JPH05209208A - Production of metallic cadmium powder - Google Patents

Production of metallic cadmium powder

Info

Publication number
JPH05209208A
JPH05209208A JP3231150A JP23115091A JPH05209208A JP H05209208 A JPH05209208 A JP H05209208A JP 3231150 A JP3231150 A JP 3231150A JP 23115091 A JP23115091 A JP 23115091A JP H05209208 A JPH05209208 A JP H05209208A
Authority
JP
Japan
Prior art keywords
cadmium
powder
inert gas
metal
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3231150A
Other languages
Japanese (ja)
Other versions
JP2896719B2 (en
Inventor
Hirohisa Senzaki
博久 千崎
Morimasa Sumita
守正 住田
Masaharu Onoe
正治 尾上
Hiromi Hata
祥巳 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP3231150A priority Critical patent/JP2896719B2/en
Publication of JPH05209208A publication Critical patent/JPH05209208A/en
Application granted granted Critical
Publication of JP2896719B2 publication Critical patent/JP2896719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To produce metallic Cd powder having high activity as the active material of a battery and industrially satisfactory practicality. CONSTITUTION:Metallic Cd is melted by heating in an evaporator 3 and inert gas is introduced into the evaporator 3 at a flow rate (Y) (cm/sec) satisfying an inequality logY>=8.8X10<-3>x-5.3 in the case of 600-900 deg.C temp. (X) of the molten Cd and an inequality logY>=1.8X10<-3>x-0.96 in the case of 330-600 deg.C temp. (X). The resulting Cd vapor is discharged into a condenser-cooler 4 with the inert gas and metallic Cd powder is recovered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−カドミウム
電池用負極活物質として用いられ、活性度の高い金属カ
ドミウム粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a highly active metal cadmium powder which is used as a negative electrode active material for nickel-cadmium batteries.

【0002】[0002]

【従来の技術】従来、ニッケル−カドミウム電池用負極
活物質の出発原料としては、酸化カドミウム、もしくは
硝酸カドミウムを中和処理し化成させて得られた水酸化
カドミウムが主に用いられてきた。
2. Description of the Related Art Conventionally, as a starting material for a negative electrode active material for nickel-cadmium batteries, cadmium oxide or cadmium hydroxide obtained by neutralizing and forming cadmium nitrate has been mainly used.

【0003】これら酸化カドミウムまたは水酸化カドミ
ウムは、基板に塗布または含浸固定させた後、電池を構
成するに先立って負極電気容量の30〜40%程度の部
分充電を行ない、金属カドミウムに還元するのが通例で
ある。
These cadmium oxides or cadmium hydroxides are applied or impregnated and fixed on a substrate, and then partially charged to about 30 to 40% of the negative electrode electric capacity and reduced to metallic cadmium before forming a battery. Is customary.

【0004】しかるに、この部分充電による金属カドミ
ウムへの還元は、その操作が電気分解や水洗、乾燥等の
一連の煩雑で厄介な工程を経ねばならない等の難点を有
するため、これを回避すべく負極活物質の出発原料の一
部に金属カドミウム粉末を事前に添加する方法が提案さ
れている。
However, the reduction to metallic cadmium by this partial charge has a drawback that the operation has to go through a series of complicated and troublesome steps such as electrolysis, washing with water, and drying, so that it should be avoided. A method has been proposed in which metal cadmium powder is added in advance to a part of the starting material for the negative electrode active material.

【0005】このような状況における必要性から、既知
の方法で作られた種々の金属カドミウム粉末を用いるこ
とが提案されている。
Due to the need in such circumstances, it has been proposed to use various metal cadmium powders produced by known methods.

【0006】例えば溶湯を高圧のガスまたは液体で噴霧
するアトマイズ金属カドミウム粉末や溶湯を沸点以上に
加熱し、酸素を除去した冷却器の中で凝縮させる蒸発・
凝縮法により得られた金属カドミウム粉末、更には蒸発
器内を真空にした後、アルゴンガス、キセノンガス、窒
素ガス等を導入し、単独または複合させて器内圧力を数
torr〜数百torrの負圧に調整し、金属カドミウ
ムを高周波誘導炉、プラズマ炉、抵抗炉等により沸点以
上に加熱、蒸発した金属カドミウム粉末を器壁または冷
却板等に付着させ捕集する、いわゆるガス中蒸発法によ
る金属カドミウム粉末、または電気分解法、置換析出法
によりそれぞれ得られる金属カドミウム粉末、その他機
械粉砕による金属カドミウム粉末等が挙げられる。
For example, an atomized metal cadmium powder for spraying a molten metal with a high-pressure gas or liquid or a molten metal is heated to a temperature higher than the boiling point and condensed in a cooler from which oxygen has been removed.
After the metal cadmium powder obtained by the condensation method and further the inside of the evaporator are evacuated, argon gas, xenon gas, nitrogen gas, etc. are introduced, and the pressure inside the container is set to several torr to several hundreds torr. By adjusting to a negative pressure, the metal cadmium is heated above the boiling point in a high-frequency induction furnace, plasma furnace, resistance furnace, etc., and the evaporated metal cadmium powder is attached to the vessel wall or cooling plate etc. and collected, by the so-called gas evaporation method. Examples thereof include metal cadmium powder, metal cadmium powder obtained by electrolysis and substitution precipitation, and metal cadmium powder obtained by mechanical grinding.

【0007】これら各製造法により得られた金属カドミ
ウム粉末は、微粉末とはいえ電池活物質として作用する
には粒子径が大きすぎて活物質利用率が低く実用化し難
い。一般に、負極活物質に用いられる金属カドミウム粉
末は、その粒子形状、大きさによって活物質利用率が左
右される事はよく知られている。更に言及すれば、その
表面積が大きく、形状的には単純な平滑面で覆われたも
のよりは、凹凸の多いもの程、活物質利用率として優れ
た結果を与える。
Although the metal cadmium powder obtained by each of these production methods is a fine powder, its particle size is too large to act as a battery active material and the utilization rate of the active material is low, making it difficult to put it into practical use. In general, it is well known that the metal cadmium powder used for the negative electrode active material has an active material utilization rate that depends on the particle shape and size. More specifically, the larger the surface area, the more uneven the surface covered with a simple smooth surface, and the better the active material utilization rate.

【0008】従来から金属粉末製造の一つとして、よく
知られている上記のような蒸発・凝縮法によって金属カ
ドミウム粉末を作成すると、粒子径が数μm乃至10μ
m程度もある。また、表面張力の作用を受け、かつ溶融
状態にあるため粒子形状は殆ど球状で、その表面は平滑
である。このような球状または正方晶の金属カドミウム
粉末では表面が平滑であるため表面積が小さく、電気的
に活性が小さいことから、放電両立が小さいという課題
を有する。
When metal cadmium powder is prepared by the well-known evaporation / condensation method as one of the conventional methods for producing metal powder, the particle diameter is several μm to 10 μm.
There are about m. Further, since it is subjected to the effect of surface tension and is in a molten state, the particle shape is almost spherical and the surface is smooth. Such a spherical or tetragonal metal cadmium powder has a problem that discharge compatibility is small because the surface is small because the surface is smooth and the electrical activity is small.

【0009】これら球状粒子の表面積を大きくするに
は、極力、粒子直径を小さくしなければならないが、従
来の蒸発・凝縮法においては、充分に加熱された金属カ
ドミウム溶湯からの蒸発であり、蒸発を盛んにした状態
においての粒子製造であるため、蒸発粒子がお互いに激
しい衝突・融合を繰り返し、表面張力の作用を受けて液
滴球状となってしまう。かかる段階において粒子径をサ
ブミクロン以下に抑えることはかなり困難である。従っ
て、比表面積も0.2〜0.6m2/gまたはそれ以下
にとどまり、利用率も20〜40%程度と低く電池活物
質としては、実用に供し得るものではなかった。
In order to increase the surface area of these spherical particles, it is necessary to reduce the particle diameter as much as possible, but in the conventional evaporation / condensation method, this is evaporation from a sufficiently heated metal cadmium melt, Since the particles are produced in a state of vigorous evaporation, vaporized particles repeatedly violently collide and fuse with each other, and are subjected to the effect of surface tension to become droplet spherical shapes. At this stage, it is quite difficult to keep the particle size below submicron. Therefore, the specific surface area was 0.2 to 0.6 m 2 / g or less, and the utilization rate was low at about 20 to 40%, which was not practical for a battery active material.

【0010】さらに、その他の別の製造法により得られ
る金属カドミウム粉末は、粒径がサブミクロン以下の微
粒が得られるものの、その取得量が非常に少なく、工業
的には到底適用出来ない方法であったり、また、利用率
は満足出来るものの非常に高価で経済的に使用し難い等
の課題があった。
Further, although the metal cadmium powder obtained by another manufacturing method can obtain fine particles having a particle size of submicron or less, the obtained amount is very small, and the method cannot be applied industrially at all. In addition, although the utilization rate was satisfactory, there were problems such as being extremely expensive and difficult to use economically.

【0011】[0011]

【発明が解決しょうとする課題】本発明の目的は、この
ような点を改善し、電池活物質として活性度が高く、か
つ工業的に充分に実用性のある金属カドミウム粉末の製
造方法を提供することにある。
An object of the present invention is to provide a method for producing a metal cadmium powder which is improved in these points, has a high activity as a battery active material, and is industrially sufficiently practical. To do.

【0012】[0012]

【課題を達成するための手段】本屋発明の上記目的は、
次に示す製造方法によって達成される。
[Means for Achieving the Object]
It is achieved by the following manufacturing method.

【0013】すなわち、本発明の金属カドミウム粉末の
製造方法は、金属カドミウムを蒸発器内で加熱、溶解
し、次いで該蒸発器内に予め加熱された不活性ガスを導
入し、該溶融カドミウム温度と不活性ガス流量を、 logy≧8.8×10-3x−5.3(600≦x≦900) logy≧1.8×10-3x−0.96(330≦x≦600) [但し、xは溶融カドミウム温度(℃)、yは不活性ガ
ス流速(cm/秒)]となるように調整しつつ、カドミ
ウム蒸気を不活性ガスと共に凝縮・冷却器に放出し、金
属カドミウム粉末を回収することを特徴とする。
That is, the method for producing metal cadmium powder of the present invention is to heat and dissolve metal cadmium in an evaporator, and then introduce a preheated inert gas into the evaporator to adjust the temperature of the molten cadmium. The inert gas flow rate is set as follows: logy ≧ 8.8 × 10 −3 x−5.3 (600 ≦ x ≦ 900) logy ≧ 1.8 × 10 −3 x−0.96 (330 ≦ x ≦ 600) [however, , X is the molten cadmium temperature (° C) and y is the inert gas flow rate (cm / sec)], while releasing the cadmium vapor together with the inert gas to the condenser / cooler to recover the metal cadmium powder. It is characterized by doing.

【0014】以下、本発明を図面に基づいて具体的に説
明する。
The present invention will be specifically described below with reference to the drawings.

【0015】図1は本発明の金属カドミウム粉末の製造
方法に用いられる装置の概略図であり、同図において、
1は不活性ガス加熱器、2は加熱装置、3は蒸発器、4
は凝縮・冷却器、5,6は粉体回収器、7はガス循環ポ
ンプ、8はガス導管をそれぞれ示す。
FIG. 1 is a schematic view of an apparatus used in the method for producing metal cadmium powder according to the present invention.
1 is an inert gas heater, 2 is a heating device, 3 is an evaporator, 4
Is a condenser / cooler, 5 and 6 are powder collectors, 7 is a gas circulation pump, and 8 is a gas conduit.

【0016】同図において、金属カドミウム塊は蒸発器
3に投入され、加熱装置2によって加熱溶解し、さらに
カドミウムを蒸発させる。この時の溶融カドミウムの温
度範囲は特に限定されるものではないが、金属カドミウ
ム塊を溶融させるためにカドミウムの融点(321℃)
以上の温度であることは勿論であるが、カドミウム蒸気
の蒸発量を一定限度に制御する必要性から、好ましくは
330〜900℃、さらに好ましくは500〜800℃
である。
In the figure, the metal cadmium lump is charged into the evaporator 3, heated and melted by the heating device 2, and the cadmium is further evaporated. The temperature range of the molten cadmium at this time is not particularly limited, but in order to melt the cadmium metal mass, the melting point of cadmium (321 ° C.)
It is needless to say that the above temperature is used, but it is preferably 330 to 900 ° C, more preferably 500 to 800 ° C from the necessity of controlling the evaporation amount of cadmium vapor to a certain limit.
Is.

【0017】一方、窒素ガス等の不活性ガスは、不活性
ガス加熱器1で予め加熱されることが好ましく、蒸発器
3に導入される。ここに用いられる不活性ガスとして
は、窒素ガス、アルゴンガス、炭酸ガス等が例示され
る。不活性ガスは、蒸発器3を一回のみ通過しても、ま
た図1に示すように繰返し循環させてもよい。このよう
に、不活性ガスを用いるのは、カドミウム蒸気は少量の
酸素とよく反応して、不要な酸化カドミウムが生成する
のを防ぐためである。蒸発器3内に導入した不活性ガス
の流路は、カドミウム溶湯面上に最も接する部分である
ことが望ましい。
On the other hand, an inert gas such as nitrogen gas is preferably preheated by the inert gas heater 1 and introduced into the evaporator 3. Examples of the inert gas used here include nitrogen gas, argon gas, carbon dioxide gas and the like. The inert gas may pass through the evaporator 3 only once, or may be repeatedly circulated as shown in FIG. Thus, the use of an inert gas is to prevent the cadmium vapor from reacting well with a small amount of oxygen and generating unnecessary cadmium oxide. It is desirable that the flow path of the inert gas introduced into the evaporator 3 is the portion that is most in contact with the surface of the molten cadmium.

【0018】本発明では、カドミウムが蒸発し、金属カ
ドミウム粒子相互が衝突・会合し、増大・球状化するの
を防止するために、溶融カドミウム温度と不活性ガス流
量を一定範囲に調整する。すなわち、溶融カドミウム温
度を調整することにより、カドミウム蒸気発生量を制限
し、金属カドミウム粒子相互の衝突・会合が防止され、
また不活性ガス流量を調整することによって、蒸発器3
中の金属カドミウム粒子の滞留による衝突・会合が防止
されるのである。従って、カドミウム蒸気の蒸発の程度
が高く、金属カドミウム粒子相互が衝突・会合する恐れ
がある場合には、不活性ガス流速を増加させたり、溶融
カドミウム温度を低下させればよい。
In the present invention, the molten cadmium temperature and the flow rate of the inert gas are adjusted within a certain range in order to prevent the cadmium from evaporating and the metal cadmium particles from colliding / associating with each other and increasing / spheroidizing. That is, by adjusting the molten cadmium temperature, the amount of cadmium vapor generated is limited, and collision and association of metal cadmium particles are prevented,
Also, by adjusting the flow rate of the inert gas, the evaporator 3
Collisions and associations due to the retention of metal cadmium particles inside are prevented. Therefore, when the degree of evaporation of the cadmium vapor is high and there is a risk that the metal cadmium particles collide and associate with each other, the flow rate of the inert gas may be increased or the temperature of the molten cadmium may be decreased.

【0019】このような溶融カドミウム温度と不活性ガ
ス流量の関係は、図2に図示されるように、以下の不等
式で示される範囲にあることが必要である。 logy≧8.8×10-3x−5.3(600≦x≦900) logy≧1.8×10-3x−0.96(330≦x≦600) [但し、xは溶融カドミウム温度(℃)、yは不活性ガ
ス流速(cm/秒)]
The relationship between the molten cadmium temperature and the flow rate of the inert gas needs to be in the range represented by the following inequality, as shown in FIG. logy ≧ 8.8 × 10 −3 x−5.3 (600 ≦ x ≦ 900) logy ≧ 1.8 × 10 −3 x−0.96 (330 ≦ x ≦ 600) [where x is the molten cadmium temperature (° C), y is an inert gas flow rate (cm / sec)]

【0020】この範囲を逸脱した条件で製造された金属
カドミウム粉末は、利用率が極めて低いものとなる。
The metal cadmium powder produced under the conditions deviating from this range has a very low utilization rate.

【0021】このように、本発明では、得られた金属カ
ドミウム粉末の形状を走査型電子顕微鏡で観察し、溶融
カドミウム温度と不活性ガス流量を上記のように調整
し、その製造条件を確定する。
As described above, in the present invention, the shape of the obtained metal cadmium powder is observed with a scanning electron microscope, the molten cadmium temperature and the inert gas flow rate are adjusted as described above, and the manufacturing conditions are determined. ..

【0022】次に、蒸発器3に連結した凝縮・冷却器4
内に導いて、凝縮、冷却し、粉状粒子とし、さらに粉体
回収器5,6にて回収を行なう。金属カドミウム粉末
は、上述のように酸化しやすいので、凝縮・冷却器4お
よび粉体回収器5,6も不活性ガス雰囲気としておく必
要がある。
Next, the condenser / cooler 4 connected to the evaporator 3
It is introduced into the inside, condensed and cooled to form powder particles, and further recovered by the powder recovery devices 5 and 6. Since the metal cadmium powder easily oxidizes as described above, it is necessary to keep the condenser / cooler 4 and the powder collectors 5 and 6 in an inert gas atmosphere.

【0023】従って、図1に示されるように、不活性ガ
ス加熱器1で加熱された不活性ガスは、ガス循環ポンプ
8により、蒸発器3、凝縮・冷却器4、粉体回収器5,
6、ガス導管9を循環することが望ましい。
Therefore, as shown in FIG. 1, the inert gas heated by the inert gas heater 1 is moved by the gas circulation pump 8 to the evaporator 3, the condenser / cooler 4, the powder recovery unit 5, and the powder recovery unit 5.
6. It is desirable to circulate the gas conduit 9.

【0024】[0024]

【作用・効果】本発明により得られる金属カドミウム粉
末は、粒子形状が凹凸不定形、多角形または六方晶であ
るため、表面積が従来品の数倍程度大きく、電気的に活
性度が高いため、放電させた場合の利用率が大きい。従
来のような、表面が平滑で球形の粒子ではこのような活
性度は得られない。本発明により得られる金属カドミウ
ム粉末が高活性なのは、その表面に多くの反応活性点を
有するからであり、このような金属カドミウム粉末を用
いることにより、高性能な電池の作成が実現されるので
工業的利用価値は大である。
[Operation / Effect] The metal cadmium powder obtained by the present invention has a particle shape of irregular irregular shape, polygonal or hexagonal crystal, and therefore has a surface area several times larger than conventional products and high electrical activity, The utilization rate is high when discharged. Such activity cannot be obtained with conventional spherical particles having a smooth surface. The reason why the metal cadmium powder obtained by the present invention is highly active is that it has many reaction active points on its surface, and by using such a metal cadmium powder, it is possible to realize the production of a high-performance battery. The utility value is great.

【0025】[0025]

【実施例】以下、実施例に基づき本発明を具体的に説明
する。
EXAMPLES The present invention will be specifically described below based on examples.

【0026】実施例1 図1に示されるような装置を用い、金属カドミウム塊1
0kgを蒸発器に装入し、加熱溶解する。予め窒素ガス
を系全体に充満させて、不要な酸素を除外しておく。
Example 1 Using a device as shown in FIG. 1, metal cadmium lump 1
Charge 0 kg to the evaporator and heat to dissolve. Fill the whole system with nitrogen gas in advance to exclude unnecessary oxygen.

【0027】蒸発器内のカドミウム溶湯の温度を700
℃まで高めると同時に、窒素ガスを不活性ガス加熱器を
用いて320℃にすると共にポンプを運転して循環を開
始する。
The temperature of the molten cadmium in the evaporator is set to 700
At the same time as the temperature was raised to 0 ° C, nitrogen gas was heated to 320 ° C using an inert gas heater and the pump was operated to start circulation.

【0028】蒸発器内の溶融カドミウムの温度がほぼ一
定となった時点で循環ポンプ流速を設定する。ガス流量
は蒸発器内の湯面上の流速が50cm/sec(対数表
示1.699)となるように調節する。なお、運転開始
後、粉末回収器5,6内の試料を取り出して走査型電子
顕微鏡により粒子の外形を観察した。
The circulation pump flow rate is set when the temperature of the molten cadmium in the evaporator becomes substantially constant. The gas flow rate is adjusted so that the flow velocity on the molten metal surface in the evaporator is 50 cm / sec (logarithmic display 1.699). After the start of operation, the samples in the powder collectors 5 and 6 were taken out and the outer shape of the particles was observed by a scanning electron microscope.

【0029】このようにして得られた金属カドミウム粉
末の顕微鏡写真(6000倍)を図3に示す。図3に示
されるように得られた金属カドミウム粉末は、多角不定
形粒子であることが判る。
FIG. 3 shows a photomicrograph (6000 times) of the metal cadmium powder thus obtained. It can be seen that the metal cadmium powder obtained as shown in FIG. 3 is polygonal amorphous particles.

【0030】この金属カドミウム粉末を用いて電池活物
質の利用率を測定した。利用率の測定は、粉末1gをニ
ッケル基板(2×3cm)に塗布し、これと、予め用意
したニッケル正極を組合せ、液温20℃の水酸化カリウ
ム27%溶液中にて、180mAの一定電流で放電させ
る方法により行った。結果を表1および図2に示す。
The utilization rate of the battery active material was measured using this metal cadmium powder. The utilization rate was measured by applying 1 g of powder onto a nickel substrate (2 x 3 cm), combining this with a nickel positive electrode prepared in advance, and applying a constant current of 180 mA in a 27% potassium hydroxide solution at a liquid temperature of 20 ° C. It was carried out by a method of discharging. The results are shown in Table 1 and FIG.

【0031】なお、ここでいう利用率は、下式により計
算した値である。 利用率=[粉末1gから実際に取り出せた電気量(mA
H)/カドミウム1g当りの理諭電気量477(mA
H)]×100%
The utilization rate here is a value calculated by the following equation. Utilization rate = [Amount of electricity actually extracted from 1 g of powder (mA
H) / Skilled electricity amount per 1 g of cadmium 477 (mA
H)] × 100%

【0032】実施例2〜9および比較例1〜2 蒸発器中の溶湯温度と蒸発器湯面上のガス流速を表1の
ように調整した以外は、実施例1と同様の操作により金
属カドミウム粉末を得た。
Examples 2-9 and Comparative Examples 1-2 Metal cadmium metal was prepared in the same manner as in Example 1 except that the molten metal temperature in the evaporator and the gas flow rate on the surface of the evaporator were adjusted as shown in Table 1. A powder was obtained.

【0033】得られた金属カドミウム粉末を用いて電池
活物質の利用率を実施例1と同様にそれぞれ測定した。
結果を表1に示す。
Using the obtained metal cadmium powder, the utilization factor of the battery active material was measured in the same manner as in Example 1.
The results are shown in Table 1.

【0034】また、実施例3および6については、実施
例1と同様に、得られた金属カドミウム粉末を走査型電
子顕微鏡により粒子の外形を観察し、その顕微鏡写真を
図4および5にそれぞれ示す。
In addition, in Examples 3 and 6, the outer shape of the particles of the obtained metal cadmium powder was observed with a scanning electron microscope in the same manner as in Example 1, and micrographs thereof are shown in FIGS. 4 and 5, respectively. ..

【0035】[0035]

【表1】 [Table 1]

【0036】表1から明らかなように、溶湯温度と不活
性ガスを一定範囲に調整することにより得られた実施例
1〜9の金属カドミウム粉末は、上記範囲を逸脱した条
件で得られた比較例1〜2の金属カドミウム粉末に比較
してた利用率が著しく高いことが判る。
As is clear from Table 1, the metal cadmium powders of Examples 1 to 9 obtained by adjusting the temperature of the molten metal and the inert gas within a certain range were compared under the conditions deviating from the above range. It can be seen that the utilization rate is significantly higher than that of the metal cadmium powders of Examples 1 and 2.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の金属カドミウム粉末の製造方法に用
いられる装置の概略図。
FIG. 1 is a schematic view of an apparatus used in the method for producing metal cadmium powder of the present invention.

【図2】 溶湯温度(℃)と蒸発器湯面上のガス流速
(cm/秒・対数)との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the molten metal temperature (° C.) and the gas flow velocity (cm / sec / logarithm) on the molten metal surface of the evaporator.

【図3】 実施例1より得られた金属カドミウム粉末の
粒子形状を示す顕微鏡写真(×6000)。
FIG. 3 is a micrograph (× 6000) showing the particle shape of the metal cadmium powder obtained in Example 1.

【図4】 実施例3より得られた金属カドミウム粉末の
粒子形状を示す顕微鏡写真(×2000)。
FIG. 4 is a micrograph (× 2000) showing the particle shape of the metal cadmium powder obtained in Example 3.

【図5】 実施例5より得られた金属カドミウム粉末の
粒子形状を示す顕微鏡写真(×10000)。
5 is a photomicrograph (× 10000) showing the particle shape of the metal cadmium powder obtained in Example 5. FIG.

【符号の説明】[Explanation of symbols]

3 蒸発器 4 凝縮・冷却器 3 Evaporator 4 Condenser / Cooler

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月9日[Submission date] February 9, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 実施例1より得られた金属カドミウム粉末の
粒子構造を示す顕微鏡写真(×6000)。
FIG. 3 is a micrograph (× 6000) showing the particle structure of the metal cadmium powder obtained in Example 1.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 実施例3より得られた金属カドミウム粉末の
粒子構造を示す顕微鏡写真(×2000)。
FIG. 4 is a photomicrograph (× 2000) showing the particle structure of the metal cadmium powder obtained in Example 3.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 実施例5より得られた金属カドミウム粉末の
粒子構造を示す顕微鏡写真(×10000)。
5 is a micrograph (× 10000) showing the particle structure of the metal cadmium powder obtained in Example 5. FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属カドミウムを蒸発器内で加熱、溶解
し、次いで該蒸発器内に不活性ガスを導入し、該溶融カ
ドミウム温度と不活性ガス流量を、 logy≧8.8×10-3x−5.3(600≦x≦9
00) logy≧1.8×10-3x−0.96(330≦x≦
600) [但し、xは溶融カドミウム温度(℃)、yは不活性ガ
ス流速(cm/秒)]となるように調整しつつ、カドミ
ウム蒸気を不活性ガスと共に凝縮・冷却器に放出し、金
属カドミウム粉末を回収することを特徴とする金属カド
ミウム粉末の製造方法。
1. A metal cadmium is heated and melted in an evaporator, and then an inert gas is introduced into the evaporator. The molten cadmium temperature and the inert gas flow rate are expressed as logy ≧ 8.8 × 10 −3. x-5.3 (600 ≦ x ≦ 9
00) logy ≧ 1.8 × 10 −3 x−0.96 (330 ≦ x ≦
600) [where x is the molten cadmium temperature (° C) and y is the inert gas flow rate (cm / sec)], while cadmium vapor is discharged together with the inert gas to the condenser / cooler, A method for producing a metal cadmium powder, which comprises collecting the cadmium powder.
【請求項2】 請求項1に記載の製造方法により得ら
れ、粒子形状が凹凸不定形、多角形または六方晶である
金属カドミウム粉末。
2. A metal cadmium powder obtained by the production method according to claim 1, wherein the particle shape is irregular irregular shape, polygon or hexagonal crystal.
JP3231150A 1990-09-07 1991-08-20 Method for producing metal cadmium powder Expired - Fee Related JP2896719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3231150A JP2896719B2 (en) 1990-09-07 1991-08-20 Method for producing metal cadmium powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23581990 1990-09-07
JP2-235819 1990-09-07
JP3231150A JP2896719B2 (en) 1990-09-07 1991-08-20 Method for producing metal cadmium powder

Publications (2)

Publication Number Publication Date
JPH05209208A true JPH05209208A (en) 1993-08-20
JP2896719B2 JP2896719B2 (en) 1999-05-31

Family

ID=26529718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3231150A Expired - Fee Related JP2896719B2 (en) 1990-09-07 1991-08-20 Method for producing metal cadmium powder

Country Status (1)

Country Link
JP (1) JP2896719B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505761A (en) * 1992-05-29 1996-04-09 Mitsui Mining & Smelting Co., Ltd. Process for preparing metallic cadmium powder
CN112846206A (en) * 2020-12-29 2021-05-28 江苏博迁新材料股份有限公司 Pulse type metal powder preparation condensation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505761A (en) * 1992-05-29 1996-04-09 Mitsui Mining & Smelting Co., Ltd. Process for preparing metallic cadmium powder
CN112846206A (en) * 2020-12-29 2021-05-28 江苏博迁新材料股份有限公司 Pulse type metal powder preparation condensation method

Also Published As

Publication number Publication date
JP2896719B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
US6759160B2 (en) Silicon oxide powder and making method
TW201515996A (en) Siox powder manufacturing process and siox powder manufacturing apparatus
JP5374705B2 (en) Method for producing SiOx
KR101650184B1 (en) Method for recovering of silicon particles, and manufacturing of cathode material for secondary battery
EP1018386A1 (en) Method for producing metal powder
JP6596476B2 (en) Silicon-containing powder
JP2004091843A (en) Manufacturing method of high purity high melting point metal powder
JP2004124257A (en) Metal copper particulate, and production method therefor
JPH0623405B2 (en) Method for producing spherical copper fine powder
JPH05209208A (en) Production of metallic cadmium powder
KR101913221B1 (en) Fabrication Method of Lithium Complex Oxide
CN1037073C (en) Preparation method of high melting point nm metal catalyzer
KR20130069190A (en) Synthetic method for tungsten metal nanopowder using rf plasma
JP2896727B2 (en) Method for producing metal cadmium powder
JPH0445207A (en) Manufacture of spherical nickel fine particles
KR101537216B1 (en) A making process of silicon powder Using Plasma Arc Discharge
CN112820872A (en) Ternary cathode material, preparation method thereof and lithium ion battery
JP6236022B2 (en) Method for producing silicon-containing powder
JP2005154834A (en) Ruthenium ultrafine powder and its production method
JP3504481B2 (en) Method for producing Ni powder
JP2020053162A (en) Negative electrode material for power storage device
CN116759550B (en) Coating modification method for lithium ion battery oxide positive electrode material, composite material and application thereof
KR101715328B1 (en) a Method for Manufacturing of Secondary Particle of Zinc Oxide, the Secondary particle Manufactured by the Same and the Active Material comprising the Secondary particle
KR101370631B1 (en) Method for manufacturing ferro titan silicide nano composite for anode active material of lithium secondary batteries
JPH06248306A (en) Production of hydrogen storage alloy powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees