 2003-11-14
JP4154491B2 true JP4154491B2 (en) 2008-09-24

Family

ID=29541165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002126877A Expired - Fee Related JP4154491B2 (en) 2002-04-26 2002-04-26 Cu / In-based metal powder and production method thereof

Country Status (1)

Country Link
JP (1) JP4154491B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5763585B2 (en) * 2012-06-04 2015-08-12 株式会社日立製作所 Conductive paste material, semiconductor element connection method, and electrode formation method
CN115070031B (en) * 2022-06-02 2024-02-20 哈尔滨工业大学(深圳) Cu@In@Ag core-shell structure interconnection material and preparation method thereof

Also Published As

Publication number Publication date
JP2003321701A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
JP5155743B2 (en) Copper powder for conductive paste and conductive paste
JP5394084B2 (en) Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder
WO2008059789A1 (en) Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder
WO2007040195A1 (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP2018523758A (en) Method for producing silver powder for high-temperature sintered conductive paste
JP3277823B2 (en) Production method of metal powder
JP4651533B2 (en) Method for producing copper particles
WO2018181482A1 (en) Copper particles and manufacturing method therefor
JP2021113358A (en) Silver-covered metal powder and method for producing the same
JPWO2016013426A1 (en) Metal fine particle dispersion and metal coating
JP4182234B2 (en) Copper powder for conductive paste and method for producing the same
TW201412435A (en) Composite copper particles, and method for producing same
JP6278969B2 (en) Silver coated copper powder
JP4701426B2 (en) Copper powder and copper powder manufacturing method
JP4154491B2 (en) Cu / In-based metal powder and production method thereof
JP6659712B2 (en) Powder for conductive material, ink for conductive material, conductive paste, and method for producing powder for conductive material
JP2001011502A (en) Copper powder, its manufacture, and electrical conductive paste using the same
JP2012140661A (en) Flat copper particle
JP4957465B2 (en) Oxide-coated copper fine particles and method for producing the same
JP5003648B2 (en) Method for producing oxide-coated copper fine particles
JP6541764B2 (en) Silver-coated copper powder and conductive paste, and method for producing them
TWI763637B (en) Metal composite powder and method for producing same
JP4331538B2 (en) Copper-coated graphite powder and method for producing the same
JP6043397B2 (en) Method for synthesizing heterogeneous copper-nickel composites
JPH1192805A (en) Copper alloy powder and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4154491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees