JPH0512726A - Recording medium and information processor performing recording, reproduction, and erasure by using the same - Google Patents

Recording medium and information processor performing recording, reproduction, and erasure by using the same

Info

Publication number
JPH0512726A
JPH0512726A JP18706491A JP18706491A JPH0512726A JP H0512726 A JPH0512726 A JP H0512726A JP 18706491 A JP18706491 A JP 18706491A JP 18706491 A JP18706491 A JP 18706491A JP H0512726 A JPH0512726 A JP H0512726A
Authority
JP
Japan
Prior art keywords
recording medium
recording
film
position detection
monomolecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18706491A
Other languages
Japanese (ja)
Other versions
JP2981786B2 (en
Inventor
Yuuko Morikawa
有子 森川
Harunori Kawada
春紀 河田
Hiroshi Matsuda
宏 松田
Yoshihiro Yanagisawa
芳浩 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18706491A priority Critical patent/JP2981786B2/en
Publication of JPH0512726A publication Critical patent/JPH0512726A/en
Application granted granted Critical
Publication of JP2981786B2 publication Critical patent/JP2981786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To facilitate position detection and to enable high-speed positioning by providing a step and a position detection mark in a recording area on a recording medium and forming the recording area in a projection or recessed shape for the position detection. CONSTITUTION:A light source 401 and a light receiving part 402 are installed at a position where scattered light generated by the step on the recording medium is obtained and a probe electrode 202 is moved onto the recording medium corresponding to the position coordinates of the recording medium to perform recording, reproduction, or erasure at the position of the position coordinates. In this case, an LED or optical fiber, etc., is usable as the light source 401 in addition to a semiconductor laser and an He-Ne laser. Consequently, the scattered light from the edge of the recording area 106 and position detection mark 105 is detected to perform feedback control which is generally carried out, thereby performing the position detection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、走査型トンネル顕微鏡
(STM)の原理を用いた超高密度メモリおよびそれを
用いた情報処理装置に関するものである。より詳しく
は、STMを応用した情報処理において、情報処理を行
う領域への位置決めを容易にした記録媒体およびそれを
用いた情報処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-high density memory using the principle of a scanning tunneling microscope (STM) and an information processing apparatus using the same. More specifically, the present invention relates to a recording medium that facilitates positioning in an area for information processing in information processing using STM, and an information processing apparatus using the recording medium.

【0002】[0002]

【従来の技術】近年メモリ材料の用途は、コンピュータ
及びその関連機器、ビデオディスク、デジタルオーディ
オディスク等のエレクトロニクス産業の中核をなすもの
であり、その材料開発も極めて活発に進んでいる。メモ
リ材料に要求される性能は用途により異なるが、一般的
には 1)高密度で記録容量が大きい 2)記録再生の応答速度が速い 3)消費電力が少ない 4)生産性が高く価格が安い 等が挙げられる。
2. Description of the Related Art In recent years, memory materials have been used at the core of the electronics industry for computers and related equipment, video discs, digital audio discs, etc., and the development of such materials has been extremely active. The performance required for memory materials depends on the application, but in general, 1) high density and large recording capacity 2) fast recording / reproducing response speed 3) low power consumption 4) high productivity and low price Etc.

【0003】一方、導体の表面原子の電子構造を直接観
察できる走査型トンネル顕微鏡(STM)が開発され
「G.Binnig et al.フィジカル レビュ
ー レター(Phys.Rev.Lett),49,5
7(1982)」、単結晶、非晶質を問わず実空間像の
高い分解能の測定ができるようになり、しかも媒体に電
流による損傷を与えずに低電力で観察できる利点をも有
し、更に大気中でも動作し、種々の材料に対して用いる
ことができるため広範囲な応用が期待されている。
On the other hand, a scanning tunneling microscope (STM) has been developed which enables direct observation of the electronic structure of surface atoms of a conductor, "G. Binnig et al. Physical Review Letter (Phys. Rev. Lett), 49, 5".
7 (1982) ", high resolution measurement of a real space image can be performed regardless of whether it is a single crystal or an amorphous material. Moreover, it has an advantage that it can be observed at low power without damaging the medium with an electric current. Furthermore, since it operates in the atmosphere and can be used for various materials, a wide range of applications are expected.

【0004】STMは金属の探針(プローブ電極)と導
電性物質の間に電圧を加えて1nm程度の距離まで近づ
けるとトンネル電流が流れることを利用している。この
電流は両者の距離変化に非常に敏感であり、トンネル電
流を一定に保つように探針を走査することにより実空間
の表面構造を描くことができると同時に表面原子の全電
子雲に関する種々の情報をも読みとることができる。こ
の際、面内方向の分解能は0.1nm程度である。従っ
て、STMの原理を応用すれば十分に原子オーダー(数
Å)で高密度記録再生を行なうことが可能である。この
際の記録再生方法としては、粒子線(電子線、イオン
線)或いはX線等の高エネルギー電磁波及び可視・紫外
光等のエネルギー線を用いて適当な記録層の表面状態を
変化させて記録を行ない、STMで再生する方法や、記
録層として電圧電流のスイッチング特性に対してメモリ
効果をもつ材料、例えばπ電子系有機化合物やカルコゲ
ン化物類の薄膜層を用いて、記録・再生をSTMを用い
て行なう方法等が提案されている(特開昭63−161
552号公報等)。
The STM utilizes the fact that a tunnel current flows when a voltage is applied between a metal probe (probe electrode) and a conductive substance to bring them closer to a distance of about 1 nm. This current is very sensitive to changes in the distance between the two, and the surface structure in real space can be drawn by scanning the probe so that the tunnel current is kept constant. Information can also be read. At this time, the resolution in the in-plane direction is about 0.1 nm. Therefore, if the principle of STM is applied, it is possible to perform high-density recording / reproduction sufficiently in atomic order (several Å). As the recording / reproducing method at this time, recording is performed by changing the surface state of an appropriate recording layer by using high-energy electromagnetic waves such as particle beams (electron beams, ion beams) or X-rays and energy rays such as visible / ultraviolet light. Recording and reproducing by STM, and by using a material having a memory effect on the switching characteristics of voltage and current as a recording layer, such as a thin film layer of π-electron organic compound or chalcogenide. A method and the like using the method have been proposed (JP-A-63-161).
No. 552, etc.).

【0005】従来、STMにおいて、試料とプローブ電
極を近接し、試料表面に対するプローブ電極の位置確認
のため、即ち所望の位置へプローブ電極を移動させるた
めには光学顕微鏡や走査型電子顕微鏡(SEM)を用い
て、試料あるいはプローブ電極を操作者が像を見ながら
XY方向に動かしている。
Conventionally, in STM, an optical microscope or a scanning electron microscope (SEM) is used to confirm the position of the probe electrode with respect to the sample surface, that is, to move the probe electrode to a desired position by bringing the sample and the probe electrode close to each other. Using, the operator moves the sample or probe electrode in the XY directions while observing the image.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来例では次
のような問題点があった。
However, the conventional example has the following problems.

【0007】(1)試料、プローブ電極、顕微鏡の相対
位置の調整が面倒であり、また操作者の熟練を必要とし
ていた。
(1) It is troublesome to adjust the relative positions of the sample, the probe electrode, and the microscope, and the operator's skill is required.

【0008】(2)位置確認のためにSEM等を組み合
わせた場合は真空系を必要とし、装置が大がかりになっ
た。
(2) When a SEM or the like is combined to confirm the position, a vacuum system is required, and the size of the device becomes large.

【0009】[0009]

【課題を解決するための手段及び作用】本発明は上記問
題点に鑑み、記録媒体の記録領域として、凸部または凹
部を用い、更に係る記録領域に位置情報と方向情報を含
んだ位置検出マークを設け、係る記録領域の段差エッジ
及び位置検出マークを散乱光によって検出することが可
能な記録媒体を提供するものである。
In view of the above problems, the present invention uses a convex portion or a concave portion as a recording area of a recording medium, and a position detection mark including position information and direction information in the recording area. And a stepped edge of the recording area and a position detection mark can be detected by scattered light.

【0010】更に、本発明は、かかる記録媒体を用いて
位置検出を行う手段を有する情報処理装置を提供するも
のである。
Further, the present invention provides an information processing apparatus having means for position detection using such a recording medium.

【0011】以下、本発明につき詳細に説明する。The present invention will be described in detail below.

【0012】図1は本発明の記録媒体の記録領域周辺部
の一例を示す概略図、図2,3は図1のA−A’断面図
である。
FIG. 1 is a schematic view showing an example of a recording area peripheral portion of a recording medium of the present invention, and FIGS. 2 and 3 are sectional views taken along the line AA 'of FIG.

【0013】本発明において、電極層102及び記録層
103を支持するための基板101としては、表面が平
滑であればどの様な材料を用いてもよい。
In the present invention, any material may be used as the substrate 101 for supporting the electrode layer 102 and the recording layer 103 as long as the surface is smooth.

【0014】また、電極層102の材料も高い導電性を
有するものであればよく、例えばAu,Pt,Ag,P
d,Al,In,Sn,Pb,Wなどの金属やこれらの
合金、さらにはグラファイトやシリサイド、またさらに
はITOなどの導電性酸化物を始めとして数多くの材料
が挙げられるが、記録層103をLB膜とする場合は基
板101上に直接形成される電極材料は、表面がLB膜
形成の際に絶縁性の酸化膜をつくらない導電材料、例え
ば、貴金属やITOなどの酸化物導電体を用いることが
望ましい。なお、いずれの材料を用いるにしてもその表
面が平滑であることが好ましい。係る材料を用いた電極
形成法は従来公知の薄膜技術で充分である。
Further, the material of the electrode layer 102 may be any one as long as it has high conductivity, for example, Au, Pt, Ag, P.
There are many materials such as metals such as d, Al, In, Sn, Pb and W, alloys thereof, graphite and silicide, and conductive oxides such as ITO. When the LB film is used, the electrode material directly formed on the substrate 101 is a conductive material whose surface does not form an insulating oxide film when the LB film is formed, for example, an oxide conductor such as a noble metal or ITO. Is desirable. Whichever material is used, it is preferable that its surface is smooth. A conventionally known thin film technique is sufficient for the electrode forming method using such a material.

【0015】つぎに、係る電極層102の上への電気メ
モリー効果を有する記録層103の形成方法としては、
従来公知の真空蒸着法やクラスターイオンビーム法、塗
布吸着法などが挙げられるが、最も簡便に均一な膜厚を
得るにはラングミュアーブロジェット(LB)法が好ま
しい。LB法によれば、有機化合物の単分子膜または該
単分子膜を累積した累積膜を容易に形成することが可能
である。
Next, as a method of forming the recording layer 103 having the electric memory effect on the electrode layer 102,
Conventionally known vacuum vapor deposition method, cluster ion beam method, coating adsorption method and the like can be mentioned, but the Langmuir-Blodgett (LB) method is preferable for obtaining the uniform film thickness most easily. According to the LB method, a monomolecular film of an organic compound or a cumulative film obtained by accumulating the monomolecular film can be easily formed.

【0016】更に、本発明で記録層103に用いる電流
−電圧特性に於いてメモリースイッチング現象(電気メ
モリー効果)を有する材料としては、例えば、π電子準
位を有する群とσ電子準位のみを有する群を併有する分
子を電極上に積層した有機単分子膜あるいはその累積膜
が挙げられる。
Further, as the material having a memory switching phenomenon (electric memory effect) in the current-voltage characteristics used for the recording layer 103 in the present invention, for example, only a group having a π electron level and a σ electron level are included. Examples thereof include an organic monomolecular film in which molecules having both groups are laminated on an electrode or a cumulative film thereof.

【0017】一般に、有機材料のほとんどは、絶縁性も
しくは半絶縁性を示すことから係る本発明において、適
用可能なπ電子準位を持つ群を有する有機材料は著しく
多岐にわたる。本発明に好適なπ電子系を有する色素の
構造として例えば、フタロシアニン、テトラフェニルポ
ルフィリン等のポルフィリン骨格を有する色素、スクア
リリウム基及びクロコニックメチン基を結合鎖として持
つアズレン系色素及びキノリン、ベンゾチアゾール、ベ
ンゾオキサゾール等の2個の含窒素複素環をスクアリリ
ウム基及びクロコニックメチン基により結合したシアニ
ン系類似の色素、またはシアニン色素、アントラセン及
びピレン等の縮合多環芳香族、及び芳香環及び複素環化
合物が重合した鎖状化合物及びジアセチレン基の重合
体、さらにはテトラシアノキノジメタンまたはテトラチ
アフルバレンの誘導体およびその類縁体およびその電荷
移動錯体、またさらにはフェロセン、トリスビピリジン
ルテニウム錯体等の金属錯体化合物が挙げられる。
Generally, most of the organic materials exhibit an insulating property or a semi-insulating property. In the present invention, the organic materials having a group having an applicable π electron level are remarkably diverse. As a structure of a dye having a π-electron system suitable for the present invention, for example, phthalocyanine, a dye having a porphyrin skeleton such as tetraphenylporphyrin, an azulene dye having a squarylium group and a croconic methine group as a binding chain and quinoline, benzothiazole, A cyanine-similar dye in which two nitrogen-containing heterocycles such as benzoxazole are bonded by a squarylium group and a croconic methine group, or a condensed polycyclic aromatic compound such as a cyanine dye, anthracene and pyrene, and an aromatic ring and a heterocyclic compound Polymerized chain compounds and polymers of diacetylene groups, further derivatives of tetracyanoquinodimethane or tetrathiafulvalene and its analogs and charge transfer complexes thereof, and further metal complexes such as ferrocene and trisbipyridine ruthenium complexes. Compound And the like.

【0018】本発明に好適な高分子材料としては、例え
ばポリイミド、ポリアミド等の縮合重合体、バクテリオ
ロドプシン等の生体高分子が挙げられる。
Examples of the polymer material suitable for the present invention include condensation polymers such as polyimide and polyamide, and biopolymers such as bacteriorhodopsin.

【0019】これらのπ電子準位を有する化合物の電気
メモリー効果は数10μm以下の膜厚のもので観測され
ているが、本発明の情報処理方法を用いるため、プロー
ブ電極と対向電極間にトンネル電流が流れるように両者
間の距離を近づけなければならないので、本発明の記録
層103の膜厚は、0.3nm以上10nm以下、好ま
しくは、0.3nm以上3nm以下であることが好まし
い。
The electric memory effect of these compounds having the π-electron level has been observed in the film having a film thickness of several tens of μm or less. However, since the information processing method of the present invention is used, a tunnel occurs between the probe electrode and the counter electrode. Since the distance between the two must be close so that a current flows, the thickness of the recording layer 103 of the present invention is 0.3 nm or more and 10 nm or less, preferably 0.3 nm or more and 3 nm or less.

【0020】本発明における記録領域106及び位置検
出マーク105の形成方法は、従来公知のリソグラフィ
ー技術で充分である。また、記録媒体上の段差及び位置
検出マーク105は、基板101、電極層102、記録
層103のいずれかに形成されればよく、位置検出マー
ク105として回折格子やゾーンプレートなどを用いれ
ばより精密な位置決めが可能になる。
As a method of forming the recording area 106 and the position detection mark 105 in the present invention, a conventionally known lithography technique is sufficient. Further, the step and the position detection mark 105 on the recording medium may be formed on any of the substrate 101, the electrode layer 102, and the recording layer 103, and if a diffraction grating, a zone plate, or the like is used as the position detection mark 105, it is more precise. It enables accurate positioning.

【0021】また、プローブ電極の材料は、導電性を示
すものであれば何を用いてもよく、例えばPt、Pt−
Ir、W、Au、Ag等が挙げられる。プローブ電極の
先端は記録再生の分解能を上げるためできるだけ尖らせ
る必要がある。本発明では、針状の導電性材料を電解研
磨法を用い、先端形状を制御して、プローブ電極を作成
しているが、プローブ電極の作成方法及び形状は何等こ
れに限定するものではない。更には、プローブ電極の本
数も一本に限る必要もなく、複数のプローブ電極を用い
ても良い。
Any material may be used as the material of the probe electrode as long as it exhibits conductivity, such as Pt or Pt-.
Ir, W, Au, Ag and the like can be mentioned. It is necessary to make the tip of the probe electrode as sharp as possible in order to improve the recording / reproducing resolution. In the present invention, the probe electrode is formed by controlling the tip shape of the needle-shaped conductive material by electropolishing, but the method and shape of the probe electrode are not limited to this. Further, the number of probe electrodes is not limited to one, and a plurality of probe electrodes may be used.

【0022】本発明の目的は、上記記録媒体を用いて位
置検出を簡単な構造で容易に行うことができる情報処理
装置を提供することにもある。本発明によれば、記録領
域106のエッジ、および位置検出マーク105からの
散乱光を検出し、一般に行われているフィードバック制
御を行うことで、位置検出機能を備えた情報処理装置を
提供することが可能になった。
An object of the present invention is also to provide an information processing apparatus which can easily perform position detection using the above recording medium with a simple structure. According to the present invention, it is possible to provide an information processing apparatus having a position detection function by detecting the edge of the recording area 106 and scattered light from the position detection mark 105 and performing feedback control that is generally performed. Became possible.

【0023】具体的には図4に示すように、記録媒体上
の段差から生じる散乱光が得られる位置に光源401と
受光部402を設置し、該記録媒体の位置座標を検出す
る手段を有し、検出された位置座標に対応する記録媒体
上にプローブ電極202を移動し、係る位置座標で記録
再生消去を行う情報処理装置に特徴を有している。光源
401としては半導体レーザーやHe−Neレーザーの
ほかLEDや光ファイバー等を用いることができる。
尚、図4においては簡略のため記録媒体上の記録領域1
06の1つを拡大して示してある。
Specifically, as shown in FIG. 4, a light source 401 and a light receiving section 402 are installed at a position where scattered light generated from a step on the recording medium is obtained, and means for detecting the position coordinates of the recording medium is provided. The information processing apparatus is characterized by moving the probe electrode 202 onto the recording medium corresponding to the detected position coordinates and performing recording / reproduction / erasing at the position coordinates. As the light source 401, a semiconductor laser, a He-Ne laser, an LED, an optical fiber, or the like can be used.
In FIG. 4, the recording area 1 on the recording medium is shown for simplification.
One of 06 is shown enlarged.

【0024】[0024]

【実施例】以下、本発明を実施例に従って説明する。EXAMPLES The present invention will be described below with reference to examples.

【0025】実施例1 図1及び図2に示す記録媒体では、基板101としてS
iO2が1μm積層されたSiウエハを用いた。かかる
基板101上にフォトレジスト(商標名RD−2000
N−10)を厚さ1μmに塗布したのち、露光、現像を
経て1mm□のパターンを得た。かかるパターンをマス
クとしてSiO2のエッチングを行った。エッチングの
深さは0.5μmであり、エッチガスにCF4を用い
て、圧力5Pa、放電電力150Wの条件で20分間エ
ッチングした。その後専用剥離液を用いてレジストを剥
離し、凸形状の記録領域106を形成した。
Example 1 In the recording medium shown in FIGS. 1 and 2, S is used as the substrate 101.
A Si wafer on which 1 μm of iO 2 was laminated was used. A photoresist (trade name RD-2000) is formed on the substrate 101.
N-10) was applied to a thickness of 1 μm, and then exposed and developed to obtain a 1 mm □ pattern. Using this pattern as a mask, SiO 2 was etched. The etching depth was 0.5 μm, CF 4 was used as an etching gas, and etching was performed for 20 minutes under the conditions of a pressure of 5 Pa and a discharge power of 150 W. After that, the resist was stripped off using a dedicated stripping solution to form a convex recording area 106.

【0026】続いて、かかる記録領域106上に電子線
レジストであるポリメタクリル酸メチル(PMMA;商
標名OEBR−1000)を厚さ0.5μmに塗布し、
電子線を加速電圧20kV、ドーズ量50μC/cm2
の条件で位置検出マーク105およびトラッキングパタ
ーンの描画を行った。かかるパターンをマスクとして再
び前記条件によりSiO2のエッチングをおこない、最
後にメチルエチルケトンを使ってレジストを剥離した。
Subsequently, polymethylmethacrylate (PMMA; trade name OEBR-1000), which is an electron beam resist, is applied on the recording area 106 to a thickness of 0.5 μm,
Electron beam acceleration voltage 20 kV, dose 50 μC / cm 2
The position detection mark 105 and the tracking pattern were drawn under the above condition. Using this pattern as a mask, SiO 2 was again etched under the above conditions, and finally the resist was peeled off using methyl ethyl ketone.

【0027】次に、かかる基板上にAuを真空蒸着法を
用いて形成し、電極層102とした。この時の条件は、
蒸着速度5Å/sec、到達圧力2×10-6Torr、
基板温度400℃、膜厚5000Åであった。
Next, Au was formed on the substrate by a vacuum evaporation method to form an electrode layer 102. The conditions at this time are
Vapor deposition rate 5Å / sec, ultimate pressure 2 × 10 -6 Torr,
The substrate temperature was 400 ° C. and the film thickness was 5000Å.

【0028】その後、かかる電極層102上に記録層1
03として、ポリイミドLB膜を4層累積した。なお、
ポリイミドLB膜の形成方法は以下の通りである。
Then, the recording layer 1 is formed on the electrode layer 102.
As 03, four layers of polyimide LB film were accumulated. In addition,
The method for forming the polyimide LB film is as follows.

【0029】ポリアミック酸(分子量約20万)を濃度
1×10-3%(g/g)で溶かしたジメチルアセトアミ
ド溶液を、別途調整したN,N−ジメチルオクタデシル
アミンの同溶液による1×10-3M溶液を1:2(v/
v)に混合し、ポリアミド酸オクタデシルアミン塩溶液
を調整した。かかる溶液を水温20℃の純水からなる水
相上に展開し、水面上に単分子膜を形成した。この単分
子膜の表面圧を25mN/mまで高め、更にこれを一定
に保ちながら、前記基板を水面に横切るように5mm/
分で移動させて浸漬、引き上げを行ない、Y型単分子膜
の累積を行なった。係るポリアミック酸単分子累積膜を
300℃で10分間加熱を行なうことによりポリイミド
にした。
[0029] The concentration of 1 × 10 -3% polyamic acid (molecular weight: about 200,000) (g / g) dimethylacetamide solution dissolved in, N which is separately adjusted, N- dimethyl octadecylamine the solution according to 1 × 10 the - 3 M solution of 1: 2 (v /
v), and a polyamic acid octadecylamine salt solution was prepared. The solution was spread on an aqueous phase made of pure water having a water temperature of 20 ° C. to form a monomolecular film on the water surface. The surface pressure of this monomolecular film is increased to 25 mN / m, and while keeping it constant, 5 mm /
The Y-type monomolecular film was accumulated by moving for a minute, soaking, and lifting. The polyamic acid monomolecular accumulating film was heated at 300 ° C. for 10 minutes to form a polyimide.

【0030】なお、ポリイミド1層あたりの厚さは、エ
リプソメトリー法により約4Åと求められた。
The thickness per layer of polyimide was determined to be about 4Å by the ellipsometry method.

【0031】以上の様にして形成した、記録媒体を本発
明の情報処理装置に設置し、位置検出と情報の記録・再
生・消去を行った。
The recording medium formed as described above was installed in the information processing apparatus of the present invention, and position detection and information recording / reproduction / erasing were performed.

【0032】位置検出の方法は次の様におこなった。図
4に示す本発明の情報処理装置にかかる記録媒体を設置
し、光源401からのレーザー光スポットを記録媒体上
に照射した。これと同時に記録媒体のステージ位置とプ
ローブ電極202の位置をステージ原点に設定した。次
に記録媒体をX方向、Y方向に移動させていくと、記録
媒体からの散乱光の明暗の強度が変化する位置がある。
かかる散乱光の強度変化は記録領域106の段差による
もので、かかる位置を記録領域106の原点とする。ま
た、記録媒体のステージ原点から記録領域106の原点
までのステージ移動量は移動量検出回路から出力、記憶
され、ステージ駆動回路306へフィードバックがかけ
られる。引き続きかかる位置からステージ201を移動
させると再び散乱光の明暗強度が変化する位置がある。
かかる位置は記録領域106における位置検出マーク1
05の位置であり、かかる位置検出マーク105を原点
としてプローブ電極202をかかる位置検出マーク10
5上まで移動させトラッキングを開始し、プローブ電極
202の走査を行うことで記録再生を行う。また以上の
ステージ201上の記録媒体のステージ原点、記録領域
106原点、位置検出マーク105およびプローブ電極
202の位置はそれぞれ位置情報と方向情報を含んでい
るので、かかる位置を座標として検出し、位置検出回路
403に出力、記憶され、ステージ201の粗動機構、
微動機構へフィードバックをかけることができる。その
ため、一般に行われている画像処理の手法を用いて、実
際の記録再生時の走査方向の情報と検出中のパターンの
位置情報が得られ、更に記憶されている各パターンの位
置関係から次のトラッキングパターンの大まかな位置の
情報が得られる。
The position detection method was performed as follows. A recording medium according to the information processing apparatus of the present invention shown in FIG. 4 was installed, and a laser beam spot from a light source 401 was irradiated onto the recording medium. At the same time, the stage position of the recording medium and the position of the probe electrode 202 were set to the stage origin. Next, when the recording medium is moved in the X and Y directions, there is a position where the intensity of light and shade of scattered light from the recording medium changes.
The change in the intensity of the scattered light is due to the step of the recording area 106, and such a position is the origin of the recording area 106. The stage movement amount from the stage origin of the recording medium to the origin of the recording area 106 is output and stored from the movement amount detection circuit, and is fed back to the stage drive circuit 306. When the stage 201 is subsequently moved from this position, there is a position where the intensity of scattered light changes again.
This position is the position detection mark 1 in the recording area 106.
Position 05, and the position of the probe electrode 202 is such that the position detection mark 105 is the origin.
5 is started to perform tracking, and the probe electrode 202 is scanned to perform recording / reproduction. Further, since the stage origin of the recording medium on the stage 201, the recording area 106 origin, the position detection mark 105 and the position of the probe electrode 202 each include position information and direction information, the position is detected as coordinates and the position is detected. The coarse movement mechanism of the stage 201, which is output to and stored in the detection circuit 403,
Feedback can be applied to the fine movement mechanism. Therefore, the information of the scanning direction at the time of actual recording / reproducing and the positional information of the pattern being detected are obtained by using a commonly used image processing method, and the following positional relationship of each pattern is stored. Information about the rough position of the tracking pattern can be obtained.

【0033】次に、記録・再生・消去方法について述べ
る。プローブ電極202を記録領域106上トラックパ
ターンに対して走査した。この際記録媒体に対してプロ
ーブ電極(Pt−Rh合金)202に−0.5Vのバイ
アス電圧を印加し、トンネル電流が0.1nAとなるよ
うにドライバー305及びアクチュエータ204を用い
てプローブ電極202と記録層103との距離Zを一定
に保ちながら走査し、図1に示されているトラック10
4の位置を検出し、プローブ電極202を走査させた。
かかるトラック位置の検出はプローブ電極202とトラ
ック104との間でトラック電流が急激に変化すること
を利用している。記録は記録層103の電気メモリ効果
を利用して行った。即ち情報に従って図5に示した波形
を持つ三角波パルス電圧をパルス電源308を用いて記
録層103に印加し、印加部に低抵抗状態を生じさせ
た。この時、トンネル電流は2nAとなった。なお図5
において、プローブ電極202側が+極、電極層102
側が−極としてある。記録後再び記録情報の再生を行っ
た。再生用バイアス電圧は新たな情報の記録、あるいは
記録された情報の消去が生じない様、0.5Vとし、ト
ンネル電流の変化を測定し、情報再生をおこなった。以
上の再生実験においてデータ転送速度を1Mbpsとし
た時のビットエラーレートは1×10-5であった。引き
続き情報記録部に図6に示すパルス電圧を印加した後に
再び再生してみると初期の高抵抗状態(トンネル電流=
0.1nA)に戻っており、記録情報の消去が行われた
ことを確認できた。
Next, the recording / reproducing / erasing method will be described. The probe electrode 202 was scanned with respect to the track pattern on the recording area 106. At this time, a bias voltage of −0.5 V is applied to the probe electrode (Pt—Rh alloy) 202 with respect to the recording medium, and the probe electrode 202 is connected to the probe electrode 202 by using the driver 305 and the actuator 204 so that the tunnel current becomes 0.1 nA. The track 10 shown in FIG. 1 is scanned while scanning while keeping the distance Z from the recording layer 103 constant.
The position of 4 was detected, and the probe electrode 202 was scanned.
The track position is detected by utilizing the abrupt change of the track current between the probe electrode 202 and the track 104. Recording was performed using the electric memory effect of the recording layer 103. That is, according to the information, the triangular wave pulse voltage having the waveform shown in FIG. At this time, the tunnel current became 2 nA. Note that FIG.
, The probe electrode 202 side is the positive electrode, the electrode layer 102
The side is-as a pole. After the recording, the recorded information was reproduced again. The reproduction bias voltage was set to 0.5 V so that new information was not recorded or recorded information was not erased, and the change in tunnel current was measured to reproduce information. In the above reproduction experiment, the bit error rate was 1 × 10 −5 when the data transfer rate was 1 Mbps. When the pulse voltage shown in FIG. 6 is continuously applied to the information recording section and then reproduction is performed again, the initial high resistance state (tunnel current =
It was confirmed that the recorded information was erased by returning to 0.1 nA).

【0034】また本実施例では、ステージ201を移動
させて位置検出をおこなったが、ビームスポットを移動
させることで位置検出を行っても良い。その他、記録領
域106の形状も凸形状でなく凹形状にしてもよく、同
様の位置検出方法、記録再生方法が適用可能である。
Further, in this embodiment, the position is detected by moving the stage 201, but the position may be detected by moving the beam spot. In addition, the shape of the recording area 106 may be concave instead of convex, and the same position detecting method and recording / reproducing method can be applied.

【0035】実施例2 実施例1と同様に記録媒体を作成した。ただし、記録層
にはスクアリリウムービス−6−オクチルアズレン(S
OAZ)の2層LB膜(厚さ30Å)を用いた。以下、
SOAZLB膜の形成方法を述べる。20℃の純水上に
SOAZのクロロホルム溶液(濃度0.2×10-3M)
を水面上に展開し、溶媒蒸発除去後、表面圧を20mN
/mまで高めて水面上にSOAZの単分子膜を形成し
た。次に、表面圧を一定に保ったまま、基板を水面上S
OAZ単分子膜を垂直に横切る方向に速度3mm/mi
nで静かに浸漬・引き上げを行い、SOAZの2層LB
膜を形成し、記録媒体とする。
Example 2 A recording medium was prepared in the same manner as in Example 1. However, in the recording layer, squarylium-bis-6-octylazulene (S
A two-layer LB film (thickness 30Å) of OAZ) was used. Less than,
A method of forming the SOAZLB film will be described. Chloroform solution of SOAZ on pure water at 20 ° C (concentration 0.2 × 10 -3 M)
On the water surface, and after removing the solvent by evaporation, the surface pressure is 20mN
/ M was raised to form a monolayer of SOAZ on the water surface. Next, while keeping the surface pressure constant, place the substrate on the water surface S
Velocity of 3 mm / mi in the direction perpendicular to the OAZ monolayer
Soaking and pulling up gently with n, two layers LB of SOAZ
A film is formed and used as a recording medium.

【0036】実施例1と同様に上述した方法により作成
した記録媒体の位置検出および記録再生実験を行ったと
ころ、ビットエラーレートは1×10-6であった。
When the position detection and the recording / reproducing experiment of the recording medium prepared by the above-mentioned method were conducted in the same manner as in Example 1, the bit error rate was 1 × 10 −6 .

【0037】実施例3 図3に示すように大気中でマイカ板をへき開し、平滑基
板101とする。
Example 3 As shown in FIG. 3, a mica plate is cleaved in the atmosphere to form a smooth substrate 101.

【0038】次に、かかる平滑基板101上にAuを真
空蒸着法を用いて、エピタキシャル成長させ、電極層1
02とした。この条件は、蒸着速度5Å/sec、到達
圧力2×10-6Torr、基板温度400℃、膜厚50
00Åであった。
Next, Au is epitaxially grown on the smooth substrate 101 using a vacuum deposition method to form the electrode layer 1.
02. The conditions are as follows: deposition rate 5Å / sec, ultimate pressure 2 × 10 -6 Torr, substrate temperature 400 ° C., film thickness 50
It was 00Å.

【0039】その後、かかる平滑電極基板上に、EBレ
ジスト(PMMA:商標名OEBR−1000 東京応
化製)を塗布し、露光、現像を経て、所望の凸形状記録
領域を形成した。EB描画条件は、加速電圧20kV、
ドーズ量50μC/cm2であった(記録領域面積1m
2)続いて、かかるレジストパターンをイオンエッチ
ング法により、電極層102であるAuをエッチング
し、レジストを剥離した。この時の、イオンエッチング
条件は、エッチングガスAr、イオンエネルギー500
eV、電流値0.5mV、エッチング深さ1000Åで
あった。また剥離液には、メチルエチルケトンを用い
た。
After that, an EB resist (PMMA: trade name OEBR-1000 manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied on the smooth electrode substrate, exposed and developed to form a desired convex recording area. The EB drawing conditions are an acceleration voltage of 20 kV,
The dose amount was 50 μC / cm 2 (recording area area 1 m
m 2 ) Subsequently, the resist pattern was subjected to ion etching to etch the electrode layer 102 of Au, and the resist was peeled off. At this time, the ion etching conditions are etching gas Ar and ion energy 500.
The eV, the current value was 0.5 mV, and the etching depth was 1000Å. Methyl ethyl ketone was used as the stripping solution.

【0040】更にもう一度上記条件によりEB描画、A
uエッチングにより記録領域上に所望のトラックパター
ンを形成した。ただし、Auのエッチングの深さは10
0Åであった。
Under the above conditions, EB drawing and A
A desired track pattern was formed on the recording area by u etching. However, the etching depth of Au is 10
It was 0Å.

【0041】かかる基板上に、実施例1と同様にポリイ
ミドLB膜の記録層103を形成し、記録媒体とした。
A recording layer 103 of a polyimide LB film was formed on the substrate in the same manner as in Example 1 to obtain a recording medium.

【0042】上記のように作製した記録媒体を用いて、
実施例と同様の位置検出、記録再生実験をおこなったと
ころ、ビットエラーレートは2×10-6であり、消去も
可能であった。
Using the recording medium prepared as described above,
When the same position detection and recording / reproducing experiment as in the example were conducted, the bit error rate was 2 × 10 −6 , and erasing was possible.

【0043】[0043]

【発明の効果】以上述べたように、本発明に依れば 1)記録媒体上の記録領域に段差と位置検出マークを設
けることにより、位置検出を容易に行うことができ、高
速位置決めが可能になった。
As described above, according to the present invention, 1) by providing the step and the position detection mark in the recording area on the recording medium, the position can be easily detected and the high speed positioning is possible. Became.

【0044】2)記録領域を凸形状または、凹形状にす
ることで位置検出を行うので、記録密度を下げることな
く記録再生の高再現性が可能になった。
2) Since the position is detected by forming the recording area in a convex shape or a concave shape, high reproducibility of recording / reproducing becomes possible without lowering the recording density.

【0045】3)位置検出を記録媒体の形状および位置
検出マークを用いて行うので、記録媒体の互換性が高ま
った。
3) Since the position detection is performed by using the shape of the recording medium and the position detection mark, the compatibility of the recording medium is improved.

【0046】4)位置検出に記録媒体上の段差から生じ
る散乱光を用いるので簡単な装置で精度よく位置検出を
行うことが可能になった。
4) Since the scattered light generated from the step on the recording medium is used for the position detection, it is possible to detect the position accurately with a simple device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の記録媒体の記録領域周辺部の一例を示
す概略図。
FIG. 1 is a schematic diagram showing an example of a recording area peripheral portion of a recording medium of the present invention.

【図2】図1のA−A’断面図の一例。2 is an example of a cross-sectional view taken along the line A-A 'in FIG.

【図3】図1のA−A’断面図の他の例。FIG. 3 is another example of a cross-sectional view taken along the line A-A ′ in FIG.

【図4】本発明による情報処理装置の構成図。FIG. 4 is a block diagram of an information processing apparatus according to the present invention.

【図5】本発明の記録媒体の記録層を高抵抗状態から低
抵抗状態へ遷移させるのに必要な電気パルスの波形を示
す図。
FIG. 5 is a diagram showing a waveform of an electric pulse required to transition the recording layer of the recording medium of the present invention from a high resistance state to a low resistance state.

【図6】本発明による記録媒体の記録層上の低抵抗状態
部位を再び高抵抗状態に戻すのに必要な電気パルスの波
形を示す図。
FIG. 6 is a diagram showing a waveform of an electric pulse required to return the low resistance state portion on the recording layer of the recording medium according to the present invention to the high resistance state again.

【符号の説明】[Explanation of symbols]

101 基板 102 電極層 103 記録層 104 トラック 105 位置検出マーク 106 記録領域 107 非記録領域 201 ステージ 202 プローブ電極 203 プローブ電極の支持体 204 プローブ電極をZ方向に駆動するアクチエータ 205 ステージをX方向に駆動するアクチエータ 206 ステージをY方向に駆動するアクチエータ 301 増幅器 302 対数圧縮器 303 低域通過フィルタ 304 誤差増幅器 305 ドライバー 306 ステージ駆動回路 307 高域通過フィルタ 308 パルス電源 309 サーボ回路 401 光源 402 フォトダイオード 403 位置検出回路 101 substrate 102 electrode layer 103 recording layer 104 tracks 105 Position detection mark 106 recording area 107 non-recording area 201 stage 202 probe electrode 203 Support for probe electrode 204 Actuator for driving probe electrode in Z direction 205 Actuator that drives the stage in X direction 206 Actuator that drives the stage in Y direction 301 amplifier 302 logarithmic compressor 303 low pass filter 304 Error amplifier 305 driver 306 Stage drive circuit 307 High pass filter 308 Pulse power supply 309 Servo circuit 401 light source 402 photodiode 403 Position detection circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳沢 芳浩 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshihiro Yanagisawa             3-30-2 Shimomaruko, Ota-ku, Tokyo             Non non corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 断面形状が凸形状または凹形状であり、
係る凸部または凹部を記録領域とし、さらに該記録領域
内に位置検出マークを有することを特徴とする記録媒
体。
1. The cross-sectional shape is a convex shape or a concave shape,
A recording medium, characterized in that the convex portion or the concave portion is used as a recording area, and a position detection mark is provided in the recording area.
【請求項2】 記録媒体における記録層が電気メモリ効
果を有する有機化合物の単分子膜もしくは該単分子膜を
累積した単分子累積膜からなることを特徴とする請求項
1記載の記録媒体。
2. The recording medium according to claim 1, wherein the recording layer of the recording medium comprises a monomolecular film of an organic compound having an electric memory effect or a monomolecular cumulative film obtained by accumulating the monomolecular film.
【請求項3】 有機化合物が、分子中にπ電子準位をも
つ群とσ電子準位をもつ群とを有することを特徴とする
請求項2記載の記録媒体。
3. The recording medium according to claim 2, wherein the organic compound has a group having a π electron level and a group having a σ electron level in the molecule.
【請求項4】 単分子膜または単分子累積膜の膜厚が、
0.3nm〜10nmの範囲であることを特徴とする請
求項2又は請求項3記載の記録媒体。
4. The thickness of the monomolecular film or the monomolecular cumulative film is
The recording medium according to claim 2 or 3, wherein the recording medium has a range of 0.3 nm to 10 nm.
【請求項5】 単分子膜または単分子累積膜が、LB法
によって形成された膜であることを特徴とする請求項
2,3,4のいずれか1項に記載の記録媒体。
5. The recording medium according to claim 2, wherein the monomolecular film or the monomolecular cumulative film is a film formed by the LB method.
【請求項6】 請求項1〜5のいずれか1項に記載の記
録媒体と該記録媒体に対向して設けられたプローブ電極
と該記録媒体とプローブ電極との間に電圧を印加する手
段と該記録媒体に照射する光源と該記録媒体からの散乱
光を受けて位置情報を得る位置情報読み取り手段と前記
位置情報読み取り手段によって得られた位置情報に基づ
いて該記録媒体上の所望の位置で記録再生消去を行う手
段を有することを特徴とする情報処理装置。
6. The recording medium according to claim 1, a probe electrode provided facing the recording medium, and a means for applying a voltage between the recording medium and the probe electrode. A light source for irradiating the recording medium, a position information reading unit for receiving position information by receiving scattered light from the recording medium, and a desired position on the recording medium based on the position information obtained by the position information reading unit. An information processing apparatus comprising means for recording, reproducing and erasing.
JP18706491A 1991-07-02 1991-07-02 RECORDING MEDIUM, AND INFORMATION PROCESSOR FOR RECORDING, REPRODUCING, AND ERASING USING THE SAME Expired - Fee Related JP2981786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18706491A JP2981786B2 (en) 1991-07-02 1991-07-02 RECORDING MEDIUM, AND INFORMATION PROCESSOR FOR RECORDING, REPRODUCING, AND ERASING USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18706491A JP2981786B2 (en) 1991-07-02 1991-07-02 RECORDING MEDIUM, AND INFORMATION PROCESSOR FOR RECORDING, REPRODUCING, AND ERASING USING THE SAME

Publications (2)

Publication Number Publication Date
JPH0512726A true JPH0512726A (en) 1993-01-22
JP2981786B2 JP2981786B2 (en) 1999-11-22

Family

ID=16199518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18706491A Expired - Fee Related JP2981786B2 (en) 1991-07-02 1991-07-02 RECORDING MEDIUM, AND INFORMATION PROCESSOR FOR RECORDING, REPRODUCING, AND ERASING USING THE SAME

Country Status (1)

Country Link
JP (1) JP2981786B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8023302B2 (en) 2005-01-31 2011-09-20 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8023302B2 (en) 2005-01-31 2011-09-20 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device

Also Published As

Publication number Publication date
JP2981786B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
JP2859715B2 (en) Recording medium substrate and manufacturing method thereof, recording medium, recording method, recording / reproducing method, recording apparatus, recording / reproducing apparatus
US5389475A (en) Recording medium and information-erasing method
EP0551966B1 (en) Recording device and reproducing device
JP2981804B2 (en) Information processing apparatus, electrode substrate used therein, and information recording medium
EP0553937B1 (en) Recording device and reproducing device
JP2603270B2 (en) Recording device and playback device
JP2981786B2 (en) RECORDING MEDIUM, AND INFORMATION PROCESSOR FOR RECORDING, REPRODUCING, AND ERASING USING THE SAME
JP3044421B2 (en) Recording medium manufacturing method
JP2961451B2 (en) Smooth electrode substrate and its manufacturing method, recording medium and its manufacturing method, and information processing device
JP2862352B2 (en) Information processing method and information processing apparatus
JPS63204531A (en) Reproducing device
JP3261539B2 (en) Manufacturing method of electrode substrate
JP2872662B2 (en) Recording medium and its erasing method
JP2866165B2 (en) Recording medium, method of manufacturing the same, information processing method, and information processing apparatus
JP3054895B2 (en) recoding media
JP3220914B2 (en) Recording medium manufacturing method
JP2748182B2 (en) Recording medium, method of manufacturing the same, recording method, recording / reproducing method, recording device, reproducing device, recording / reproducing device
JP2782275B2 (en) Method of manufacturing electrode substrate and recording medium
JP2992908B2 (en) Method for manufacturing substrate electrode and method for manufacturing recording medium
JPH0528549A (en) Recording medium and information processor
JPH07153125A (en) Recording and reproducing device
JPH04143942A (en) Formation of track
JPH03295044A (en) Production of recording medium
JPH04344348A (en) Recording medium and production thereof and information processor
JPH04117642A (en) Recording medium, its manufacture recorder and reproducing device recorder, and reproducing device using relevant medium

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees