JP2896719B2 - Method for producing metal cadmium powder - Google Patents

Method for producing metal cadmium powder

Info

Publication number
JP2896719B2
JP2896719B2 JP3231150A JP23115091A JP2896719B2 JP 2896719 B2 JP2896719 B2 JP 2896719B2 JP 3231150 A JP3231150 A JP 3231150A JP 23115091 A JP23115091 A JP 23115091A JP 2896719 B2 JP2896719 B2 JP 2896719B2
Authority
JP
Japan
Prior art keywords
cadmium
powder
metal
metal cadmium
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3231150A
Other languages
Japanese (ja)
Other versions
JPH05209208A (en
Inventor
博久 千崎
守正 住田
正治 尾上
祥巳 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP3231150A priority Critical patent/JP2896719B2/en
Publication of JPH05209208A publication Critical patent/JPH05209208A/en
Application granted granted Critical
Publication of JP2896719B2 publication Critical patent/JP2896719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−カドミウム
電池用負極活物質として用いられ、活性度の高い金属カ
ドミウム粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing highly active metal cadmium powder which is used as a negative electrode active material for nickel-cadmium batteries.

【0002】[0002]

【従来の技術】従来、ニッケル−カドミウム電池用負極
活物質の出発原料としては、酸化カドミウム、もしくは
硝酸カドミウムを中和処理し化成させて得られた水酸化
カドミウムが主に用いられてきた。
2. Description of the Related Art Conventionally, cadmium oxide or cadmium hydroxide obtained by neutralizing cadmium nitrate to form a chemical compound has been mainly used as a starting material for a negative electrode active material for a nickel-cadmium battery.

【0003】これら酸化カドミウムまたは水酸化カドミ
ウムは、基板に塗布または含浸固定させた後、電池を構
成するに先立って負極電気容量の30〜40%程度の部
分充電を行ない、金属カドミウムに還元するのが通例で
ある。
After these cadmium oxides or cadmium hydroxides are applied or impregnated and fixed to a substrate, they are partially charged to about 30 to 40% of the negative electrode electric capacity and then reduced to metallic cadmium prior to forming a battery. Is customary.

【0004】しかるに、この部分充電による金属カドミ
ウムへの還元は、その操作が電気分解や水洗、乾燥等の
一連の煩雑で厄介な工程を経ねばならない等の難点を有
するため、これを回避すべく負極活物質の出発原料の一
部に金属カドミウム粉末を事前に添加する方法が提案さ
れている。
[0004] However, reduction to metal cadmium by partial charging has the disadvantage that the operation must go through a series of complicated and cumbersome steps such as electrolysis, washing with water, and drying. A method has been proposed in which metal cadmium powder is added in advance to a part of the starting material of the negative electrode active material.

【0005】このような状況における必要性から、既知
の方法で作られた種々の金属カドミウム粉末を用いるこ
とが提案されている。
[0005] The need in such circumstances has suggested the use of various metal cadmium powders made by known methods.

【0006】例えば溶湯を高圧のガスまたは液体で噴霧
するアトマイズ金属カドミウム粉末や溶湯を沸点以上に
加熱し、酸素を除去した冷却器の中で凝縮させる蒸発・
凝縮法により得られた金属カドミウム粉末、更には蒸発
器内を真空にした後、アルゴンガス、キセノンガス、窒
素ガス等を導入し、単独または複合させて器内圧力を数
torr〜数百torrの負圧に調整し、金属カドミウ
ムを高周波誘導炉、プラズマ炉、抵抗炉等により沸点以
上に加熱、蒸発した金属カドミウム粉末を器壁または冷
却板等に付着させ捕集する、いわゆるガス中蒸発法によ
る金属カドミウム粉末、または電気分解法、置換析出法
によりそれぞれ得られる金属カドミウム粉末、その他機
械粉砕による金属カドミウム粉末等が挙げられる。
[0006] For example, an atomizing metal cadmium powder which sprays a molten metal with a high-pressure gas or liquid or a molten metal is heated to a boiling point or higher and condensed in a cooler from which oxygen has been removed.
After evacuating the metal cadmium powder obtained by the condensation method and further the evaporator, an argon gas, a xenon gas, a nitrogen gas, etc. are introduced, and the pressure inside the device is set to several torr to several hundred torr by solely or in combination. Adjusted to a negative pressure, heated metal cadmium above its boiling point in a high-frequency induction furnace, plasma furnace, resistance furnace, etc., adhered and evaporated metal cadmium powder to the vessel wall or cooling plate, etc., by the so-called gas evaporation method Examples thereof include metal cadmium powder, metal cadmium powder obtained by electrolysis and displacement precipitation, and metal cadmium powder obtained by mechanical pulverization.

【0007】これら各製造法により得られた金属カドミ
ウム粉末は、微粉末とはいえ電池活物質として作用する
には粒子径が大きすぎて活物質利用率が低く実用化し難
い。一般に、負極活物質に用いられる金属カドミウム粉
末は、その粒子形状、大きさによって活物質利用率が左
右される事はよく知られている。更に言及すれば、その
表面積が大きく、形状的には単純な平滑面で覆われたも
のよりは、凹凸の多いもの程、活物質利用率として優れ
た結果を与える。
Although the metal cadmium powder obtained by each of these production methods is a fine powder, the particle diameter is too large to act as a battery active material, and the active material utilization is low, making it difficult to put into practical use. In general, it is well known that the metal cadmium powder used for the negative electrode active material has an active material utilization rate that depends on the particle shape and size. More specifically, a material having a larger surface area and more irregularities than a material covered with a simple smooth surface in shape gives a better result in terms of active material utilization.

【0008】従来から金属粉末製造の一つとして、よく
知られている上記のような蒸発・凝縮法によって金属カ
ドミウム粉末を作成すると、粒子径が数μm乃至10μ
m程度もある。また、表面張力の作用を受け、かつ溶融
状態にあるため粒子形状は殆ど球状で、その表面は平滑
である。このような球状または正方晶の金属カドミウム
粉末では表面が平滑であるため表面積が小さく、電気的
に活性が小さいことから、放電利用率が小さいという課
題を有する。
As one of the conventional methods for producing metal powder, when a metal cadmium powder is prepared by the well-known evaporation / condensation method as described above, the particle diameter becomes several μm to 10 μm.
m. In addition, because of the action of surface tension and being in a molten state, the particle shape is almost spherical and the surface is smooth. Such a spherical or tetragonal metal cadmium powder has a problem that the surface area is small due to its smooth surface and the electrical activity is small, so that the discharge utilization factor is small.

【0009】これら球状粒子の表面積を大きくするに
は、極力、粒子直径を小さくしなければならないが、従
来の蒸発・凝縮法においては、充分に加熱された金属カ
ドミウム溶湯からの蒸発であり、蒸発を盛んにした状態
においての粒子製造であるため、蒸発粒子がお互いに激
しい衝突・融合を繰り返し、表面張力の作用を受けて液
滴球状となってしまう。かかる段階において粒子径をサ
ブミクロン以下に抑えることはかなり困難である。従っ
て、比表面積も0.2〜0.6m2/gまたはそれ以下
にとどまり、利用率も20〜40%程度と低く電池活物
質としては、実用に供し得るものではなかった。
In order to increase the surface area of these spherical particles, the particle diameter must be reduced as much as possible. However, in the conventional evaporation / condensation method, evaporation from a sufficiently heated molten metal cadmium occurs. Since the particles are produced in a state in which the particles are prosperous, the evaporated particles repeatedly collide and fuse with each other, and the droplets become spherical due to the effect of surface tension. At this stage, it is very difficult to keep the particle size below submicron. Therefore, the specific surface area was limited to 0.2 to 0.6 m 2 / g or less, and the utilization factor was as low as about 20 to 40%, so that it was not practically usable as a battery active material.

【0010】さらに、その他の別の製造法により得られ
る金属カドミウム粉末は、粒径がサブミクロン以下の微
粒が得られるものの、その取得量が非常に少なく、工業
的には到底適用出来ない方法であったり、また、利用率
は満足出来るものの非常に高価で経済的に使用し難い等
の課題があった。
[0010] Further, although metal cadmium powder obtained by another production method can obtain fine particles having a particle size of submicron or less, the amount obtained is extremely small, and it is a method which cannot be applied industrially at all. In addition, there have been problems that the utilization rate is satisfactory but very expensive and difficult to use economically.

【0011】[0011]

【発明が解決しょうとする課題】本発明の目的は、この
ような点を改善し、電池活物質として活性度が高く、か
つ工業的に充分に実用性のある金属カドミウム粉末の製
造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a metal cadmium powder which has improved such points and has high activity as a battery active material and is sufficiently practical for industrial use. Is to do.

【0012】[0012]

【課題を達成するための手段】本屋発明の上記目的は、
次に示す製造方法によって達成される。
The above object of the present invention is achieved by:
This is achieved by the following manufacturing method.

【0013】すなわち、本発明の金属カドミウム粉末の
製造方法は、金属カドミウムを蒸発器内で加熱、溶解
し、次いで該蒸発器内に予め加熱された不活性ガスを導
入し、該溶融カドミウム温度と不活性ガス流量を、 logy≧8.8×10-3x−5.3(600≦x≦900) logy≧1.8×10-3x−0.96(330≦x≦600) [但し、xは溶融カドミウム温度(℃)、yは不活性ガ
ス流速(cm/秒)]となるように調整しつつ、カドミ
ウム蒸気を不活性ガスと共に凝縮・冷却器に放出し、金
属カドミウム粉末を回収することを特徴とする。
That is, according to the method for producing metal cadmium powder of the present invention, metal cadmium is heated and melted in an evaporator, and then an inert gas preheated is introduced into the evaporator, and the temperature of the molten cadmium is reduced. The flow rate of the inert gas is defined as follows: logg ≧ 8.8 × 10 −3 x−5.3 (600 ≦ x ≦ 900) logg ≧ 1.8 × 10 −3 x−0.96 (330 ≦ x ≦ 600) , X is the molten cadmium temperature (° C.), y is the inert gas flow rate (cm / sec), and the cadmium vapor is discharged to the condenser / cooler together with the inert gas to recover the metal cadmium powder. It is characterized by doing.

【0014】以下、本発明を図面に基づいて具体的に説
明する。
Hereinafter, the present invention will be specifically described with reference to the drawings.

【0015】図1は本発明の金属カドミウム粉末の製造
方法に用いられる装置の概略図であり、同図において、
1は不活性ガス加熱器、2は加熱装置、3は蒸発器、4
は凝縮・冷却器、5,6は粉体回収器、7はガス循環ポ
ンプ、8はガス導管をそれぞれ示す。
FIG. 1 is a schematic view of an apparatus used in the method for producing metal cadmium powder of the present invention.
1 is an inert gas heater, 2 is a heating device, 3 is an evaporator, 4
Denotes a condensing / cooling unit, 5 and 6 denote a powder recovery unit, 7 denotes a gas circulation pump, and 8 denotes a gas conduit.

【0016】同図において、金属カドミウム塊は蒸発器
3に投入され、加熱装置2によって加熱溶解し、さらに
カドミウムを蒸発させる。この時の溶融カドミウムの温
度範囲は特に限定されるものではないが、金属カドミウ
ム塊を溶融させるためにカドミウムの融点(321℃)
以上の温度であることは勿論であるが、カドミウム蒸気
の蒸発量を一定限度に制御する必要性から、好ましくは
330〜900℃、さらに好ましくは500〜800℃
である。
In FIG. 1, a metal cadmium mass is put into an evaporator 3 and is heated and melted by a heating device 2 to further evaporate cadmium. The temperature range of the molten cadmium at this time is not particularly limited, but the melting point of cadmium (321 ° C.)
Of course, the temperature is above, but from the necessity of controlling the evaporation amount of cadmium vapor to a certain limit, preferably 330 to 900 ° C, more preferably 500 to 800 ° C.
It is.

【0017】一方、窒素ガス等の不活性ガスは、不活性
ガス加熱器1で予め加熱されることが好ましく、蒸発器
3に導入される。ここに用いられる不活性ガスとして
は、窒素ガス、アルゴンガス、炭酸ガス等が例示され
る。不活性ガスは、蒸発器3を一回のみ通過しても、ま
た図1に示すように繰返し循環させてもよい。このよう
に、不活性ガスを用いるのは、カドミウム蒸気は少量の
酸素とよく反応して、不要な酸化カドミウムが生成する
のを防ぐためである。蒸発器3内に導入した不活性ガス
の流路は、カドミウム溶湯面上に最も接する部分である
ことが望ましい。
On the other hand, an inert gas such as nitrogen gas is preferably heated in advance by an inert gas heater 1, and is introduced into an evaporator 3. Examples of the inert gas used here include a nitrogen gas, an argon gas, and a carbon dioxide gas. The inert gas may pass through the evaporator 3 only once or may be repeatedly circulated as shown in FIG. Thus, the inert gas is used in order to prevent cadmium vapor from reacting well with a small amount of oxygen to generate unnecessary cadmium oxide. The flow path of the inert gas introduced into the evaporator 3 is desirably the part that is most in contact with the cadmium molten metal surface.

【0018】本発明では、カドミウムが蒸発し、金属カ
ドミウム粒子相互が衝突・会合し、増大・球状化するの
を防止するために、溶融カドミウム温度と不活性ガス流
量を一定範囲に調整する。すなわち、溶融カドミウム温
度を調整することにより、カドミウム蒸気発生量を制限
し、金属カドミウム粒子相互の衝突・会合が防止され、
また不活性ガス流量を調整することによって、蒸発器3
中の金属カドミウム粒子の滞留による衝突・会合が防止
されるのである。従って、カドミウム蒸気の蒸発の程度
が高く、金属カドミウム粒子相互が衝突・会合する恐れ
がある場合には、不活性ガス流速を増加させたり、溶融
カドミウム温度を低下させればよい。
In the present invention, the temperature of the molten cadmium and the flow rate of the inert gas are adjusted to a certain range in order to prevent cadmium from evaporating and the metal cadmium particles from colliding and associating with each other and increasing and spheroidizing. That is, by adjusting the molten cadmium temperature, the amount of cadmium vapor generated is limited, and collision and association between metal cadmium particles are prevented,
By adjusting the flow rate of the inert gas, the evaporator 3
Collision / association due to stagnation of metal cadmium particles inside is prevented. Therefore, when the degree of evaporation of cadmium vapor is high and there is a possibility that metal cadmium particles may collide and associate with each other, the flow rate of the inert gas may be increased or the temperature of the molten cadmium may be decreased.

【0019】このような溶融カドミウム温度と不活性ガ
ス流量の関係は、図2に図示されるように、以下の不等
式で示される範囲にあることが必要である。 logy≧8.8×10-3x−5.3(600≦x≦900) logy≧1.8×10-3x−0.96(330≦x≦600) [但し、xは溶融カドミウム温度(℃)、yは不活性ガ
ス流速(cm/秒)]
As shown in FIG. 2, the relationship between the temperature of the molten cadmium and the flow rate of the inert gas must be in the range shown by the following inequality. logy ≧ 8.8 × 10 −3 x−5.3 (600 ≦ x ≦ 900) logy ≧ 1.8 × 10 −3 x−0.96 (330 ≦ x ≦ 600) [where x is the molten cadmium temperature] (° C.), y is an inert gas flow rate (cm / sec)]

【0020】この範囲を逸脱した条件で製造された金属
カドミウム粉末は、利用率が極めて低いものとなる。
[0020] Metal cadmium powder produced under conditions outside this range has a very low utilization factor.

【0021】このように、本発明では、得られた金属カ
ドミウム粉末の形状を走査型電子顕微鏡で観察し、溶融
カドミウム温度と不活性ガス流量を上記のように調整
し、その製造条件を確定する。
As described above, in the present invention, the shape of the obtained metal cadmium powder is observed with a scanning electron microscope, the temperature of the molten cadmium and the flow rate of the inert gas are adjusted as described above, and the production conditions are determined. .

【0022】次に、蒸発器3に連結した凝縮・冷却器4
内に導いて、凝縮、冷却し、粉状粒子とし、さらに粉体
回収器5,6にて回収を行なう。金属カドミウム粉末
は、上述のように酸化しやすいので、凝縮・冷却器4お
よび粉体回収器5,6も不活性ガス雰囲気としておく必
要がある。
Next, the condenser / cooler 4 connected to the evaporator 3
Then, it is condensed and cooled to obtain powdery particles, which are then collected by powder collectors 5 and 6. Since the metal cadmium powder is easily oxidized as described above, the condensing / cooling unit 4 and the powder collecting units 5 and 6 also need to be in an inert gas atmosphere.

【0023】従って、図1に示されるように、不活性ガ
ス加熱器1で加熱された不活性ガスは、ガス循環ポンプ
8により、蒸発器3、凝縮・冷却器4、粉体回収器5,
6、ガス導管9を循環することが望ましい。
Therefore, as shown in FIG. 1, the inert gas heated by the inert gas heater 1 is supplied by the gas circulation pump 8 to the evaporator 3, the condensing / cooling device 4, the powder collecting device 5,
6. It is desirable to circulate the gas conduit 9.

【0024】[0024]

【作用・効果】本発明により得られる金属カドミウム粉
末は、粒子形状が凹凸不定形、多角形または六方晶であ
るため、表面積が従来品の数倍程度大きく、電気的に活
性度が高いため、放電させた場合の利用率が大きい。従
来のような、表面が平滑で球形の粒子ではこのような活
性度は得られない。本発明により得られる金属カドミウ
ム粉末が高活性なのは、その表面に多くの反応活性点を
有するからであり、このような金属カドミウム粉末を用
いることにより、高性能な電池の作成が実現されるので
工業的利用価値は大である。
[Function / Effect] The metal cadmium powder obtained by the present invention has an irregular surface, irregular or polygonal or hexagonal particle shape. High utilization rate when discharged. Conventionally, such activity cannot be obtained with spherical particles having a smooth surface. The reason why the metal cadmium powder obtained according to the present invention is highly active is that it has many reactive sites on its surface. The value of public use is great.

【0025】[0025]

【実施例】以下、実施例に基づき本発明を具体的に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments.

【0026】実施例1 図1に示されるような装置を用い、金属カドミウム塊1
0kgを蒸発器に装入し、加熱溶解する。予め窒素ガス
を系全体に充満させて、不要な酸素を除外しておく。
Example 1 Using a device as shown in FIG.
0 kg is charged into the evaporator and dissolved by heating. The entire system is filled with nitrogen gas in advance to remove unnecessary oxygen.

【0027】蒸発器内のカドミウム溶湯の温度を700
℃まで高めると同時に、窒素ガスを不活性ガス加熱器を
用いて320℃にすると共にポンプを運転して循環を開
始する。
The temperature of the cadmium melt in the evaporator is set to 700
At the same time as the temperature is raised to 0 ° C, the nitrogen gas is brought to 320 ° C using an inert gas heater and the pump is operated to start circulation.

【0028】蒸発器内の溶融カドミウムの温度がほぼ一
定となった時点で循環ポンプ流速を設定する。ガス流量
は蒸発器内の湯面上の流速が50cm/sec(対数表
示1.699)となるように調節する。なお、運転開始
後、粉末回収器5,6内の試料を取り出して走査型電子
顕微鏡により粒子の外形を観察した。
When the temperature of the molten cadmium in the evaporator becomes substantially constant, the flow rate of the circulation pump is set. The gas flow rate is adjusted so that the flow rate on the molten metal surface in the evaporator is 50 cm / sec (logarithmic display 1.699). After the start of the operation, the samples in the powder collectors 5 and 6 were taken out, and the external shape of the particles was observed with a scanning electron microscope.

【0029】このようにして得られた金属カドミウム粉
末の顕微鏡写真(6000倍)を図3に示す。図3に示
されるように得られた金属カドミウム粉末は、多角不定
形粒子であることが判る。
FIG. 3 shows a micrograph (magnification: 6000) of the metal cadmium powder thus obtained. As shown in FIG. 3, the obtained metal cadmium powder is found to be polygonal irregular shaped particles.

【0030】この金属カドミウム粉末を用いて電池活物
質の利用率を測定した。利用率の測定は、粉末1gをニ
ッケル基板(2×3cm)に塗布し、これと、予め用意
したニッケル正極を組合せ、液温20℃の水酸化カリウ
ム27%溶液中にて、180mAの一定電流で放電させ
る方法により行った。結果を表1および図2に示す。
Using this metal cadmium powder, the utilization factor of the battery active material was measured. The utilization was measured by applying 1 g of powder to a nickel substrate (2 × 3 cm), combining this with a previously prepared nickel positive electrode, and applying a constant current of 180 mA in a 27% potassium hydroxide solution at a liquid temperature of 20 ° C. The discharge was carried out by a method of discharging the battery. The results are shown in Table 1 and FIG.

【0031】なお、ここでいう利用率は、下式により計
算した値である。 利用率=[粉末1gから実際に取り出せた電気量(mA
H)/カドミウム1g当りの理諭電気量477(mA
H)]×100%
The utilization rate is a value calculated by the following equation. Utilization rate = [Amount of electricity actually extracted from 1 g of powder (mA)
H) / 477 (mA) of electric power per 1 g of cadmium
H)] × 100%

【0032】実施例2〜9および比較例1〜2 蒸発器中の溶湯温度と蒸発器湯面上のガス流速を表1の
ように調整した以外は、実施例1と同様の操作により金
属カドミウム粉末を得た。
Examples 2 to 9 and Comparative Examples 1 and 2 Metal cadmium was produced in the same manner as in Example 1 except that the temperature of the molten metal in the evaporator and the gas flow rate on the evaporator surface were adjusted as shown in Table 1. A powder was obtained.

【0033】得られた金属カドミウム粉末を用いて電池
活物質の利用率を実施例1と同様にそれぞれ測定した。
結果を表1に示す。
Using the obtained metal cadmium powder, the utilization factor of the battery active material was measured in the same manner as in Example 1.
Table 1 shows the results.

【0034】また、実施例3および6については、実施
例1と同様に、得られた金属カドミウム粉末を走査型電
子顕微鏡により粒子の外形を観察し、その顕微鏡写真を
図4および5にそれぞれ示す。
In Examples 3 and 6, as in Example 1, the obtained metal cadmium powder was observed for its external shape with a scanning electron microscope, and the micrographs are shown in FIGS. 4 and 5, respectively. .

【0035】[0035]

【表1】 [Table 1]

【0036】表1から明らかなように、溶湯温度と不活
性ガスを一定範囲に調整することにより得られた実施例
1〜9の金属カドミウム粉末は、上記範囲を逸脱した条
件で得られた比較例1〜2の金属カドミウム粉末に比較
してた利用率が著しく高いことが判る。
As is clear from Table 1, the metal cadmium powders of Examples 1 to 9 obtained by adjusting the temperature of the molten metal and the inert gas to a certain range were obtained under the conditions outside the above range. It can be seen that the utilization factor is significantly higher than the metal cadmium powders of Examples 1 and 2.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の金属カドミウム粉末の製造方法に用
いられる装置の概略図。
FIG. 1 is a schematic view of an apparatus used in a method for producing metal cadmium powder of the present invention.

【図2】 溶湯温度(℃)と蒸発器湯面上のガス流速
(cm/秒・対数)との関係を示すグラフ。
FIG. 2 is a graph showing a relationship between a molten metal temperature (° C.) and a gas flow rate (cm / second · logarithm) on a surface of an evaporator.

【図3】 実施例1より得られた金属カドミウム粉末の
粒子構造を示す顕微鏡写真(×6000)。
FIG. 3 is a micrograph (× 6000) showing the particle structure of the metal cadmium powder obtained in Example 1.

【図4】 実施例3より得られた金属カドミウム粉末の
粒子構造を示す顕微鏡写真(×2000)。
FIG. 4 is a micrograph (× 2000) showing the particle structure of the metal cadmium powder obtained in Example 3.

【図5】 実施例5より得られた金属カドミウム粉末の
粒子構造を示す顕微鏡写真(×10000)。
FIG. 5 is a micrograph (× 10000) showing the particle structure of the metal cadmium powder obtained in Example 5.

【符号の説明】[Explanation of symbols]

3 蒸発器 4 凝縮・冷却器 3 Evaporator 4 Condenser / cooler

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−153803(JP,A) 特公 昭40−24762(JP,B1) 特公 昭28−3315(JP,B1) (58)調査した分野(Int.Cl.6,DB名) B22F 9/12 B22F 1/00 H01M 4/24 H01M 4/44 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-153803 (JP, A) JP-B-40-24762 (JP, B1) JP-B-28-3315 (JP, B1) (58) Field (Int.Cl. 6 , DB name) B22F 9/12 B22F 1/00 H01M 4/24 H01M 4/44

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属カドミウムを蒸発器内で加熱、溶解
し、次いで該蒸発器内に不活性ガスを導入し、該溶融カ
ドミウム温度と不活性ガス流量を、 logy≧8.8×10−3x−5.3(600≦x≦900) logy≧1.8×10−3x−0.96(330≦x≦600) [但し、xは溶融カドミウム温度(℃)、yは不活性ガ
ス流速(cm/秒)]となるように調整しつつ、カドミ
ウム蒸気を不活性ガスと共に凝縮・冷却器に放出し、
子形状が凹凸不定形、多角形または六方晶である金属カ
ドミウム粉末を回収することを特徴とする金属カドミウ
ム粉末の製造方法。
1. Cadmium metal is heated and melted in an evaporator, and then an inert gas is introduced into the evaporator, and the temperature of the molten cadmium and the flow rate of the inert gas are adjusted to a value of log ≧ 8.8 × 10 −3. x-5.3 (600 ≦ x ≦ 900) logic ≧ 1.8 × 10 −3 x−0.96 (330 ≦ x ≦ 600) [where x is the temperature of the molten cadmium (° C.) and y is the inert gas] flow rate (cm / sec) and so as to while adjusting, cadmium vapor released into the condenser-cooler with an inert gas, grain
A method for producing a metal cadmium powder, comprising recovering a metal cadmium powder having an irregular shape, an irregular shape, a polygon, or a hexagonal crystal .
【請求項2】 請求項1に記載の製造方法により得ら
れ、粒子形状が凹凸不定形、多角形または六方晶である
金属カドミウム粉末。
2. A metal cadmium powder obtained by the production method according to claim 1, wherein the particle shape is irregular, irregular, polygonal or hexagonal.
JP3231150A 1990-09-07 1991-08-20 Method for producing metal cadmium powder Expired - Fee Related JP2896719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3231150A JP2896719B2 (en) 1990-09-07 1991-08-20 Method for producing metal cadmium powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-235819 1990-09-07
JP23581990 1990-09-07
JP3231150A JP2896719B2 (en) 1990-09-07 1991-08-20 Method for producing metal cadmium powder

Publications (2)

Publication Number Publication Date
JPH05209208A JPH05209208A (en) 1993-08-20
JP2896719B2 true JP2896719B2 (en) 1999-05-31

Family

ID=26529718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3231150A Expired - Fee Related JP2896719B2 (en) 1990-09-07 1991-08-20 Method for producing metal cadmium powder

Country Status (1)

Country Link
JP (1) JP2896719B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2896727B2 (en) * 1992-05-29 1999-05-31 三井金属鉱業株式会社 Method for producing metal cadmium powder
CN112846206A (en) * 2020-12-29 2021-05-28 江苏博迁新材料股份有限公司 Pulse type metal powder preparation condensation method

Also Published As

Publication number Publication date
JPH05209208A (en) 1993-08-20

Similar Documents

Publication Publication Date Title
US6699336B2 (en) Amorphous electrode compositions
CN110061191B (en) Three-dimensional metal lithium cathode and preparation method and application thereof
US6759160B2 (en) Silicon oxide powder and making method
JP5475470B2 (en) Electrolyte, electrode composition, and electrochemical cell produced therefrom
EP0750359B1 (en) Secondary battery comprising electrode with multiphase, porous active material
TW201515996A (en) Siox powder manufacturing process and siox powder manufacturing apparatus
KR101650184B1 (en) Method for recovering of silicon particles, and manufacturing of cathode material for secondary battery
JP2896719B2 (en) Method for producing metal cadmium powder
JP2896727B2 (en) Method for producing metal cadmium powder
WO2011129565A2 (en) Method for producing tantalum (ta) powder using eutectic alloys
JP3079890B2 (en) Hydrogen storage alloy powder and nickel-hydrogen battery
JP2001294958A (en) Hydrogen storage alloy for nickel-hydrogen secondary battery and its producing method
JP2020053162A (en) Negative electrode material for power storage device
US20180062177A1 (en) Nano-scale/nanostructured si coating on valve metal substrate for lib anodes
JP2776182B2 (en) Method for producing hydrogen storage alloy powder
JPS63162884A (en) Structural body of hydrogen occlusion alloy and its production
CN116759550B (en) Coating modification method for lithium ion battery oxide positive electrode material, composite material and application thereof
JP2985553B2 (en) Hydrogen storage alloy powder and method for producing the same
Kato et al. Separation of Trace Magnesium from Metallic Bismuth by Chlorination
JP3136960B2 (en) Method of treating hydrogen storage alloy for batteries
JPH097590A (en) Manufacture of hydrogen absorbing alloy powder for electrode
JP3010989B2 (en) Hydrogen storage electrode and method for producing the same
JPH097589A (en) Manufacture of hydrogen absorbing alloy powder for electrode
JP3033430B2 (en) Hydrogen storage alloy powder and nickel-hydrogen battery
JPH03216958A (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees