JP2603270B2 - Recording device and playback device - Google Patents

Recording device and playback device

Info

Publication number
JP2603270B2
JP2603270B2 JP62212153A JP21215387A JP2603270B2 JP 2603270 B2 JP2603270 B2 JP 2603270B2 JP 62212153 A JP62212153 A JP 62212153A JP 21215387 A JP21215387 A JP 21215387A JP 2603270 B2 JP2603270 B2 JP 2603270B2
Authority
JP
Japan
Prior art keywords
recording
probe electrode
recording medium
voltage
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62212153A
Other languages
Japanese (ja)
Other versions
JPS6453363A (en
Inventor
芳浩 柳沢
有子 森川
宏 松田
春紀 河田
邦裕 酒井
一佐哲 河出
健 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP62212153A priority Critical patent/JP2603270B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to DE3856296T priority patent/DE3856296T2/en
Priority to CA000575623A priority patent/CA1328131C/en
Priority to DE3854173T priority patent/DE3854173T2/en
Priority to EP94120561A priority patent/EP0646913B1/en
Priority to EP88113794A priority patent/EP0304893B1/en
Publication of JPS6453363A publication Critical patent/JPS6453363A/en
Priority to US08/438,079 priority patent/US5519686A/en
Priority to US08/589,473 priority patent/US5721721A/en
Application granted granted Critical
Publication of JP2603270B2 publication Critical patent/JP2603270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1418Disposition or mounting of heads or record carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q80/00Applications, other than SPM, of scanning-probe techniques
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1463Record carriers for recording or reproduction involving the use of microscopic probe means
    • G11B9/1472Record carriers for recording or reproduction involving the use of microscopic probe means characterised by the form

Abstract

PURPOSE:To perform recording and reproduction with high density and high accuracy, by performing the position detection and the position control of a probe electrode by detecting the relative displacement of the reference scale of a recording medium having the reference scale set as reference in a plane and the probe electrode. CONSTITUTION:By approaching a distance between the probe electrode 102 and a conductive material to around 1nm as impressing a voltage between them, the position detection is performed on the recording medium 1 having regular atom arrangement or a reference origin formed arbitrarily by using the flow of a tunnel current, and detecting change in a distinctive tunnel current corresponding to the reference scale setting the regular atom arrangement or the reference origin as the reference scale. And based on the result of the position detection, the position control of the probe electrode on a desired recording or reproducing position on the recording medium is performed. In such a way, it is possible to obtain the recording with high density.

Description

【発明の詳細な説明】 〔背景技術〕 近年メモリ材料の用途は、コンピユータおよびその関
連機器,ビデオデイスク,デイジタルオーデイオデイス
ク等のエレクトロニクス産業の中核をなすものであり、
その材料開発も極めて活発に進んでいる。メモリ材料に
要求される性能は用途により異なるが、一般的には、 高密度で記録容量が大きい、 記録再生の応答速度が速い、 消費電力が少ない、 生産性が高く、価格が安い、 等が挙げられる。
BACKGROUND OF THE INVENTION In recent years, the use of memory materials is at the core of the electronics industry such as computers and related equipment, video disks, digital audio disks, and the like.
The development of the material is also very active. The performance required for memory materials varies depending on the application, but in general, high density, large recording capacity, fast response time for recording and reproduction, low power consumption, high productivity, low price, etc. No.

従来までは磁性体や半導体を素材とした半導体メモリ
や磁気メモリが主であったが、近年レーザー技術の進展
にともない有機色素,フオトポリマーなどの有機薄膜を
用いた光メモリによる安価で高密度な記録媒体が登場し
てきた。
Until now, semiconductor memory and magnetic memory using magnetic materials and semiconductors as the main material were mainly used. However, with the advancement of laser technology in recent years, inexpensive and high-density recording using optical memory using organic thin films such as organic dyes and photopolymers The medium has appeared.

一方、最近、導体の表面原子の電子構造を直接観察で
きる走査型トンネル顕微鏡(以後STMと略す)が開発さ
れ、〔G.Binning et al.,Helvetica Physica Acta,55,7
26(1982)〕 単結晶、非晶質を問わず実空間像の高い分解能の測定が
できるようになり、しかも媒体に電流による損傷を与え
ずに低電力で観測できる利点をも有し、さらに大気中で
も動作し種々の材料に対して用いることができるため広
範囲な応用が期待されている。
On the other hand, recently, a scanning tunneling microscope (hereinafter abbreviated as STM) capable of directly observing the electronic structure of surface atoms of a conductor has been developed [G. Binning et al., Helvetica Physica Acta, 55 , 7
26 (1982)] High-resolution measurements of real space images can be performed regardless of whether they are single-crystal or amorphous, and have the advantage that they can be observed at low power without damaging the medium due to current. Since it can operate in the atmosphere and can be used for various materials, it is expected to have a wide range of applications.

STMは金属の探針(プローブ電極)と導電性物質の間
に電圧を加えて1nm程度の距離まで近づけるとトンネル
電流が流れることを利用している。この電流は両者の距
離変化に非常に敏感であり、トンネル電流を一定に保つ
ように探針を走査することにより実空間の表面構造を描
くことができると同時に表面原子の全電子雲に関する種
々の情報をも読み取ることができる。この際、面内方向
の分解能は1Å程度である。従って、STMの原理を応用
すれば十分に原子オーダー(数Å)での高密度記録再生
を行うことが可能である。この際の記録再生方法として
は、粒子膜(電子線,イオン線)或いはX線等の高エネ
ルギー電磁波及び可視・紫外線等のエネルギー線を用い
て適当な記録層の表面状態を変化させて記録を行い、ST
Mで再生する方法や、記録層として電圧電流のスイツチ
ング特性に対してメモリ効果をもつ材料、例えばπ電子
系有機化合物やカルコゲン化物類の薄膜層を用いて、記
録・再生をSTMを用いて行う方法等が提案されている。
この場合、ひとつの特定の記録媒体に対して記録・再生
の繰り返しを行う限りに於いては、STM内のプローブ電
極の走査精度並びに位置制御精度が極めて優れている
為、原子オーダーでの記録・再生に何ら支障は生じな
い。然し乍ら、異なる記録媒体との交換や広範な記録面
への記録・再生を行うことを考えると、記録・再生に用
いられるプローブ電極を複数の記録媒体上の所望の情報
記録部位上に正確に動かす必要がある。この場合の位置
制御は、各記録媒体上に何らかの位置に関する情報を設
置しておき、係る情報を検出することにより、記録媒体
上に位置に関する基準(以後基準目盛と呼ぶ)を設定
し、係る基準目盛を基に行われる。
STM utilizes the fact that a tunnel current flows when a voltage is applied between a metal probe (probe electrode) and a conductive substance to approach a distance of about 1 nm. This current is very sensitive to changes in the distance between the two, and by scanning the probe so as to keep the tunnel current constant, it is possible to draw the surface structure in real space, and at the same time, to obtain various information related to the total electron cloud of surface atoms. Information can also be read. At this time, the resolution in the in-plane direction is about 1 °. Therefore, if the principle of STM is applied, it is possible to perform high-density recording / reproduction sufficiently in the atomic order (several Å). As a recording / reproducing method at this time, the recording is performed by changing the surface state of an appropriate recording layer using a high energy electromagnetic wave such as a particle film (electron beam, ion beam) or X-ray and an energy beam such as visible light or ultraviolet light. Done, st
Recording / reproducing using STM, using a method of reproducing with M, or using a material having a memory effect on the switching characteristics of voltage and current as the recording layer, for example, a thin film layer of a π-electron organic compound or chalcogenide Methods have been proposed.
In this case, as long as recording / reproducing is repeated for one specific recording medium, the scanning accuracy and position control accuracy of the probe electrode in the STM are extremely excellent, so that recording / reproducing in the atomic order is performed. There is no hindrance to regeneration. However, considering exchange with a different recording medium or recording / reproducing on a wide recording surface, the probe electrode used for recording / reproducing is accurately moved to a desired information recording portion on a plurality of recording media. There is a need. The position control in this case is performed by setting information relating to a certain position on each recording medium, detecting the information, and setting a reference (hereinafter referred to as a reference scale) on the recording medium. This is done based on the scale.

係る手法はVTRによる記録・再生方式を始め、今日一
般に高密度記録方式といわれる、光カード・光デイスク
等においても採用されている。微少位置検出手段として
は、光学式手法、磁気式手法或いは静電容量式手法等を
挙げることができるが、これらの内で最も高分解能が得
られるのは格子干渉の原理を用いた光学式手法である。
これは単色光を基準目盛としての回折格子に入射させ、
回折させた±1次の回折光を半透鏡を用いて合成・干渉
させ、得られた明暗の干渉光を光検出器で光電変換し、
干渉光の明暗から光学系と基準目盛の相対変位量を検知
するものである。
Such a method is employed in an optical card, an optical disk, and the like, which is generally called a high-density recording method today, including a recording / reproducing method using a VTR. The fine position detecting means can be an optical method, a magnetic method, or a capacitance method. Of these, the highest resolution can be obtained by an optical method using the principle of lattice interference. It is.
This allows monochromatic light to enter the diffraction grating as a reference scale,
The diffracted ± 1st order diffracted light is synthesized and interfered using a semi-transparent mirror, and the obtained bright and dark interference light is photoelectrically converted by a photodetector,
The relative displacement between the optical system and the reference scale is detected from the brightness of the interference light.

然し乍ら、上記従来例に於いて、最も高分解能を有す
る格子干渉光学式位置検出法の性能(分解能)は主に格
子ピツチで決められ、これをいかに精度よく微少間隔で
刻み、かつそれを精度よく検出できるかが重要な点であ
り、現状の精密加工技術(EB描画やイオンビーム加工)
ではせいぜい0.01μm(=100Å)の精度が限界であ
り、又検出技術(光ヘテロダイン法)に於いても0.01μ
mの分解能が限界である。従ってSTMを用いた記録・再
生には著しく精度に劣るという問題があった。
However, in the above-mentioned conventional example, the performance (resolution) of the grating interference optical position detection method having the highest resolution is mainly determined by the grating pitch, and it is accurately and finely divided at minute intervals. It is important to be able to detect, and the current precision processing technology (EB drawing and ion beam processing)
Then, the accuracy of 0.01μm (= 100mm) is the limit, and the detection technology (optical heterodyne method) is 0.01μm.
The resolution of m is the limit. Therefore, there is a problem that recording / reproducing using the STM is extremely inferior in accuracy.

〔発明の概要〕[Summary of the Invention]

本発明の目的は、プローブ電極を用いた電気的な高密
度記録・再生方式に於いて、高精度な位置検出機能並び
に位置制御機能を導入し、記録・再生を高密度かつ高精
度に行うことができる記録装置および再生装置を提供す
ることにある。
It is an object of the present invention to introduce a high-precision position detection function and a position control function in an electric high-density recording / reproducing method using a probe electrode to perform recording / reproduction with high density and high precision. It is an object of the present invention to provide a recording device and a reproducing device capable of performing the above.

本発明の上記目的は、第1には、基板上に所定方向に
沿って複数の基準目盛が規則的に配置された位置座標軸
及び記録層が設けられた記録媒体を用い、前記記録媒体
に対向して配置されたプローブ電極と、前記プローブ電
極を前記所定方向に移動する移動手段と、前記プローブ
電極と記録媒体との間に電圧を印加する電圧印加手段
と、電圧の印加によって前記プローブ電極と記録媒体と
の間に流れるトンネル電流を検出する電流検出手段とを
備え、前記移動手段でプローブ電極を所定の方向に走査
し、前記電流検出手段で検出されるトンネル電流の変化
から前記基準目盛を検出し、検出された基準目盛を位置
の基準として記録層の所望の位置にプローブ電極から電
圧を印加することによって情報を記録することを特徴と
する記録装置によって達成される。
The first object of the present invention is to firstly use a recording medium provided with a position coordinate axis and a recording layer in which a plurality of reference graduations are regularly arranged along a predetermined direction on a substrate, and to oppose the recording medium. A probe electrode, a moving means for moving the probe electrode in the predetermined direction, a voltage applying means for applying a voltage between the probe electrode and a recording medium, and the probe electrode by applying a voltage. Current detecting means for detecting a tunnel current flowing between the recording medium and the recording medium, scanning the probe electrode in a predetermined direction by the moving means, the reference scale from the change in the tunnel current detected by the current detecting means. A recording device characterized by detecting and recording information by applying a voltage from a probe electrode to a desired position of a recording layer using the detected reference scale as a position reference. It is made.

また、本発明の上記目的は、第2には、基板上に所定
方向に沿って複数の基準目盛が規則的に配置された位置
座標軸及び記録層が設けられた記録媒体を用い、前記記
録媒体に対向して配置されたプローブ電極と、前記プロ
ーブ電極を前記所定方向に移動する移動手段と、前記プ
ローブ電極と記録媒体との間に電圧を印加する電圧印加
手段と、電圧の印加によって前記プローブ電極と記録媒
体との間に流れるトンネル電流を検出する電流検出手段
とを備え、前記移動手段でプローブ電極を所定の方向に
走査し、前記電流検出手段で検出されるトンネル電流の
変化から前記基準目盛を検出し、検出された基準目盛を
位置の基準として記録層の所望の位置にプローブ電極か
ら電圧を印加し、前記電流検出手段で検出されるトンネ
ル電流の量の変化から記録層の記録を再生することを特
徴とする再生装置によって達成される。
The second object of the present invention is to provide a recording medium having a position coordinate axis and a recording layer in which a plurality of reference graduations are regularly arranged on a substrate along a predetermined direction. A probe electrode disposed in opposition to the probe electrode, moving means for moving the probe electrode in the predetermined direction, voltage applying means for applying a voltage between the probe electrode and a recording medium, and applying the voltage to the probe. Current detecting means for detecting a tunnel current flowing between the electrode and the recording medium, wherein the moving means scans the probe electrode in a predetermined direction, and the reference means detects a change in the tunnel current detected by the current detecting means. A scale is detected, a voltage is applied from a probe electrode to a desired position on the recording layer using the detected reference scale as a position reference, and a change in the amount of a tunnel current detected by the current detecting means is determined. Is achieved by reproducing apparatus characterized by reproducing the recording of the recording layer.

〔発明の態様の詳細な説明〕(Detailed description of embodiments of the invention)

本発明の位置検出装置は、情報の記録・再生と同様、
導電性材料(プローブ電極)と導電性物質との間に電圧
を印加しつつ両者の距離を1nm程度に迄近づけるとトン
ネル電流が流れることを利用している。トンネル電流
は、導体表面での仕事関数に依存するため、種々の表面
電子状態についての情報を読みとることができる。これ
を応用して規則的原子配列あるいは、又、任意に形成し
た基準原点を有する記録媒体に対し、係る規則的原子配
列或いは又、基準原点を基準目盛とし、係る基準目盛に
対応する特徴的なトンネル電流の変化を検出することに
より位置検出を行うと共に、係る位置検出結果を基に、
記録媒体上の所望する記録乃至は再生位置上へプローブ
電極の位置制御を行うものである。
The position detection device of the present invention, like the recording and reproduction of information,
Utilizing the fact that a tunnel current flows when the distance between the conductive material (probe electrode) and the conductive substance is reduced to about 1 nm while applying a voltage between the two. Since the tunnel current depends on the work function on the conductor surface, information on various surface electronic states can be read. Applying this to a regular atomic arrangement or a recording medium having an arbitrarily formed reference origin, the regular atomic arrangement or the reference origin is used as a reference scale, and a characteristic corresponding to the reference scale is used. While performing position detection by detecting a change in tunnel current, based on the position detection result,
The position of the probe electrode is controlled to a desired recording or reproducing position on the recording medium.

<基準目盛> 本発明に用いられる位置検出系としての基準目盛は規
則的原子配列を利用した原子目盛、及び又は任意の位置
に形成した基準原点が用いられる。係る原子目盛として
の規則的原子配列としては、予め格子間距離がわかって
いる導電性材料、即ち各種金属やグラフアイト単結晶等
を利用することができる他、本発明で利用されるトンネ
ル電流はnA程度の大きさである為、上記導電性材料は10
-10(Ω・cm)-1以上の電導率を有していればよく、従
ってシリコン等のいわゆる半導体物の単結晶を用いるこ
ともできる。これらの内、代表例として金属試料を考え
る。今、距離Zだけ離れたプローブ電極と上記金属試料
との間に、仕事関数φより低い電圧Vを印加すると、電
子はポテンシヤル障壁をトンネルすることが知られてい
る。トンネル電流密度JTを自由電子近似で求めると、 JT=(βV/2πλZ)exp(−2Z/λ) …(1) の様に表わすことができる 式(1)に於いて、Z=ZCと一定の値とすれば、トン
ネル電流密度JTは基準原子配列の仕事関数φに応じ変化
する。従ってプローブ電極を係る金属試料面上、Z=ZC
に保ちつつ任意の直線方向に走査させれば金属原子配列
に従って周期的にトンネル電流が変化する。ここで、金
属試料の結晶格子は既知であるから、任意の結晶面上の
或る格子点を基準とした任意の方向の原子配列状態は自
明であり、係る方向へプローブ電極を走査させた場合に
得られる周期的トンネル電流の変化は十分に予測し得
る。従って係るトンネル電流変化の予測値と実際にプロ
ーブ電極を走査して得られたトンネル電流変化の測定値
とが等しい値をとる様にプローブ電極の走査方向を補正
すれば、面内方向(X,Y方向)のプローブ電極の走査系
を金属試料の結晶格子に対して一義的に定めることがで
きる。以上より記録媒体表面の一部又は全てが規則的原
子配列を有し、かつその配列状態が既知である場合に
は、係る原子配列の結晶格子に対して一義的なX・Y座
標系を持つ、プローブ電極走査系を設定することができ
る。
<Reference Scale> As a reference scale as a position detection system used in the present invention, an atomic scale using a regular atomic arrangement and / or a reference origin formed at an arbitrary position is used. As such a regular atomic arrangement as an atomic scale, a conductive material whose interstitial distance is known in advance, that is, various metals, graphite single crystals, and the like can be used, and a tunnel current used in the present invention is Since the size is about nA, the above conductive material is 10
It is sufficient that the conductive material has an electric conductivity of −10 (Ω · cm) −1 or more. Therefore, a single crystal of a semiconductor material such as silicon can be used. Among these, a metal sample is considered as a representative example. Now, it is known that when a voltage V lower than the work function φ is applied between the probe electrode separated by a distance Z and the metal sample, electrons tunnel through the potential barrier. If the tunnel current density J T is obtained by free electron approximation, it can be expressed as J T = (βV / 2πλZ) exp (−2Z / λ) (1) In the equation (1), if Z = Z C and a constant value, the tunnel current density J T changes according to the work function φ of the reference atomic arrangement. Therefore, Z = Z C on the surface of the metal sample with the probe electrode.
If the scanning is performed in an arbitrary linear direction while maintaining the above, the tunnel current changes periodically according to the metal atom arrangement. Here, since the crystal lattice of the metal sample is known, the atomic arrangement state in an arbitrary direction based on a certain lattice point on an arbitrary crystal plane is obvious, and when the probe electrode is scanned in such a direction. The resulting change in the periodic tunnel current can be fully predicted. Therefore, if the scanning direction of the probe electrode is corrected so that the predicted value of the tunnel current change and the measured value of the tunnel current change obtained by actually scanning the probe electrode take the same value, the in-plane direction (X, The scanning system of the probe electrode in the (Y direction) can be uniquely defined with respect to the crystal lattice of the metal sample. As described above, when a part or all of the recording medium surface has a regular atomic arrangement and the arrangement state is known, the recording medium has a unique XY coordinate system with respect to the crystal lattice of the atomic arrangement. , A probe electrode scanning system can be set.

次に基準原点に関して述べる。上述の如く、規則的な
原子配列を利用した原子目盛を用いれば記録媒体上に一
義的な座標系を設定することができるが、この場合、座
標系の原点については、これを明確には定めることは困
難である。一方、既に述べた様に本発明の記録・再生は
記録媒体表面の仕事関数の変化をトンネル電流の変化量
として検出することにより行われる。従って記録媒体上
の任意の位置の表面状態を作為的に変化させておけば、
その位置を原点(基準原点)として記録媒体上に位置に
関する座標系を導入することができる。この際、複数個
の基準原点を設ければ、係る座標系の軸方向を決定する
ことができる。又、先に述べた原子目盛と併用すれば、
この場合、座標系の軸方向は既に一義的に決定されてい
るので、基準原点は例え1点であっても記録媒体表面上
に絶対座標を設定することが可能である。何れにせよこ
れらの基準目盛を複数個用いることにより位置検出に関
する精度はより向上する。基準原点としては記録媒体表
面にエツチング等の手法により凹凸をつけたり、イオン
注入等の手法に因って他原子を部分選択的に媒体表面上
に配置する等して導入することが考えられるが、これら
は現状では何れもSTMの分解能に対する基準原点として
の精度には劣る為、大まかな位置把握に利用するのが適
当である。現状では実際に所望の情報の記録を行うに先
立って、記録媒体の記録面の一部に、原点に関する何ら
かの情報を書き込み、係る点を基準原点とする方法が精
度的にも、又作成が容易な点に於いても優れる。
Next, the reference origin will be described. As described above, a unique coordinate system can be set on a recording medium by using an atomic scale using a regular atomic arrangement. In this case, the origin of the coordinate system is clearly defined. It is difficult. On the other hand, as described above, recording / reproducing according to the present invention is performed by detecting a change in the work function on the surface of the recording medium as a change in the tunnel current. Therefore, if the surface condition at any position on the recording medium is artificially changed,
Using the position as the origin (reference origin), a coordinate system relating to the position on the recording medium can be introduced. At this time, if a plurality of reference origins are provided, the axial direction of the coordinate system can be determined. Also, if used together with the atomic scale described above,
In this case, since the axial direction of the coordinate system has already been uniquely determined, it is possible to set absolute coordinates on the surface of the recording medium even if the reference origin is one point. In any case, by using a plurality of these reference scales, the accuracy of position detection is further improved. As the reference origin, it is conceivable to introduce irregularities on the recording medium surface by etching or the like, or to selectively introduce other atoms on the medium surface by a method such as ion implantation. Since these are currently inferior in accuracy as the reference origin with respect to the resolution of the STM, it is appropriate to use them for rough position grasp. At present, prior to actually recording desired information, a method of writing some information about the origin on a part of the recording surface of the recording medium and using that point as the reference origin is accurate and easy to create. It is excellent in various points.

<記録媒体> 本発明で用いられる記録媒体としては、電流・電圧特
性に於いて、メモリースイツチング現象(電気メモリ効
果)をもつ材料を利用できる。例えば、 (1)酸化物ガラスやホウ酸塩ガラスあるいは周期律表
III,IV,V,VI族元素と化合したSe,Te,Asを含んだカルコ
ゲン化物ガラス等のアモルフアス半導体が挙げられる。
それらは光学的バンドギヤツプEgが0.6〜1.4eVあるいは
電気的活性化エネルギー△Eが0.7〜1.6eV程度の真性半
導体である。カルコゲン化物ガラスの具体例としては、
As−Se−Ts系、Ge−As−Se系、Si−Ge−As−Te系、例え
ばSi16Ge14As5Te65(添字は原子%)、あるいはGe−Te
−X系、Si−Te−X系(X=少量のV,VI族元素)例えば
Ge15Te81Sb2S2が挙げられる。
<Recording Medium> As the recording medium used in the present invention, a material having a memory switching phenomenon (electric memory effect) in current / voltage characteristics can be used. For example, (1) oxide glass, borate glass, or periodic table
Amorphous semiconductors such as chalcogenide glasses containing Se, Te, and As combined with group III, IV, V, and VI elements.
They are intrinsic semiconductors having an optical band gap Eg of 0.6 to 1.4 eV or an electric activation energy ΔE of about 0.7 to 1.6 eV. Specific examples of chalcogenide glass include:
As-Se-Ts type, Ge-As-Se type, Si-Ge-As-Te system, eg Si 16 Ge 14 As 5 Te 65 ( suffixes atomic%), or Ge-Te
-X type, Si-Te-X type (X = a small amount of V, VI group element)
Ge 15 Te 81 Sb 2 S 2 .

更にはGe−Sb−Se系カルコゲン化物ガラスも用いるこ
とができる。
Further, a Ge—Sb—Se-based chalcogenide glass can also be used.

上記化合物を電極上に堆積したアモフフアス半導体層
において、膜面に垂直な方向にプローブ電極を用いて電
圧を印加することにより媒体の電気メモリー効果を発現
することができる。
In an amorphous semiconductor layer in which the above compound is deposited on an electrode, an electric memory effect of the medium can be exhibited by applying a voltage using a probe electrode in a direction perpendicular to the film surface.

係る材料の堆積法としては従来公知の薄膜形成技術で
充分本発明の目的を達成することができる。例えば好適
な成膜法としては、真空蒸着法やクラスターイオンビー
ム法等を挙げることができる。一般的には、係る材料の
電気メモリー効果は数μm以下の膜厚で観測されてお
り、記録媒体としての記録分解能に関しては、より薄い
方が好ましいが、均一性、記録性の観点から100Å以上
1μm以下の膜厚のものが良く、更に好適には1000Å以
下の膜厚のものがよい。
As a method for depositing such a material, a conventionally known thin film forming technique can sufficiently achieve the object of the present invention. For example, as a suitable film forming method, a vacuum evaporation method, a cluster ion beam method, or the like can be given. Generally, the electric memory effect of such a material is observed at a film thickness of several μm or less, and as for the recording resolution as a recording medium, thinner is preferable, but from the viewpoint of uniformity and recording properties, 100 ° or more. A film having a thickness of 1 μm or less is preferable, and a film having a thickness of 1000 ° or less is more preferable.

(2)更にはテトラキノジメタン(TCNQ)、TCNQ誘導
体、例えばテトラフルオロテトラシアノキノジメタン
(TCNQF4)、テトラシアノエチレン(TCNE)およびテト
ラシアノナフトキノジメタン(TNAP)などの電子受容性
化合物と銅や銀などの還元電位が比較的低い金属との塩
を電極上に堆積した有機半導体層も挙げることができ
る。
(2) Further, electron accepting properties such as tetraquinodimethane (TCNQ) and TCNQ derivatives such as tetrafluorotetracyanoquinodimethane (TCNQF 4 ), tetracyanoethylene (TCNE) and tetracyanonaphthoquinodimethane (TNAP). An organic semiconductor layer in which a salt of a compound and a metal having a relatively low reduction potential such as copper or silver is deposited on an electrode can also be used.

係る有機半導体層の形成法としては、銅あるいは銀の
電極上に前記電子受容性化合物を真空蒸着する方法が用
いられる。
As a method of forming such an organic semiconductor layer, a method of vacuum-depositing the electron-accepting compound on a copper or silver electrode is used.

かかる有機半導体の電気メモリー効果は、数十μm以
下の膜厚のもので観測されているが、成膜性、均一性の
観点から100Å〜1μmの膜厚のものが好ましい。
Such an electric memory effect of an organic semiconductor is observed at a film thickness of several tens μm or less, but a film thickness of 100 ° to 1 μm is preferable from the viewpoint of film formability and uniformity.

(3)また更にはアモルフアスシリコンを材料とした記
録媒体を挙げることができる。例えば金属/A−Si(p+
/n層/i層)あるいは金属/A−Si(n+層/p層/i層)の層構
成を有する記録媒体であり、A−Siの各層の堆積法は従
来公知の方法によって充分行うことが可能である。本発
明では好適にはグローデイスチヤージ法(GD)が用いら
れる。A−Siの膜厚はn層として2000Å〜8000Å、i,p+
層は1000Å程度が好適であり、全膜厚は0.5μm〜1μ
m程度のものが良い。
(3) Further, a recording medium made of amorphous silicon can be used. For example, metal / A-Si (p + layer
/ n layer / i layer) or metal / A-Si (n + layer / p layer / i layer). The deposition method of each layer of A-Si is sufficiently performed by a conventionally known method. It is possible. In the present invention, the GD method is preferably used. The film thickness of A-Si is 2,000 to 8000 as an n-layer, i, p +
The thickness of the layer is preferably about 1000 °, and the total thickness is 0.5 μm to 1 μm.
m is good.

(4)また更にはπ電子準位をもつ群とσ電子準位のみ
を有する群を併有する分子を電極上に積層した記録媒体
を挙げることができる。
(4) A recording medium in which a molecule having both a group having a π-electron level and a group having only a σ-electron level is laminated on an electrode can be given.

本発明に好適なπ電子系を有する色素の構造としては
例えば、フタロシアニン、テトラフエニルポルフイン等
のポリフイリン骨格を有する色素、スクアリリウム基及
びクロコニツクメチン基を結合鎖としてもつアズレン系
色素及びキノリン、ベンゾチアゾール、ベンゾオキサゾ
ール等の2ケの含窒素複素環をスクアリリウム基及びク
ロコニツクメチン基により結合したシアニン系類似の色
素、またはシアニン色素、アントラセン及びピレン等の
縮合多環芳香族、及び芳香環及び複素環化合物が重合し
た鎖状化合物及びジアセチレン基の重合体、さらにはテ
トラキノジメタンまたはテトラチアフルバレンの誘導体
およびその類縁体およびその電荷移動錯体また更にはフ
エロセン、トリスビピリジンルテニウム錯体等の金属錯
体化合物が挙げられる。
Examples of the structure of the dye having a π-electron system suitable for the present invention include, for example, phthalocyanine, a dye having a polyphenylene skeleton such as tetraphenylporphine, an azulene dye having a squarylium group and a croconitcumethine group as a binding chain, and quinoline. Cyanine-based dyes in which two nitrogen-containing heterocycles such as benzothiazole and benzoxazole are bonded by a squarylium group and a croconite methine group, or condensed polycyclic aromatics such as cyanine dyes, anthracene and pyrene, and aromatic rings and A chain compound obtained by polymerizing a heterocyclic compound and a polymer of a diacetylene group, furthermore, a derivative of tetraquinodimethane or tetrathiafulvalene and an analog thereof and a charge-transfer complex thereof, and further a metal such as ferrocene and trisbipyridine ruthenium complex Complex compounds .

有機記録媒体の形成に関しては、具体的には蒸着法や
クラスターイオンビーム法等の適用も可能であるが、制
御性、容易性そして再現性から公知の従来技術の中では
LB法が極めて好適である。
With respect to the formation of the organic recording medium, specifically, a vapor deposition method, a cluster ion beam method, or the like can be applied, but among control techniques, easiness and reproducibility, among known conventional techniques.
The LB method is very suitable.

このLB法によれば、1分子中に疎水性部位と親水性部
位とを有する有機化合物の単分子膜またはその累積膜を
基板上に容易に形成することができ、分子オーダの厚み
を有し、かつ大面積にわたって均一、均質な有機超薄膜
を安定に供給することができる。
According to the LB method, a monomolecular film of an organic compound having a hydrophobic portion and a hydrophilic portion in one molecule or a cumulative film thereof can be easily formed on a substrate, and has a thickness of a molecular order. In addition, a uniform and uniform organic ultrathin film can be stably supplied over a large area.

LB法は、分子内に親水性部位と疎水性部位とを有する
構造の分子において、両者のバランス(両親媒性のバラ
ンス)が適度に保たれている時、分子は水面上で親水性
基を下に向けて単分子の層になることを利用して単分子
膜またはその累積膜を作成する方法である。
In the LB method, when a molecule having a structure having a hydrophilic site and a hydrophobic site in the molecule and the balance between them (the balance of amphipathicity) is appropriately maintained, the molecule forms a hydrophilic group on the water surface. This is a method in which a monomolecular film or a cumulative film thereof is formed by making use of forming a monomolecular layer downward.

疎水性部位を構成する基としては、一般に広く知られ
ている飽和及び不飽和炭化水素基や縮合多環芳香族基及
び鎖状多環フエニル基等の各種疎水基が挙げられる。こ
れらは各々単独又はその複数が組み合わされて疎水性部
分を構成する。一方、親水性部分の構成要素として最も
代表的なものは、例えばカルボキシル基、エステル基、
酸アミド基、イミド基、ヒドロキシル基、更にはアミノ
基(1,2,3級及び4級)等の親水性基等が挙げられる。
これらも各々単独又はその複数が組み合わされて上記分
子の親水性部分を構成する。
Examples of the group constituting the hydrophobic site include various generally known hydrophobic groups such as a saturated and unsaturated hydrocarbon group, a condensed polycyclic aromatic group, and a chain polycyclic phenyl group. Each of these may be used alone or in combination with a plurality thereof to constitute a hydrophobic portion. On the other hand, the most typical components of the hydrophilic portion include, for example, a carboxyl group, an ester group,
Examples thereof include acid amide groups, imide groups, hydroxyl groups, and hydrophilic groups such as amino groups (1, 2, tertiary and quaternary).
Each of these may be used alone or in combination with a plurality thereof to constitute the hydrophilic portion of the molecule.

これらの疎水性基と親水性基をバランス良く併有し、
かつ適度な大きさをもつπ電子系を有する色素分子であ
れば、水面上で単分子膜を形成することが可能であり、
本発明に対して極めて好適な材料となる。
Having these hydrophobic groups and hydrophilic groups in good balance,
And if it is a dye molecule having a π electron system with an appropriate size, it is possible to form a monomolecular film on the water surface,
This is a very suitable material for the present invention.

具体例としては、例えば下記の如き分子等が挙げられ
る。
Specific examples include the following molecules.

ここでR1は前述のσ電子準位をもつ群に相当したもの
で、しかも水面上で単分子膜を形成しやすくするために
導入された長鎖アルキル基で、その炭素数nは5n
30が好適である。
Here, R 1 corresponds to the group having the above-mentioned σ electron level, and is a long-chain alkyl group introduced to facilitate the formation of a monomolecular film on the water surface.
30 is preferred.

以上具体例として挙げた化合物は基本構造のみであ
り、これら化合物の種々な置換体も本発明において好適
であることは言うにおよばない。
The compounds mentioned above as specific examples have only the basic structure, and it goes without saying that various substituents of these compounds are also suitable in the present invention.

[II] スクアリリウム色素 [I]で挙げた化合物のクロコニツクメチン基を下記
の構造を持つスクアリリウム基で置き換えた化合物。
[II] Squarylium dye A compound in which the crokonitcumethine group of the compound described in [I] is replaced by a squarylium group having the following structure.

Rは単分子膜を形成しやすくするために導入されたも
ので、ここで挙げた置換基に限るものではない。又、R1
〜R4,Rは前述したσ電子準位をもつ群に相当している。
R is introduced to facilitate the formation of a monomolecular film, and is not limited to the substituents listed here. Also, R 1
To R 4 and R correspond to the group having the σ electron level described above.

[V]ジアセチレン化合物 CH3CH2 nC≡C−C≡CCH2 mX 0n,m20 但し n+m>10 Xは親水基で一般的には−COOHが用いられるが−OH,
−CONH2等も使用できる。
[V] diacetylenic compound CH 3 CH 2 n C≡C-C≡CCH 2 m X 0n, m20 proviso n + m> 10 X is -COOH is used generally with a hydrophilic group but -OH,
-CONH 2 etc. can also be used.

[VI]その他 尚、上記以外でもLB法に適している色素材料であれ
ば、本発明に好適なのは言うまでもない。例えば、近年
研究が盛んになりつつある生体材料(例えばパクデリオ
ロドプシンやチトクロームc)や合成ポリペプチド(PB
LGなど)等も適用が可能である。
[VI] Other In addition, it goes without saying that any other dye materials suitable for the LB method are suitable for the present invention. For example, biomaterials (eg, pacderio-rhodopsin and cytochrome c) that have been actively studied in recent years, and synthetic polypeptides (PB
LG etc.) can also be applied.

これらのπ電子準位を有する化合物の電気メモリー効
果は、数十μm以下の膜厚のもので観測されているが、
成膜性,均一性の観点から15〜2000Åの膜厚のものが好
ましい。
The electric memory effect of these compounds having a π-electron level is observed at a film thickness of several tens μm or less.
A film having a thickness of 15 to 2000 mm is preferable from the viewpoint of film forming property and uniformity.

以上(1)〜(4)項に亘って述べた電気メモリー効
果を有する材料を支持する基板としては、電極としての
性格を有する必要があるが、10-6(Ω・cm-1)以上の電
導率を有する導電体であれば全て使用することができ
る。即ち、Au,Pt,Pd,Ag,Al,In,Sn,Pb,W等の金属板やこ
れらの合金、或いはこれら金属や合金を蒸着したガラ
ス、セラミツクス、プラスチツクス材料、又はSi(結
晶,アモルフアス)やグラフアイト、又更にはITO等の
導電性酸化物を始めとして数多くの材料が挙げられる。
The substrate supporting the material having the electric memory effect described in the above items (1) to (4) needs to have the property of an electrode, but the substrate has a property of 10 −6 (Ω · cm −1 ) or more. Any conductor having electrical conductivity can be used. That is, metal plates such as Au, Pt, Pd, Ag, Al, In, Sn, Pb, W, and alloys thereof, or glass, ceramics, plastics materials, or Si (crystal, amorphous) on which these metals or alloys are vapor-deposited ), Graphite, or even conductive oxides such as ITO.

これらの電気メモリー材料とその支持基板(電極)と
の組み合わせにより、本発明の記録媒体は構成される
が、前述した基準目盛としての原子目盛を用いる場合、
係る電気メモリー材料自体の原子配列はその規則性に劣
る場合が多く、原子目盛としての利用は余り好ましくな
い。従って、基板に金属,結晶Si,グラフアイト等の規
則的原子配列を有する材料を用いた上で、その一部を電
気メモリー材料未堆積とし、係る箇所の基板原子配列を
原子目盛として利用することが望ましい。
The recording medium of the present invention is constituted by the combination of these electric memory materials and the supporting substrate (electrode). When the atomic scale is used as the above-mentioned reference scale,
The atomic arrangement of the electric memory material itself is often inferior in its regularity, and its use as an atomic scale is not preferable. Therefore, after using a material having a regular atomic arrangement such as metal, crystalline Si, and graphite on the substrate, a part of the material is not deposited as an electric memory material, and the substrate atomic arrangement at the relevant location is used as an atomic scale. Is desirable.

〔プローブ電極〕[Probe electrode]

本発明で用いられるプローブ電極の先端は記録/再生
/消去の分解能を上げるため出来るだけ尖らせる必要が
ある。本発明では、1φの太さのタングステンの先端を
90゜のコーンになるように機械的に研摩し、超高真空中
で電界をかけて表面原子を蒸発させたものを用いている
が、プローブの形状や処理方法は何らこれに限定するも
のではない。
The tip of the probe electrode used in the present invention needs to be sharpened as much as possible to increase the resolution of recording / reproducing / erasing. In the present invention, the tip of tungsten having a diameter of 1φ is
The surface is evaporated by applying an electric field in an ultra-high vacuum and mechanically polished to a 90 mm cone, but the probe shape and processing method are not limited to this. Absent.

更には、プローブ電極の本数も一本に限る必要はな
く、位置検出用と記録・再生用を分ける等、複数のプロ
ーブ電極を用いてもよい。
Furthermore, the number of probe electrodes need not be limited to one, and a plurality of probe electrodes may be used, for example, for position detection and recording / reproduction.

〔記録および再生装置の構成〕[Configuration of recording and reproducing apparatus]

第1図は本発明の記録および再生装置を示すブロツク
構成図である。第1図中、105はプローブ電流増巾器
で、106はプローブ電極が一定になるように圧電素子を
用いた微動機構107を制御するサーボ回路である。108は
プローブ電極102と電極103の間に記録/消去用のパルス
電圧を印加するための電源である。
FIG. 1 is a block diagram showing a recording and reproducing apparatus according to the present invention. In FIG. 1, reference numeral 105 denotes a probe current amplifier, and reference numeral 106 denotes a servo circuit that controls a fine movement mechanism 107 using a piezoelectric element so that a probe electrode becomes constant. Reference numeral 108 denotes a power supply for applying a pulse voltage for recording / erasing between the probe electrode 102 and the electrode 103.

パルス電圧を印加するときプローブ電極が急激に変化
するためサーボ回路106は、その間出力電圧が一定にな
るように、HOLD回路をONにするように制御している。
When a pulse voltage is applied, the probe electrode changes abruptly, so that the servo circuit 106 controls the HOLD circuit to be ON so that the output voltage becomes constant during that time.

109はX,Y方向にプローブ電極102を移動制御するため
のX,Y走査駆動回路である。110と111は、あらかじめ10
-9A程度のプローブ電流が得られるようにプローブ電極1
02と記録媒体1との距離を粗動制御したり、プローブ電
極と基板とのX,Y方向相対変位を大きくとる(微動制御
機構範囲外)ためのものである。これらの各機器は、す
べてマイクロコンピユータ112により中央制御されてい
る。また、113は表示機器を表わしている。
Reference numeral 109 denotes an X, Y scanning drive circuit for controlling the movement of the probe electrode 102 in the X, Y directions. 110 and 111 are 10
Probe electrode 1 so that a probe current of about -9 A can be obtained
This is for coarsely controlling the distance between the recording medium 1 and the recording medium 1 and increasing the relative displacement in the X and Y directions between the probe electrode and the substrate (outside the range of the fine movement control mechanism). These devices are all centrally controlled by the microcomputer 112. Reference numeral 113 denotes a display device.

また、圧電素子を用いた移動制御における機械的性能
を下記に示す。
The mechanical performance in movement control using a piezoelectric element is shown below.

Z方向微動制御範囲:0.1nm〜1μm Z方向粗動制御範囲:10nm〜10mm X,Y方向走査範囲:0.1nm〜1μm X,Y方向粗動制御範囲:10nm〜10mm 計測,制御許容誤差:<0.1nm(微動制御時) 計測,制御許容誤差:<1nm(粗動制御時) 以下、本発明の記録・再生方式について、実施例によ
り詳細な説明を行う。
Z direction fine movement control range: 0.1 nm to 1 μm Z direction coarse movement control range: 10 nm to 10 mm X, Y direction scanning range: 0.1 nm to 1 μm X, Y direction coarse movement control range: 10 nm to 10 mm Measurement and control tolerance: < 0.1 nm (at the time of fine movement control) Measurement and control tolerance: <1 nm (at the time of coarse movement control) Hereinafter, the recording / reproducing method of the present invention will be described in detail with reference to examples.

〔実施例〕〔Example〕

第1図に示す記録および再生装置を用いた。プローブ
電極102としてタングステン製のプローブ電極を用い
た。このプローブ電極102は記録媒体1の表面との距離
(Z)を制御するためのもので、電流を一定に保つよう
に圧電素子により、その距離(Z)は微動制御されてい
る。更に微動制御機構は距離(Z)を一定に保ったま
ま、面内(X,Y)方向にも微動制御できるように設計さ
れている。しかし、これらは従来公知の技術である。
The recording and reproducing apparatus shown in FIG. 1 was used. As the probe electrode 102, a tungsten probe electrode was used. The probe electrode 102 is for controlling the distance (Z) from the surface of the recording medium 1, and the distance (Z) is finely controlled by a piezoelectric element so as to keep the current constant. Further, the fine movement control mechanism is designed so that fine movement control can be performed in the in-plane (X, Y) direction while keeping the distance (Z) constant. However, these are conventionally known techniques.

プローブ電極102は記録媒体面内の相対方向位置検出
及び、記録・再生・消去を行う為に用いられる。又、記
録媒体1は高精度のX,Yステージ114の上に置かれ、任意
の位置に移動させることができる(X,Y粗動機構)。な
お、粗動機構のX,Y方向と微動機構のX,Y方向とは各移動
制御機構の精度の差に起因する誤差範囲内で一致してい
る。
The probe electrode 102 is used for detecting the position in the relative direction within the recording medium surface and for performing recording, reproduction, and erasing. The recording medium 1 is placed on a high-precision X, Y stage 114 and can be moved to an arbitrary position (X, Y coarse movement mechanism). Note that the X and Y directions of the coarse movement mechanism and the X and Y directions of the fine movement mechanism coincide within an error range caused by a difference in accuracy between the respective movement control mechanisms.

次に本実施例で用いた記録媒体の詳細について述べ
る。記録媒体の構成図を第2図に示す。第2図(A)
は、本発明で用いた記録媒体の平面図で、第2図(B)
はそのA−A′断面図である。直径1/2インチの(111)
面を出したP型Siウエハー(Bドープ0.3mm厚)を基板1
04として用いた。該基板は記録・再生装置のX,Yステー
ジ114上に設置する際の方向性をほぼ一定にする目的
で、B−B′点で切断されている。なお、B−B′点は
Si結晶の[11]方向にほぼ並行である。
Next, details of the recording medium used in this embodiment will be described. FIG. 2 shows a configuration diagram of the recording medium. Fig. 2 (A)
Is a plan view of the recording medium used in the present invention, and FIG.
Is a sectional view taken along the line AA '. 1/2 inch diameter (111)
P-type Si wafer (B-doped 0.3mm thick)
Used as 04. The substrate is cut at a point B-B 'in order to make the directionality of the substrate set on the X / Y stage 114 of the recording / reproducing apparatus substantially constant. The point BB 'is
It is almost parallel to the [11] direction of the Si crystal.

次に、B−B′の中点から基板中心に向って1mmの位
置を1μm角、深さ0.2μmにエツチングし、基準原点
(粗)を作成した。係る基準原点(粗)の作成法を以下
に示す。
Next, a position of 1 mm from the midpoint of BB 'toward the center of the substrate was etched to a 1 μm square and a depth of 0.2 μm to create a reference origin (coarse). The method of creating such a reference origin (rough) will be described below.

まず、Si基板上に電子線レジストであるポリメタクリ
ル酸メチル(PMMA,商品名OEBR−1000東京応化工業
(株))を1μmの厚さに塗布し、電子線を加速電圧20
KeV,ビーム径0.1μmφで1μm四方の大きさに描画し
た。その後、専用現像液を使って電子線照射部を溶解し
た。エツチングは、CF4とH2の混合ガスを用いて圧力3P
a,放電電力100Wで20分間スパツタエツチングした。その
ときのエツチング深さは20.μmであった。最後にメチ
ルエチルケトンを使ってPMMAを溶解した。
First, polymethyl methacrylate (PMMA, trade name: OEBR-1000 Tokyo Ohka Kogyo Co., Ltd.), which is an electron beam resist, is applied on a Si substrate to a thickness of 1 μm, and the electron beam is accelerated at an accelerating voltage of 20 μm.
It was drawn on a 1 μm square with KeV, beam diameter 0.1 μmφ. Thereafter, the electron beam irradiation part was dissolved using a special developer. Etching the pressure 3P using a mixed gas of CF 4 and H 2
a, Sputter etching was performed at a discharge power of 100 W for 20 minutes. At that time, the etching depth was 20 μm. Finally, the PMMA was dissolved using methyl ethyl ketone.

次に、係る基板上基準原点(粗)201近傍をマスキン
グした後、下引き層としてCrを真空蒸着法により厚さ50
Å堆積させ、更にAuを同法により400Å蒸着して基板電
極103とした。
Next, after masking the vicinity of the reference origin (coarse) 201 on the substrate, Cr is deposited as a subbing layer to a thickness of 50 mm by a vacuum evaporation method.
Then, Au was vapor-deposited by the same method for 400 ° to form a substrate electrode 103.

次に、係るAu電極上にスクアリリウム−ビス−6−オ
クチルアズレン(以下SOAZと略す)のLB膜(4層)を積
層し、記録層101とした。以下、記録層形成方法につい
て述べる。先ず、SOAZを濃度0.2mg/mlで溶かしたベンゼ
ン溶液を20℃の水相上に展開し、水面上に単分子膜を形
成した。溶媒の蒸発を待ち、係る単分子膜の表面圧を20
mN/mまで高め、更にこれを一定に保ちながら前記基板を
水面に横切る方向に速度3mm/分で静かに浸漬・引き上げ
を繰り返し、SOAZ単分子膜の4層累積膜を基板電極103
上に形成させた。
Next, an LB film (four layers) of squarylium-bis-6-octylazulene (hereinafter abbreviated as SOAZ) was laminated on the Au electrode to form a recording layer 101. Hereinafter, a recording layer forming method will be described. First, a benzene solution in which SOAZ was dissolved at a concentration of 0.2 mg / ml was developed on an aqueous phase at 20 ° C. to form a monomolecular film on the water surface. Wait for the solvent to evaporate and raise the surface pressure of the monolayer to 20.
mN / m, and while keeping this constant, gently dipping and pulling up the substrate at a speed of 3 mm / min in a direction crossing the surface of the water, and repeating the four-layer SOAZ monolayer film on the substrate electrode 103.
Formed on top.

以上により作成された記録媒体1を用いて、記録・再
生の実験を行った。
Using the recording medium 1 prepared as described above, a recording / reproducing experiment was performed.

以下、その詳細を記す。 The details are described below.

SOAZ4層を累積した記録層101をもつ記録媒体1の基板
の切り欠きB−B′方向を所定の方向に合わせて、X,Y
ステージ114の上に置いた。
The notch BB 'of the substrate of the recording medium 1 having the recording layer 101 in which the SOAZ4 layer is accumulated is aligned with a predetermined direction, and X, Y
Placed on stage 114.

次に、B−B′から1mm程度基板内側の位置にプロー
ブ電極102を動かし、プローブ電極とSi基板104との間に
0.6Vのプローブ電圧を印加した上で、プローブ微動機構
107,109のX方向をB−B′にほぼ平行な方向に仮に合
わせた後、長さ1μmに亘って走査させた。
Next, the probe electrode 102 is moved to a position on the inner side of the substrate about 1 mm from BB ′, and between the probe electrode and the Si substrate 104.
After applying the probe voltage of 0.6V, the probe fine movement mechanism
After temporarily adjusting the X direction of 107 and 109 to a direction substantially parallel to BB ', scanning was performed over a length of 1 m.

次に、Y方向(X方向に直角方向)にも1μmに亘り
走査させた。この時、X,Y座標軸のとり方を種々変化さ
せて表面状態の測定を繰り返し、得られたSi原子の配列
ピツチが各々6.65Å及び3.84Åに最も近い値をとる様に
調整した。係る調整により微動機構のX軸はSi基板の
[11]方向に、Y軸は[01]方向に合致している。
Next, scanning was also performed in the Y direction (a direction perpendicular to the X direction) over 1 μm. At this time, the measurement of the surface state was repeated by variously changing the way of setting the X and Y coordinate axes, and the arrangement pitch of the obtained Si atoms was adjusted to have values closest to 6.65 ° and 3.84 °, respectively. With this adjustment, the X axis of the fine movement mechanism matches the [11] direction of the Si substrate, and the Y axis matches the [01] direction.

この時同時に粗動機構のX,Y方向が、調整した微動機
構のX,Y方向と粗動機構の制御誤差範囲内で一致する様
に調整した。次に、X,Y方向に関して粗動機構を用いて
プローブ電極を走査し、基準原点(粗)201の位置を検
出した。係る基準原点(粗)の中心から2mmY軸方向に沿
って基板中心部に向かった位置に基準原点(微)202を
設けた。係る基準原点(微)は、記録層101の電気メモ
リー効果を利用して形成される。即ち、プローブ電極10
2とAu電極103との間に1.0Vのプローブ電圧を印加し、プ
ローブ電極Ipが10-9Aになる様に微動機構107を用いてプ
ローブ電極102と記録層101表面との距離(Z)を調整し
た。次に、プローブ電極102を+側、Au電極を−側にし
て、電気メモリー材料(SOAZ・LB膜4層)が低抵抗状態
(ON状態)に変化する閾値電圧Vth ON以上の矩形パルス
電圧(18V 0.1μS)を印加し、ON状態を生じさせた。
プローブ電極102と記録層101との距離(Z)を保持した
まま、プローブ電極102とAu電極間103との間に1.0Vのプ
ローブ電圧を印加して、プローブ電流Ipを測定したとこ
ろ0.5mA程度の電流が流れ、ON状態となっていることが
確かめられた。以上の操作により、基準原点(微)202
とした。この時、10nm角の記録層領域をON状態にするこ
とにより基準原点(微)202に関する位置情報と、後に
書き込まれる記録情報とが混同して再生されない様にし
たが(第3図)、基準原点(微)202の形状は何ら本実
施例の形状に限られるものではない。
At this time, the X and Y directions of the coarse movement mechanism were simultaneously adjusted so as to coincide with the X and Y directions of the adjusted fine movement mechanism within the control error range of the coarse movement mechanism. Next, the probe electrode was scanned in the X and Y directions using the coarse movement mechanism, and the position of the reference origin (coarse) 201 was detected. A reference origin (fine) 202 was provided at a position from the center of the reference origin (rough) toward the center of the substrate along the 2 mm Y-axis direction. Such a reference origin (fine) is formed using the electric memory effect of the recording layer 101. That is, the probe electrode 10
A probe voltage of 1.0 V is applied between 2 and the Au electrode 103, and the distance (Z) between the probe electrode 102 and the surface of the recording layer 101 using the fine movement mechanism 107 so that the probe electrode Ip becomes 10 -9 A. Was adjusted. Next, by setting the probe electrode 102 to the positive side and the Au electrode to the negative side, a rectangular pulse voltage equal to or higher than the threshold voltage V th ON at which the electric memory material (the four layers of SOAZ / LB film) changes to a low resistance state (ON state). (18V 0.1 μS) was applied to generate an ON state.
While maintaining the distance (Z) between the probe electrode 102 and the recording layer 101, a probe voltage of 1.0 V was applied between the probe electrode 102 and the Au electrode 103, and the probe current Ip was measured. Current flowed, and it was confirmed that it was in the ON state. By the above operation, the reference origin (fine) 202
And At this time, by turning on the 10 nm square recording layer area, the position information on the reference origin (fine) 202 and the recording information to be written later are not confused and reproduced (FIG. 3). The shape of the origin (fine) 202 is not limited to the shape of this embodiment.

次に係る基準原点(微)をプローブ電極位置制御系の
X,Y座標上の原点として、プローブ電極102を微動走査さ
せ0.01μmピツチで情報の記録を行った。記録面101上
の1ビツト毎の記録位置の模式図を第3図に示した。係
る記録は、基準原点(微)の形成と同様の手法により、
電気メモリー材料(SOAZ・LB膜4層)にON状態とOFF状
態(記録前の高抵抗状態)とを作ることにより行った。
The following reference origin (fine) is set to the probe electrode position control system.
As the origin on the X and Y coordinates, the probe electrode 102 was finely scanned and information was recorded at a pitch of 0.01 μm. FIG. 3 is a schematic diagram of the recording position for each bit on the recording surface 101. Such recording is performed by the same method as the formation of the reference origin (fine).
This was performed by forming an ON state and an OFF state (high resistance state before recording) in an electric memory material (4 layers of SOAZ / LB film).

上記の工程により形成された記録済み記録媒体2を一
旦記録・再生装置から取り外した後、再度X,Yステージ1
14上に設置し、再生実験を行った。先ず、記録時と同じ
く、位置制御系のX,Y方向をSi原子目盛を利用して、各
々、[11]及び[01]方向に合せた後、X,Y方向に
関して粗動機構を用いてプローブ電極を走査させ、基準
原点(粗)201の位置を検出した。係る基準原点(粗)
を基に、基準原点(微)を粗動及び微動機構を用いて捜
し出した。係る基準原点(微)をX,Y座標系の原点とし
て、記録情報の再生を行った。この際、プローブ電極10
2とAu電極103との間に再生用の1.0Vのプローブ電圧を印
加し、ON状態とOFF状態領域に流れるプローブ電流量の
変化を直接読み取るか、或いはプローブ電流Ipが一定に
なる様にプローブ電極102を走査させた際のプローブ電
極102と記録層101表面との距離Zの変化をサーボ回路10
6を通して読み取ることにより、基準原点(微)202の位
置検出並びに記録情報の再生を行った。以上の再生実験
に於いて、ビツトエラーレートは5×10-6であった。
After once removing the recorded recording medium 2 formed by the above steps from the recording / reproducing apparatus, the X, Y stage 1
14 and a regeneration experiment was performed. First, as in the recording, the X and Y directions of the position control system are respectively adjusted to the [11] and [01] directions using the Si atomic scale, and then the coarse movement mechanism is used for the X and Y directions. The probe electrode was scanned, and the position of the reference origin (coarse) 201 was detected. Such reference origin (coarse)
, The reference origin (fine) was found using the coarse and fine movement mechanisms. The recorded information was reproduced using the reference origin (fine) as the origin of the X, Y coordinate system. At this time, the probe electrode 10
A probe voltage of 1.0 V for reproduction is applied between 2 and the Au electrode 103, and the change in the amount of probe current flowing in the ON state and the OFF state area is directly read, or the probe is set so that the probe current Ip becomes constant. The change in the distance Z between the probe electrode 102 and the surface of the recording layer 101 when the electrode 102 is scanned is determined by the servo circuit 10.
By reading through 6, the position of the reference origin (fine) 202 was detected and recorded information was reproduced. In the above reproduction experiment, the bit error rate was 5.times.10.sup.- 6 .

なお、プローブ電圧を電気メモリー材料がON状態から
OFF状態に変化する閾値電圧Vth OFF以上の10Vに設定
し、再び記録位置をトレースした結果、全ての記録状態
が消去されOFF状態に遷移したことも確認した。
Note that the probe voltage is changed from the ON state of the electric memory material.
As a result of setting the threshold voltage Vth OFF at which the state changes to OFF to 10 V or higher and tracing the recording position again, it was confirmed that all the recording states were erased and the state transited to the OFF state.

〔比較例1〕 実施例1の再生実験に於いて、原子目盛を用いたプロ
ーブ電極走査機構のX,Y座標系の設定並びに基準原点
(粗)及び(微)の位置検出に基く位置座標原点の設定
を省略した場合、記録媒体1上の記録書き込み域を見い
出すのが非常に困難であり、又、再生は殆んど不可能で
あった。
[Comparative Example 1] In the reproduction experiment of Example 1, the setting of the X and Y coordinate systems of the probe electrode scanning mechanism using the atomic scale and the position coordinate origin based on the position detection of the reference origin (coarse) and (fine) Is omitted, it is very difficult to find a recording / writing area on the recording medium 1 and reproduction is almost impossible.

〔実施例2〕 複数個の基準原点による基準目盛を用いて、プローブ
電極走査系のX,Y座標系を設定し、記録・再生を行った
例を以下に示す。
[Example 2] An example in which recording and reproduction are performed by setting an X, Y coordinate system of a probe electrode scanning system using a reference scale based on a plurality of reference origins will be described below.

本実施例で用いた記録媒体1の構成図を第4図に示
す。基板104として0.7×1.5cmの光学研磨したガラス基
板(1mm厚)を用いた。次にB−B′の中点から基板中
心に向かって1mmの位置に1μm角、深さ0.1μmの基準
原点(粗)202を作成した。
FIG. 4 shows a configuration diagram of the recording medium 1 used in this embodiment. An optically polished glass substrate (1 mm thick) of 0.7 × 1.5 cm was used as the substrate 104. Next, a reference origin (coarse) 202 having a 1 μm square and a depth of 0.1 μm was formed at a position 1 mm from the midpoint of BB ′ toward the center of the substrate.

係る基準原点(粗)の作成法を以下に示す。 The method of creating such a reference origin (rough) will be described below.

従来公知のフオトレジスト法により、レジスト材料
(商品名AZ1350)を1μmの厚さに塗布し、プリベイク
を行ったのち、第3図に対応するマスクを用いて紫外線
露光、現象、ポストベイクを行い、ガラス基板上にマス
クパターンを形成した。次に公知のCF4ガスプラズマエ
ツチング法に基づき、エツチングパワー50W、ガス圧1P
a、CF4ガス流量15SCCMの条件下でガラス面を深さ0.1μ
mに迄ドライエツチングした。マスクのAZ1350はアセト
ン洗浄して除去した。
A resist material (trade name: AZ1350) is applied to a thickness of 1 μm by a conventionally known photoresist method, prebaked, and then subjected to ultraviolet exposure, a phenomenon, and postbaking using a mask corresponding to FIG. A mask pattern was formed on the substrate. Next, based on a known CF 4 gas plasma etching method, an etching power of 50 W and a gas pressure of 1 P
a, CF 4 gas flow depth a glass surface under conditions of 15 SCCM 0.1 [mu]
m to dry etching. The mask AZ1350 was removed by washing with acetone.

係る基板をヘキサメチルジシラザンの飽和蒸気中に放
置して表面に疎水処理を施した。係る基板に対し、下引
き層としてCrを真空蒸着法により厚さ50Å堆積させ、更
にAuを同法により400Å蒸着し基板電極103とした。次に
係るAu電極上にルテチウムジフタロシアニン(LuH(P
c))のt−ブチル置換体の10層LB膜を積層し、記録
層101を形成させた。この際、基準原点(粗)201の近傍
には記録層101が堆積されない様にした。
Such a substrate was left in a saturated vapor of hexamethyldisilazane to perform a hydrophobic treatment on the surface. On this substrate, Cr was deposited as a subbing layer by a vacuum deposition method to a thickness of 50 °, and Au was further deposited to a thickness of 400 ° by the same method to form a substrate electrode 103. Next, lutetium diphthalocyanine (LuH (P
c) The 10-layer LB film of the t-butyl-substituted product of 2 ) was laminated to form the recording layer 101. At this time, the recording layer 101 was not deposited near the reference origin (coarse) 201.

以下、LuH(Pc)のt−ブチル置換体LB膜の成膜条
件を記す。
The conditions for forming the t-butyl-substituted LB film of LuH (Pc) 2 will be described below.

溶 媒:クロロホルム/トリメチルベンゼン/アセトン
=1/1/2(V/V) 濃 度:0.5mg/ml 水 相:純水、水温20℃ 表面圧:20mN/m 基板上下速度:3mm/分 以上により作成された記録媒体1と実施例1で述べた
記録および再生装置を用いて記録および再生の実験を行
った。以下その詳細を記す。
Solvent: chloroform / trimethylbenzene / acetone = 1/1/2 (V / V) Concentration: 0.5mg / ml Aqueous phase: pure water, water temperature 20 ° C Surface pressure: 20mN / m Substrate vertical speed: 3mm / min or more The recording and reproduction experiments were performed using the recording medium 1 prepared by the method described above and the recording and reproducing apparatus described in the first embodiment. The details are described below.

LuH(Pc)のt−ブチル置換体LB膜10層を累積した
記録層101をもつ記録媒体1のB−B′方向をX,Yステー
ジ114のX軸方向に合わせて係るX,Yステージ上に設置し
た。次に実施例1と同様にして、X,Y方向に関して粗動
組織110を用いて、プローブ電極102を走査し、基準原点
(粗)201の位置を検出した。なお、プローブ電圧は0.1
Vとした。係る基準原点(粗)201の中心からY軸方向に
2mm基板中心部に向かった位置(記録層101上)に、実施
例1の基準原点(徴)の作成法と同様の手法を用いて、
第1基準原点(徴)401を作った。なお、この際粗動機
構のX,Y方向と徴動機構のX,Y方向とは粗動機構の制御誤
差範囲内で一致している。次に微動機構を用いて、係る
第1基準原点(微)401からY軸方向に1μmの位置に
第2基準原点(微)402を作成した。係る第2基準原点
(微)402の作成法は第1基準原点(微)と同様であ
り、両者を区別するため、各点の形状を異なるものにし
てもよいが必ずしもその必要はなく、これらの点が他の
一般記録情報と混同されない様な工夫がなされていれば
よい。次に係る第1基準原点(微)401或いは第2基準
原点(微)402の何れかをX,Y座標系の原点にとり微動機
構を用いて、0.01μmピツチで情報の記録を行った。記
録方法は実施例1と同等の手法に依った。
The X, Y stage according to which the BB ′ direction of the recording medium 1 having the recording layer 101 in which 10 t-butyl-substituted LB films of LuH (Pc) 2 are accumulated is aligned with the X axis direction of the X, Y stage 114 Installed above. Next, in the same manner as in Example 1, the probe electrode 102 was scanned using the coarse tissue 110 in the X and Y directions, and the position of the reference origin (coarse) 201 was detected. The probe voltage is 0.1
V. From the center of the reference origin (coarse) 201 in the Y-axis direction
At the position (on the recording layer 101) toward the center of the 2 mm substrate, using the same method as the method of creating the reference origin (sign) of the first embodiment,
The first reference point (mark) 401 was made. At this time, the X and Y directions of the coarse movement mechanism and the X and Y directions of the turning mechanism coincide within the control error range of the coarse movement mechanism. Next, a second reference origin (fine) 402 was created at a position of 1 μm in the Y-axis direction from the first reference origin (fine) 401 using a fine movement mechanism. The method of creating the second reference origin (fine) 402 is the same as that of the first reference origin (fine). In order to distinguish the two, the shape of each point may be different, but it is not necessary. It is only necessary that a point is devised so as not to be confused with other general record information. Then, either the first reference origin (fine) 401 or the second reference origin (fine) 402 was taken as the origin of the X, Y coordinate system, and information was recorded at a pitch of 0.01 μm using a fine movement mechanism. The recording method was the same as that in Example 1.

上記の工程により形成された記録済み記録媒体1を一
旦記録および再生装置から取外した後、再度X,Yステー
ジ114上に設置し再生実験を行った。先づ、記録時と同
じくX,Y方向に関して粗動機構によりプロープ電極を走
査させて基準原点(粗)201を見つけ出し、係る基準原
点(粗)を基に、第1基準原点(微)401を粗動及び微
動機構を用いて捜し出した。次に微動機構を用いて第2
基準原点(微)402を検出後、第1及び第2基準原点
(微)を結ぶ線分の方向とプローブ電極走査系のY軸方
向とが一致する様にX,Y座標系を設定し直した。この
際、第1基準原点(微)401が係るX,Y座標系の原点にな
る様に設定した。係る位置座標系を基準として記録情報
の再生を行ったところビツトエラーレートは3×10-6
あった。
After once removing the recorded recording medium 1 formed by the above steps from the recording / reproducing apparatus, the recording medium 1 was placed on the X, Y stage 114 again to perform a reproducing experiment. First, the reference electrode (coarse) 201 is found by scanning the probe electrode by the coarse movement mechanism in the X and Y directions as in the recording, and the first reference origin (fine) 401 is determined based on the reference origin (coarse). It was located using the coarse and fine movement mechanisms. Next, the second
After detecting the reference origin (fine) 402, the X and Y coordinate systems are reset so that the direction of the line connecting the first and second reference origins (fine) coincides with the Y-axis direction of the probe electrode scanning system. did. At this time, the first reference origin (fine) 401 was set to be the origin of the X, Y coordinate system. When the recorded information was reproduced based on the position coordinate system, the bit error rate was 3 × 10 -6 .

なお、係る基準原点を用いたX,Y座標系の再設定を行
わずに再生を試みたが不可能であった。
Reproduction was attempted without resetting the X, Y coordinate system using the reference origin, but was impossible.

〔実施例3〕 記録容量を増やす為に微動走査範囲外に複数の基準点
を設け、各点を基準に記録および再生を行った例を以下
に示す。記録および再生装置は実施例1と全く同様もの
を用いた。
Third Embodiment An example in which a plurality of reference points are provided outside the fine movement scanning range in order to increase the recording capacity, and recording and reproduction are performed based on each point will be described below. The recording and reproducing apparatus used was exactly the same as in Example 1.

実施例1と全く同様にして記録媒体1を製造し、基準
原点(微)202を同様に作成した。引き続き係る基準原
点(微)202からY軸に沿って基板中心方向へ5μmの
位置にプローブ電極を粗動機構を用いて移動させ、基準
原点(微)202と同様の手法を用いて基準点(微)A501
を形成した。更に同様にして基準点(微)AからY軸に
沿って基板中心方向へ5μmの位置に基準原点(微)B5
02を形成した。これらの各点を基準として、微動制御機
構を用いて記録領域(O)503、記録領域A504、及び記
録領域B505に於いて記録を行った(第5図)。
The recording medium 1 was manufactured in exactly the same manner as in Example 1, and the reference origin (fine) 202 was similarly created. Subsequently, the probe electrode is moved from the reference origin (fine) 202 to a position of 5 μm in the direction of the center of the substrate along the Y-axis using the coarse movement mechanism, and the reference point (fine) is used in the same manner as the reference origin (fine) 202. Fine) A501
Was formed. Further, similarly, the reference origin (fine) B5 is set at a position of 5 μm from the reference point (fine) A toward the substrate center along the Y axis.
02 formed. Recording was performed in the recording region (O) 503, the recording region A 504, and the recording region B 505 using the fine movement control mechanism with reference to these points (FIG. 5).

その後、一旦記録媒体1を記録・再生装置から取り外
して改めて設置し直した後、実施例1と同様の手法を用
いて記録情報の再生を行った。記録領域(O)503、記
録領域A504、及び記録領域B505に於けるビツトエラーレ
ートは何れも5×10-6であった。
After that, the recording medium 1 was once removed from the recording / reproducing apparatus and set anew, and then the recorded information was reproduced using the same method as in the first embodiment. The bit error rates in the recording area (O) 503, the recording area A 504, and the recording area B 505 were all 5 × 10 −6 .

〔比較例2〕 実施例3と同様にして記録媒体1を製造し記録を行っ
た。この際基準点(微)A501と基準点(微)B502は形成
せずに記録領域A504及び記録領域B505に相当する位置で
記録を行った。係る記録済み記録媒体1を実施例3と同
様にして再生実験を行った。その結果記録領域(O)50
3でのビツトエラーレートは5×10-6で実施例3の場合
と比較して変化は見られなかったが、記録領域A504及び
記録領域B505に関してはその位置検出が可成り困難であ
り、ビツトエラーレートも2×10-3〜5×10-4となり実
施例3の場合と比較して2ケタ以上精度が低下した。
Comparative Example 2 A recording medium 1 was manufactured and recorded in the same manner as in Example 3. At this time, recording was performed at positions corresponding to the recording area A504 and the recording area B505 without forming the reference point (fine) A501 and the reference point (fine) B502. A reproduction experiment was performed on the recorded recording medium 1 in the same manner as in Example 3. As a result, the recording area (O) 50
Although the bit error rate at 5 was 5 × 10 -6 and was not changed compared to the case of the third embodiment, the position detection of the recording area A504 and the recording area B505 was considerably difficult, and The error rate was also 2 × 10 −3 to 5 × 10 −4 , and the precision was reduced by two digits or more compared to the case of the third embodiment.

〔実施例4〕 実施例1の基板104をGa−Asウエハーに、また、記録
層101を塩化シリコンフタロシアニン(PcSniCl2)のt
−ブチル置換体の8層LB膜に変更した他は実施例1とほ
ぼ同様にして記録・再生実験を行った。以下実施例1と
の相違点について述べる。記録媒体1の構成は第2図に
順ずる。ここで基板として直径1/2インチの(110)面を
出したP型Ga−Asウエハー(Znドープ0.3mm厚)を用い
た。なお基板の切り欠きB−B′方向はGa−As結晶の
〔001〕方向にほぼ平行である。
Example 4 The substrate 104 of Example 1 was formed on a Ga-As wafer, and the recording layer 101 was formed of silicon phthalocyanine chloride (PcSniCl 2 ).
A recording / reproducing experiment was carried out in substantially the same manner as in Example 1 except that the LB film was replaced with an 8-layer LB film. Hereinafter, differences from the first embodiment will be described. The configuration of the recording medium 1 is in accordance with FIG. Here, a P-type Ga-As wafer (Zn-doped 0.3 mm thick) having a (110) plane with a 1/2 inch diameter was used as a substrate. The notch BB 'direction of the substrate is substantially parallel to the [001] direction of the Ga-As crystal.

次にB−B′の中点から基板中心に向かって1μm
角、深さ0.2μmにエツチングし基準原点(粗)を作成
した。係る基準原点(粗)の作成法を以下に示す。
Next, 1 μm from the midpoint of BB ′ toward the center of the substrate.
Etching was performed at a corner and a depth of 0.2 μm to create a reference origin (coarse). The method of creating such a reference origin (rough) will be described below.

先ず、Ga−As基板上に紫外線レジスト(商品名AZ135
0)を1μmの厚さに塗布しプリベイクを行ったのち、
第2図に対応するマスクを用いて紫外線露光、現象、ポ
ストベイクの処理を施し、Ga−As基板上にマスクパター
ンを作成した。次にBCl3ガスを用いてガス圧1Pa、放電
電圧100Wの基、3分間スパツタエツチングを行い、深さ
0.2μmに迄エツチングした。マスクのAZ1350はアセト
ン洗浄により除去した。
First, an ultraviolet resist (trade name: AZ135) is placed on a Ga-As substrate.
0) is applied to a thickness of 1 μm and prebaked,
Using a mask corresponding to FIG. 2, a UV exposure, a phenomenon and a post-bake treatment were performed to form a mask pattern on the Ga-As substrate. Next, using a BCl 3 gas, under a gas pressure of 1 Pa and a discharge voltage of 100 W, performing sputter etching for 3 minutes to a depth of
Etching was performed to 0.2 μm. The mask AZ1350 was removed by acetone washing.

係る基板上に実施例1と同様にしてCr/Au基板電極103
を形成した後、係る基板電極103上に塩化シリコンフタ
ロシアニン(PcSiCl2)のt−ブチル置換体の8層LB膜
を累積し記録層101とした。以下、記録層作成条件を記
す。
A Cr / Au substrate electrode 103 was formed on the substrate in the same manner as in Example 1.
After that, an 8-layer LB film of a t-butyl-substituted product of silicon phthalocyanine chloride (PcSiCl 2 ) was accumulated on the substrate electrode 103 to form a recording layer 101. The recording layer forming conditions are described below.

溶媒 CH3CCl3 溶液濃度 1mg/ml 水相 pH8.2(純水をNaOHで調整) 表面圧 25mN/m 基板上下速度 5mm/分(但し累積はZ型) 以上により作成された記録媒体1を用いて、記録再生
の実験を行ったところ、再生時のビツトエラーレートは
5×10-6であった。
Solvent CH 3 CCl 3 solution concentration 1mg / ml Aqueous phase pH8.2 (Pure water adjusted with NaOH) Surface pressure 25mN / m Substrate vertical speed 5mm / min (cumulative is Z type) When a recording / reproducing experiment was carried out using this method, the bit error rate during reproduction was 5 × 10 −6 .

但し原子目盛を用いたX,Y座標軸の設定に関して、X
軸がGa−As結晶の[001]方向と、またY軸が[10]
方向と一致するように調整した。なお、この際のGa−Ga
原子間ピツチは[001]方向に関して5.65Å、[110]方
向に間して4.00Åであった。
However, regarding the setting of the X and Y coordinate axes using the atomic scale, X
The axis is the [001] direction of the Ga-As crystal, and the Y axis is [10].
Adjusted to match the direction. In this case, Ga-Ga
The interatomic pitch was 5.65 ° in the [001] direction and 4.00 ° in the [110] direction.

〔実施例5〕 実施例2に於いて記録層101をSi16Ge14As5Te65の原子
組成比であらわされるアモルフアス半導体を従来公知の
真空蒸着法により2000Åの膜厚に蒸着したものに変更
し、実施例2と同様の記録・再生実験を行った。なお、
記録用印加電圧は20Vmax,0.1μsの矩形パルス、再生用
印加電圧は1.0V、消去用印加電圧は50Vmax,10μsの矩
形パルスに各々変更した。又、記録ピツチは0.1μmと
し、第1及び第2基準原点(微)の大きさは各々0.1μ
m角に変更した。再生実験の結果、ビツトエラーレート
は1×10-9であった。
Example 5 In Example 2, the recording layer 101 was changed to an amorphous semiconductor represented by an atomic composition ratio of Si 16 Ge 14 As 5 Te 65 deposited to a thickness of 2000 mm by a conventionally known vacuum deposition method. Then, the same recording / reproduction experiment as in Example 2 was performed. In addition,
The applied voltage for recording was changed to a rectangular pulse of 20 Vmax, 0.1 μs, the applied voltage for reproduction was changed to 1.0 V, and the applied voltage for erasing was changed to a rectangular pulse of 50 Vmax, 10 μs. The recording pitch is 0.1 μm, and the size of the first and second reference origins (fine) is 0.1 μm each.
Changed to m square. As a result of the regeneration experiment, the bit error rate was 1 × 10 -9 .

〔実施例6〕 実施例1に於いて、SOAZ4層LB膜の代わりに、CuTCNQF
4を用いて記録層101を構成し、実施例1と同様の記録・
再生実験を行った。
[Example 6] In Example 1, CuTCNQF was used instead of the SOAZ 4-layer LB film.
4 is used to form the recording layer 101, and the same recording and
A regeneration experiment was performed.

なお記録用印加電圧は、2Vmax,10nsの矩形パルスを用
い、再生用の印加電圧は0.1Vとした。また消去用印加電
圧は5Vmax,100nsの矩形パルスを用いた。以上に於いて
記録ピツチは0.1μmとし、基準原点(微)201の大きさ
は0.1μm角に変更した。再生実験の結果ビツトエラー
レートは1×10-9であった。つぎにCuTCNQF4記録層101
の作成法について述べる。Au電極103上にCuとTCNQF4
真空蒸着法により共蒸着してCu+TCNQF4層を2000Å堆積
した(基板温度;室温)。このとき蒸着速度をCu;5Å/
s、TCNQF4;20Å/s程度になるようにあらかじめ設定した
電流値を流し加熱した。その結果、CuTCNQF4生成による
青い膜が堆積することを確認した。
The applied voltage for recording was a rectangular pulse of 2 Vmax, 10 ns, and the applied voltage for reproduction was 0.1 V. The applied voltage for erasing was a rectangular pulse of 5 Vmax, 100 ns. In the above, the recording pitch was 0.1 μm, and the size of the reference origin (fine) 201 was changed to 0.1 μm square. As a result of the regeneration experiment, the bit error rate was 1 × 10 -9 . Next, CuTCNQF 4 recording layer 101
The method of making is described. On the Au electrode 103, Cu and TCNQF 4 were co-evaporated by a vacuum evaporation method to deposit a Cu + TCNQF 4 layer at 2000 ° (substrate temperature; room temperature). At this time, the deposition rate was Cu; 5Å /
s, TCNQF 4 ; a current value set in advance so as to be about 20 ° / s was supplied for heating. As a result, it was confirmed that a blue film due to the generation of CuTCNQF 4 was deposited.

〔実施例7〕 実施例5で用いた基板電極(Cr下引きAu電極)103を
厚さ500ÅのCrに、又記録層101をP+層/n層/i層構造から
成るアモルフアスシリコンに変えた他は、実施例5と全
く同様にして記録・再生実験を行った。再生実験の結
果、ビツトエラーレートは1×10-9であった。
[Example 7] The substrate electrode (Cr-substituted Au electrode) 103 used in Example 5 was made of Cr having a thickness of 500 °, and the recording layer 101 was made of amorphous silicon having a P + layer / n layer / i layer structure. A recording / reproducing experiment was performed in exactly the same manner as in Example 5, except for the change. As a result of the regeneration experiment, the bit error rate was 1 × 10 -9 .

なお記録・再生・消去に対して下記の電圧を印加し
た。
The following voltages were applied for recording / reproducing / erasing.

記録用 20V 再生用 0.5V 消去用 −5V 以下記録層101の作成法について記す。Crを500Åの膜
厚に真空蒸着して電極を形成した後、グロー放電法によ
り1000ÅのP+型のアモルフアスシリコン膜を形成した。
その時の作成条件は 導入ガス;B2H6/SiH4(NBH/NSiH=10-1) (H2ガスで0.025モル%に希釈) rfパワー;0.01W/cm2 圧 力;0.5Torr 基板温度;300℃ 堆積温度;30Å/min である。次に余剰の原料ガスを排出した後、新たな原料
ガスを供給してn型のアモルフアスシリコンを5000Å堆
積した。作成条件は下記の通りである。
For recording 20V For reproduction 0.5V For erasing -5V or less The method of forming the recording layer 101 will be described. After forming an electrode by vacuum-depositing Cr to a thickness of 500 °, a P + type amorphous silicon film of 1000 ° was formed by a glow discharge method.
The preparation conditions at that time were: introduction gas; B 2 H 6 / SiH 4 ( NBH / N SiH = 10 -1 ) (diluted to 0.025 mol% with H 2 gas) rf power; 0.01 W / cm 2 pressure; 0.5 Torr Substrate temperature: 300 ° C. Deposition temperature: 30 ° / min. Next, after the surplus source gas was discharged, a new source gas was supplied to deposit 5000 nm of n-type amorphous silicon. The creation conditions are as follows.

導入ガス;PH3/SiH4(NPH/NSiH=5×10-3) (H2ガスで0.05モル%に希釈) rfパワー;0,01W/cm2 圧 力;0.5Torr 基板温度;300℃ 堆積速度;40Å/min また、原料ガスを排気したのち、H2ガスで0.05モル%
に希釈したSiH4をチヤンバーに導入し、他の条件は一定
にしてi相のアモルフアスシリコンを1000Å堆積した。
Introduced gas; PH 3 / SiH 4 (N PH / N SiH = 5 × 10 -3 ) (diluted to 0.05 mol% with H 2 gas) rf power; 0.01 W / cm 2 pressure; 0.5 Torr Substrate temperature; 300 ℃ deposition rate; 40 Å / min Further, after exhausting the raw material gas, 0.05 mol% with H 2 gas
The SiH 4 diluted and introduced into Chiyanba, other conditions were 1000Å deposited Amorufu Ass silicon i phase is constant.

以上述べてきた実施例中で種々の記録媒体の作成法に
ついて述べてきたが、極めて均一な膜が作成できる成膜
法であれば良く、実施例の方法に限定されるものではな
い。なお、本発明は基板材料やその形状および表面構造
について何ら限定するものでもない。
In the above-described embodiments, various methods for forming a recording medium have been described. However, any method may be used as long as it is a film forming method capable of forming an extremely uniform film, and the method is not limited to the method of the embodiment. The present invention does not limit the substrate material, its shape and surface structure at all.

〔発明の効果〕 光記録に較べても、はるかに高密度な記録が可能な全
く新しい記録・再生方法を開示した。
[Effect of the Invention] A completely new recording / reproducing method capable of recording at a much higher density than optical recording has been disclosed.

上記の新規記録・再生方法を用いられる新規な記録媒
体を開示した。
A new recording medium using the above-described new recording / reproducing method has been disclosed.

再生に必要なエネルギーは小さく、消費電力は少な
い。
The energy required for regeneration is small and the power consumption is small.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の記録および再生装置を図解的に示す説
明図である。 第2図(A)は本発明で用いた記録媒体の平面図で、第
2図(B)はそのA−A′断面図である。 第3図は本発明の記録材表面上の記録位置を示す模式図
である。 第4図(A)は、本発明で用いた別の記録媒体の平面図
で、第4図(B)はそのA−A′断面図である。 第5図は、本発明の記録媒体表面上の記録領域の位置関
係を示す模式図である。
FIG. 1 is an explanatory diagram schematically showing a recording and reproducing apparatus according to the present invention. FIG. 2 (A) is a plan view of a recording medium used in the present invention, and FIG. 2 (B) is a sectional view taken along the line AA '. FIG. 3 is a schematic diagram showing a recording position on the surface of the recording material of the present invention. FIG. 4 (A) is a plan view of another recording medium used in the present invention, and FIG. 4 (B) is a sectional view taken along the line AA ′. FIG. 5 is a schematic diagram showing the positional relationship of the recording area on the surface of the recording medium of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河田 春紀 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 酒井 邦裕 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 河出 一佐哲 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 江口 健 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭63−261554(JP,A) 特開 昭62−212154(JP,A) ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Haruki Kawata 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Kunihiro Sakai 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inside the Company (72) Inventor Kazusa Kawade 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Ken Eguchi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) References JP-A-63-261554 (JP, A) JP-A-62-212154 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に所定方向に沿って複数の基準目盛
が規則的に配置された位置座標軸及び記録層が設けられ
た記録媒体を用い、前記記録媒体に対向して配置された
プローブ電極と、前記プローブ電極を前記所定方向に移
動する移動手段と、前記プローブ電極と記録媒体との間
に電圧を印加する電圧印加手段と、電圧の印加によって
前記プローブ電極と記録媒体との間に流れるトンネル電
流を検出する電流検出手段とを備え、前記移動手段でプ
ローブ電極を所定の方向に走査し、前記電流検出手段で
検出されるトンネル電流の変化から前記基準目盛を検出
し、検出された基準目盛を位置の基準として記録層の所
望の位置にプローブ電極から電圧を印加することによっ
て情報を記録することを特徴とする記録装置。
1. A probe electrode disposed on a substrate using a recording medium provided with position coordinate axes on which a plurality of reference graduations are regularly arranged along a predetermined direction and a recording layer, and opposed to the recording medium. Moving means for moving the probe electrode in the predetermined direction, voltage applying means for applying a voltage between the probe electrode and the recording medium, and flowing between the probe electrode and the recording medium by applying the voltage Current detecting means for detecting a tunnel current; scanning the probe electrode in a predetermined direction by the moving means; detecting the reference scale from a change in the tunnel current detected by the current detecting means; A recording apparatus for recording information by applying a voltage from a probe electrode to a desired position on a recording layer using a scale as a reference for a position.
【請求項2】基板上に所定方向に沿って複数の基準目盛
が規則的に配置された位置座標軸及び記録層が設けられ
た記録媒体を用い、前記記録媒体に対向して配置された
プローブ電極と、前記プローブ電極を前記所定方向に移
動する移動手段と、前記プローブ電極と記録媒体との間
に電圧を印加する電圧印加手段と、電圧の印加によって
前記プローブ電極と記録媒体との間に流れるトンネル電
流を検出する電流検出手段とを備え、前記移動手段でプ
ローブ電極を所定の方向に走査し、前記電流検出手段で
検出されるトンネル電流の変化から前記基準目盛を検出
し、検出された基準目盛を位置の基準として記録層の所
望の位置にプローブ電極から電圧を印加し、前記電流検
出手段で検出されるトンネル電流の量の変化から記録層
の記録を再生することを特徴とする再生装置。
2. A probe electrode disposed on a substrate using a recording medium provided with position coordinate axes on which a plurality of reference graduations are regularly arranged along a predetermined direction and a recording layer, and facing the recording medium. Moving means for moving the probe electrode in the predetermined direction, voltage applying means for applying a voltage between the probe electrode and the recording medium, and flowing between the probe electrode and the recording medium by applying the voltage Current detecting means for detecting a tunnel current; scanning the probe electrode in a predetermined direction by the moving means; detecting the reference scale from a change in the tunnel current detected by the current detecting means; A voltage is applied from the probe electrode to a desired position on the recording layer using the scale as a reference for the position, and the recording of the recording layer is reproduced from a change in the amount of the tunnel current detected by the current detecting means. Reproducing apparatus according to claim and.
JP62212153A 1987-08-25 1987-08-25 Recording device and playback device Expired - Lifetime JP2603270B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62212153A JP2603270B2 (en) 1987-08-25 1987-08-25 Recording device and playback device
CA000575623A CA1328131C (en) 1987-08-25 1988-08-24 Encoder
DE3854173T DE3854173T2 (en) 1987-08-25 1988-08-24 Coding device.
EP94120561A EP0646913B1 (en) 1987-08-25 1988-08-24 Encoder using the tunnel current effect
DE3856296T DE3856296T2 (en) 1987-08-25 1988-08-24 Tunnel current encoder
EP88113794A EP0304893B1 (en) 1987-08-25 1988-08-24 Encoder
US08/438,079 US5519686A (en) 1987-08-25 1995-05-08 Encoder for controlling measurements in the range of a few angstroms
US08/589,473 US5721721A (en) 1987-08-25 1996-01-22 Two scanning probes information recording/reproducing system with one probe to detect atomic reference location on a recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62212153A JP2603270B2 (en) 1987-08-25 1987-08-25 Recording device and playback device

Publications (2)

Publication Number Publication Date
JPS6453363A JPS6453363A (en) 1989-03-01
JP2603270B2 true JP2603270B2 (en) 1997-04-23

Family

ID=16617772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62212153A Expired - Lifetime JP2603270B2 (en) 1987-08-25 1987-08-25 Recording device and playback device

Country Status (1)

Country Link
JP (1) JP2603270B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2859715B2 (en) * 1989-08-10 1999-02-24 キヤノン株式会社 Recording medium substrate and manufacturing method thereof, recording medium, recording method, recording / reproducing method, recording apparatus, recording / reproducing apparatus
JP2862352B2 (en) * 1990-08-03 1999-03-03 キヤノン株式会社 Information processing method and information processing apparatus
JP2783646B2 (en) * 1990-04-18 1998-08-06 キヤノン株式会社 Information recording / reproducing device
US5255259A (en) * 1990-04-18 1993-10-19 Canon Kabushiki Kaisha Method of access to recording medium, and apparatus and method for processing information
JP2961452B2 (en) * 1990-09-05 1999-10-12 キヤノン株式会社 Information processing device
JP2930447B2 (en) * 1991-05-15 1999-08-03 キヤノン株式会社 Information processing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212154A (en) * 1986-03-14 1987-09-18 Canon Inc Apparatus for outputting image information
JPS63261554A (en) * 1987-04-20 1988-10-28 Hitachi Ltd Information memory device

Also Published As

Publication number Publication date
JPS6453363A (en) 1989-03-01

Similar Documents

Publication Publication Date Title
US5623476A (en) Recording device and reproduction device
US5389475A (en) Recording medium and information-erasing method
JP2859715B2 (en) Recording medium substrate and manufacturing method thereof, recording medium, recording method, recording / reproducing method, recording apparatus, recording / reproducing apparatus
US5182724A (en) Information processing method and information processing device
JP2981804B2 (en) Information processing apparatus, electrode substrate used therein, and information recording medium
EP0553937B1 (en) Recording device and reproducing device
JP2603270B2 (en) Recording device and playback device
JP2603241B2 (en) Recording device and playback device
JP2632862B2 (en) Position detection device
EP0449409A2 (en) Probe unit, information processing device using same and methods of use and manufacture
JPH0271439A (en) Recording and reproducing device
JP2862352B2 (en) Information processing method and information processing apparatus
JP2556520B2 (en) Recording device and recording method
JP2981786B2 (en) RECORDING MEDIUM, AND INFORMATION PROCESSOR FOR RECORDING, REPRODUCING, AND ERASING USING THE SAME
JPS63204531A (en) Reproducing device
JP2662503B2 (en) Recording / playback device
JP2872662B2 (en) Recording medium and its erasing method
JPH03173956A (en) Recording and reproducing method
JP2866165B2 (en) Recording medium, method of manufacturing the same, information processing method, and information processing apparatus
JPH04159635A (en) Recording medium, its manufacture and information processor using same
JP2782275B2 (en) Method of manufacturing electrode substrate and recording medium
JPH03235235A (en) Recording and reproducing device/recording device/ reproducing device
JPS63222348A (en) Device and method for recording
JPH04349243A (en) Smooth electrode substrate, recording medium and information processor
JPH0644619A (en) Recording medium and manufacturing method for recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11