JPH04183807A - Manufacture of metallic magnetic powder - Google Patents

Manufacture of metallic magnetic powder

Info

Publication number
JPH04183807A
JPH04183807A JP2314633A JP31463390A JPH04183807A JP H04183807 A JPH04183807 A JP H04183807A JP 2314633 A JP2314633 A JP 2314633A JP 31463390 A JP31463390 A JP 31463390A JP H04183807 A JPH04183807 A JP H04183807A
Authority
JP
Japan
Prior art keywords
gas
reaction tube
tube
magnetic powder
carbonyl compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2314633A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sawada
善秋 沢田
Yoshiteru Kageyama
景山 芳輝
Tadashi Teramoto
正 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP2314633A priority Critical patent/JPH04183807A/en
Publication of JPH04183807A publication Critical patent/JPH04183807A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably manufacture metallic magnetic super fine particles having excellent magnetic characteristic suitable for high density magnetic recording medium, etc., by executing gas phase thermal decomposition to a transition metal carbonyl compound in the specific condition. CONSTITUTION:In to a lower nozzle part 6 in a reaction tube 7, H2, CO of inert gas or mixed gas thereof are introduced at high temp. from an introducing pipe 1. On the other hand, low temp. mixed gas of the transition metal carbonyl compound 2 and dilution gas 3 is supplied and magnetic field is impressed in the reaction tube 7 with a magnet 8. The metal carbonyl compound is made to the metallic super fine particles restraining acicular shape with the gas phase decomposing reaction and fed to an oxidizing reaction tube 10 through a tubular passage 9 to form the oxide film on the surface with the oxidizing gas of O2 or steam, etc., from an introducing pipe 12. In this case, this is cooled with cooling water 14 at the exit of the reaction tube 7, and also by introducing the dilution gas toward tangential direction to the exit cross section of the reaction tube from an introducing pipe 15 to develop a circular flow, the stickness and the aggregation of the mutual metal fine particles and stickness to inner face of tube wall are prevented and the metallic magnetic powder having excellent magnetic characteristic is stably manufactured.

Description

【発明の詳細な説明】 〔発明の背景〕 産業上の利用分野 本発明は、金属磁性粉の製造方法に関する。さらに詳し
くは、本発明は、遷移金属カルボニル化合物を特定の条
件下で気相熱分解することにより、高密度磁気記録媒体
等に適する優れた磁気特性、すなわち高保磁力および高
飽和磁化、を有する金属磁性超微粒子を安定的に製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing metal magnetic powder. More specifically, the present invention produces a metal having excellent magnetic properties suitable for high-density magnetic recording media, such as high coercive force and high saturation magnetization, by subjecting transition metal carbonyl compounds to gas phase thermal decomposition under specific conditions. This invention relates to a method for stably producing magnetic ultrafine particles.

従来の技術 Fe5Ni等の遷移金属カルボニル化合物の気相熱分解
により金属微粉末を得る方法は公知であって、例えば特
公昭4B−24316号、同44−11529号、同5
2−31809号公報等が知られている。
2. Description of the Related Art Methods for obtaining fine metal powders by gas phase thermal decomposition of transition metal carbonyl compounds such as Fe5Ni are known, for example, as disclosed in Japanese Patent Publication No. 4B-24316, No. 44-11529, No. 5
Publication No. 2-31809 and the like are known.

また、本発明者らは、遷移金属カルボニル化合物の気相
熱分解を行うに際し、供給熱源として高温の希釈ガスを
使用し、特定の磁場の存在下にて行うことにより、金属
磁性粉を微細な針状粒子形状で得る方法を先に提案して
いる(特願昭63−28476号明細書、特願平1−6
5724号明細書)。
In addition, the present inventors used a high-temperature diluent gas as a heat source when performing gas-phase pyrolysis of transition metal carbonyl compounds, and conducted the process in the presence of a specific magnetic field, thereby converting metal magnetic powder into fine particles. We have previously proposed a method for obtaining acicular particle shapes (Japanese Patent Application No. 1984-28476, Japanese Patent Application No. 1-6).
5724 specification).

しかしながら、これら先行技術の方法においては、熱分
解反応後の生成金属粒子の凝集の問題が避けられず、ま
た、熱分解反応管出口部内壁への生成粒子の付着、堆積
が長期間の安定操業に支障をきたすという欠点があった
However, in these prior art methods, the problem of agglomeration of produced metal particles after the pyrolysis reaction is unavoidable, and the adhesion and accumulation of produced particles on the inner wall of the outlet of the pyrolysis reaction tube may result in long-term stable operation. It had the disadvantage of causing problems.

〔発明の概要〕[Summary of the invention]

要旨 本発明者等は、以上の状況に鑑み、上記欠点のない気相
法金属磁性粉の製法について鋭意検討の結果、本発明を
なし得た。
Summary In view of the above circumstances, the inventors of the present invention have completed the present invention as a result of intensive studies on a method for producing vapor-phase metal magnetic powder free of the above-mentioned drawbacks.

すなわち、本発明による金属超微粒子の製造法は、水素
、一酸化炭素、不活性ガスまたはこれらの混合物からな
る希釈ガスで希釈された遷移金属カルボニル化合物を気
相熱分解して該金属の磁性粉末を製造する方法において
、生成磁性粉末を熱分解反応管出口部分にて急冷するこ
と、および該分解反応管出口部分において鎖管の断面に
対して接線方向に上記希釈ガスから選ばれた少なくとも
1種のガスを導入して該生成磁性粉末の管壁付着を抑制
することを特徴とするものである。
That is, the method for producing ultrafine metal particles according to the present invention involves vapor-phase pyrolysis of a transition metal carbonyl compound diluted with a diluent gas consisting of hydrogen, carbon monoxide, an inert gas, or a mixture thereof to produce magnetic powder of the metal. In the method of manufacturing, the generated magnetic powder is rapidly cooled at the outlet of a pyrolysis reaction tube, and at least one diluent gas selected from the above diluent gas is quenched at the outlet of the pyrolysis reaction tube in a tangential direction to the cross section of the chain pipe. This is characterized by introducing a gas to suppress the adhesion of the produced magnetic powder to the tube wall.

効果 本発明の方法によれば、気相熱分解により生成した遷移
金属粒子を熱分解反応管出口で急冷することにより、高
温による生成粒子の凝集成長を効果的に抑制することが
でき、粒子径増大に伴う保磁力低下を防止することがで
きる。更に、熱分解反応管出口にて管断面の接線方向に
希釈ガスを導入することにより、生成粒子の熱泳動によ
る管内壁への付着を抑制することができるため、製品収
率の向上が図られ、長時間の安定操業が可能となる。
Effects According to the method of the present invention, by rapidly cooling the transition metal particles produced by vapor phase pyrolysis at the outlet of the pyrolysis reaction tube, it is possible to effectively suppress the agglomeration and growth of the produced particles due to high temperatures, and reduce the particle size. It is possible to prevent a decrease in coercive force caused by an increase in coercive force. Furthermore, by introducing diluent gas in the tangential direction of the tube cross section at the outlet of the pyrolysis reaction tube, it is possible to suppress the adhesion of generated particles to the tube inner wall due to thermophoresis, thereby improving product yield. , enabling long-term stable operation.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明の方法においては、金属磁性粉の生成自体は従来
公知の方法、例えば、既に本発明者等が出願した特開昭
63−270405号、同64−83605号、特願昭
63−221952号、同63−284760号、特願
平1−65724号他に基づいて行うことができる。
In the method of the present invention, the metal magnetic powder itself is produced using a conventionally known method, for example, Japanese Patent Application Laid-open No. 63-270405, Japanese Patent Application No. 64-83605, and Japanese Patent Application No. 63-221952 filed by the present inventors. , No. 63-284760, Japanese Patent Application No. 1-65724, and others.

具体的には、例えば、遷移金属カルボニル化合物を水素
、一酸化炭素、または不活性ガスで希釈してその濃度を
3体積%以下とした混合気体を、100ガウス以上の磁
場を印加した反応系内に300℃以上で5秒以下滞留さ
せて気相熱分解反応を行うことにより生成させることが
できる。
Specifically, for example, a gas mixture in which a transition metal carbonyl compound is diluted with hydrogen, carbon monoxide, or an inert gas to a concentration of 3% by volume or less is placed in a reaction system in which a magnetic field of 100 Gauss or more is applied. It can be produced by performing a gas phase thermal decomposition reaction by retaining at 300° C. or higher for 5 seconds or less.

この方法により得られる金属磁性粉は、針状の超微粒子
であり、たとえば長軸径0.5ミクロン以下、短軸径0
.05ミクロン以下、比表面積30d/g以上の金属磁
性粉末である。
The metal magnetic powder obtained by this method is acicular ultrafine particles, for example, with a major axis diameter of 0.5 microns or less and a minor axis diameter of 0.
.. It is a metal magnetic powder with a specific surface area of 0.05 microns or less and a specific surface area of 30 d/g or more.

第1図は、本発明を実施するための装置の一例を示すも
のである。
FIG. 1 shows an example of an apparatus for implementing the present invention.

第1図において、導入管1より高温の希釈ガスを、また
、導入管5より低温の金属カルボニルと希釈ガスの混合
気体を導入し、両者を磁場の印加されているノズル出口
6の位置で接触させることにより、金属カルボニルの分
解に必要な300℃以上、好ましくは400〜800℃
の範囲、の熱を高温希釈ガスより瞬時に供給することが
できる。
In Fig. 1, a high-temperature diluent gas is introduced through the introduction tube 1, and a mixed gas of metal carbonyl and dilution gas at a low temperature is introduced through the introduction tube 5, and the two are brought into contact at the nozzle outlet 6 where a magnetic field is applied. By heating, the temperature is 300°C or higher, preferably 400 to 800°C, which is necessary for the decomposition of metal carbonyl.
Heat in the range of 100 to 100% can be instantaneously supplied from high-temperature diluent gas.

この際、導入管5内での低温の金属カルボニルの分解反
応による閉塞を防止する為に、導入管11より低温の希
釈ガスを導入し保護する。
At this time, in order to prevent blockage due to the decomposition reaction of low-temperature metal carbonyl in the introduction pipe 5, low-temperature diluent gas is introduced from the introduction pipe 11 for protection.

導入管5より導入される混合気体は、金属カルボニル化
合物(導入管2より導入)と希釈ガス(導入管3より導
入)とを混合室4において混合して、所定の濃度の金属
カルボニル化合物混合気体として得られる。この導入管
5より導入される混合気体中の遷移金属カルボニル化合
物の濃度は、0.1〜30体積%、好ましくは0.5〜
25体積%、の範囲である。この濃度が高過ぎると得ら
れる金属粒子の粒径が大きく成長するので、本発明が目
的とする高保磁力を有する磁性超微粉は得られず、一方
、濃度が低過ぎると生産性が劣る。
The mixed gas introduced through the introduction pipe 5 is produced by mixing a metal carbonyl compound (introduced through the introduction pipe 2) and a diluent gas (introduced through the introduction pipe 3) in the mixing chamber 4 to produce a metal carbonyl compound mixed gas having a predetermined concentration. obtained as. The concentration of the transition metal carbonyl compound in the gas mixture introduced through the introduction pipe 5 is 0.1 to 30% by volume, preferably 0.5 to 30% by volume.
The range is 25% by volume. If this concentration is too high, the particle size of the metal particles obtained will grow large, making it impossible to obtain the magnetic ultrafine powder having a high coercive force, which is the object of the present invention.On the other hand, if the concentration is too low, productivity will be poor.

この導入管5より導入される混合気体は、200℃以下
、好ましくは180〜30℃、の温度範囲であって、そ
の導入量は導入管1と導入管5および導入管11との総
供給量に対して1〜30体積%、好ましくは3〜20体
積%、である。
The mixed gas introduced through the introduction pipe 5 has a temperature range of 200°C or less, preferably 180 to 30°C, and the amount introduced is the total amount supplied from the introduction pipe 1, the introduction pipe 5, and the introduction pipe 11. 1 to 30% by volume, preferably 3 to 20% by volume.

導入量が少な過ぎると生産性が劣り、一方、多過ぎると
十分な反応熱が得られないので反応速度が低下し、生成
金属粒子が大きく成長して超微粒子が得られない。また
、この混合ガスの温度が高すぎると、所望の超微粒子は
得られない。
If the amount introduced is too small, the productivity will be poor, while if it is too large, sufficient reaction heat will not be obtained, so the reaction rate will be reduced, and the produced metal particles will grow large, making it impossible to obtain ultrafine particles. Moreover, if the temperature of this mixed gas is too high, desired ultrafine particles cannot be obtained.

また、導入管1より導入される高温の希釈ガスは、40
0℃以上、好ましくは450℃以上(上限は1000℃
程度)であって、その導入量は導入管1と導入管5およ
び導入管11との総供給量に対して96〜55体積%、
好ましくは92〜70体積%、である。このガスの温度
が低すぎたり、導入量が少ないと、十分な反応熱が得ら
れないので反応速度が著しく低下し、金属粒子形成時の
核発生量も減少するので粒径が大きく成長して本発明が
目的とする超微粒子は得られない。
In addition, the high temperature diluent gas introduced from the introduction pipe 1 is
0°C or higher, preferably 450°C or higher (upper limit is 1000°C)
degree), and the amount introduced is 96 to 55% by volume with respect to the total supply amount of introduction tube 1, introduction tube 5, and introduction tube 11,
Preferably it is 92 to 70% by volume. If the temperature of this gas is too low or the amount introduced is small, sufficient reaction heat will not be obtained and the reaction rate will drop significantly.The amount of nuclei generated during metal particle formation will also decrease, causing the particle size to grow larger. The ultrafine particles targeted by the present invention cannot be obtained.

また導入管11より導入される低温の希釈ガスは、20
0℃以下、好ましくは100℃以下であって、その導入
量は総供給量の3〜15体積%、好ましくは5〜10体
積%である。このガス導入量が少ないと、原料金属カル
ボニル化合物導入管5内での分解反応による閉塞、ある
いは導入管5先端での付着を防止することができず、長
時間の安定運転が継続できない。一方、多すぎると反応
温度が充分保てず、目的とする超微粒子が得られない。
In addition, the low temperature diluent gas introduced from the introduction pipe 11 is
The temperature is 0°C or lower, preferably 100°C or lower, and the amount introduced is 3 to 15% by volume, preferably 5 to 10% by volume of the total amount supplied. If the amount of gas introduced is small, it will not be possible to prevent blockage due to decomposition reaction within the raw material metal carbonyl compound introduction pipe 5 or adhesion at the tip of the introduction pipe 5, making it impossible to continue stable operation for a long time. On the other hand, if the amount is too large, the reaction temperature cannot be maintained sufficiently and the desired ultrafine particles cannot be obtained.

ノズル出口6の位置で接触混合されたガスは、7の反応
管内で5秒以下、好ましくは2秒以下、滞留して気相分
解反応を行う。
The gases catalytically mixed at the nozzle outlet 6 remain in the reaction tube 7 for 5 seconds or less, preferably 2 seconds or less, to perform a gas phase decomposition reaction.

反応系への磁場の印加は、永久磁石、電磁石、ソレノイ
ドコイル等の装置8のいずれも使用可能である。印加す
る磁場は、300ガウス以上、好ましくは400〜15
00ガウスの範囲である。
Any device 8 such as a permanent magnet, an electromagnet, or a solenoid coil can be used to apply the magnetic field to the reaction system. The applied magnetic field is 300 Gauss or more, preferably 400 to 15
00 Gauss range.

磁場を印加することで、生成する金属超微粒子の針状性
を制御して、保磁力を大きくすることができる。
By applying a magnetic field, the acicularity of the produced ultrafine metal particles can be controlled and the coercive force can be increased.

熱分解反応管7で生成した遷移金属超微粒子は、反応管
出口で高温のまま保持されると、粒子が凝集成長し、粒
子径が大きくなるために保磁力が低下する。したがって
反応管7出口で速やかに冷却して、凝集反応を止める必
要がある。そこで、反応管出口をジャケットタイプ等に
して、反応管出口ガス温度を300〜60℃、好ましく
は200〜80℃になるように、冷却を行なう。
When the ultrafine transition metal particles produced in the pyrolysis reaction tube 7 are kept at a high temperature at the outlet of the reaction tube, the particles agglomerate and grow, increasing the particle size and decreasing the coercive force. Therefore, it is necessary to quickly cool the reaction tube 7 at the outlet to stop the aggregation reaction. Therefore, the outlet of the reaction tube is of a jacket type or the like, and cooling is performed so that the gas temperature at the outlet of the reaction tube is 300 to 60°C, preferably 200 to 80°C.

この際、冷却側の温度がガス本体温度に比べて低く、温
度差が大きいために、超微粒子が熱泳動によって管内壁
表面に付着する、そこで、希釈ガ一  7  − ス導入管15より希釈ガスを反応管出口断面に対して接
線方向で導入し、旋回流を生じさせることによって、管
壁上への粒子付着を抑制する。
At this time, since the temperature on the cooling side is lower than the gas main body temperature and the temperature difference is large, ultrafine particles adhere to the inner wall surface of the tube by thermophoresis. is introduced tangentially to the reaction tube outlet cross section to generate a swirling flow, thereby suppressing particle adhesion onto the tube wall.

熱分解によって生成した金属超微粒子は、管路9を経て
酸化反応管10へ送られ酸化被膜を形成した後、捕集室
13へ送って回収する。捕集した後、従来法に従い更に
徐酸化を行って酸化被膜の形成を完全なものとすること
もできる。
Ultrafine metal particles generated by thermal decomposition are sent to an oxidation reaction tube 10 via a pipe 9 to form an oxide film, and then sent to a collection chamber 13 for recovery. After collection, gradual oxidation may be further performed according to a conventional method to complete the formation of an oxide film.

実施例1 第1図に示すような反応装置において、内径53+nn
+、長さ1mの熱分解反応管7に600ガウスの磁場を
印加し、下記の(イ)〜(へ)の反応条件てFe(Co
)  の気相熱分解反応を行って鉄超微粒子を生成させ
、次いて内径102+nm、長さ2mの酸化反応管10
内で(ト)〜(す)の条件下に酸化被膜の形成を行った
。得られた金属粉は捕集部13で捕集され、60℃、4
時間(ト)の酸素濃度で保持した後、大気中に取り出し
た。
Example 1 In a reactor as shown in FIG.
+, A magnetic field of 600 Gauss was applied to the pyrolysis reaction tube 7 with a length of 1 m, and Fe(Co
) to produce ultrafine iron particles, and then an oxidation reaction tube 10 with an inner diameter of 102+ nm and a length of 2 m
The oxide film was formed under the conditions (g) to (s). The obtained metal powder is collected in the collection part 13 and heated at 60°C, 4
After being maintained at an oxygen concentration for an hour (g), it was taken out into the atmosphere.

(イ) 管路1からの窒素導入量 窒素:500℃、反応管7への流入ガス総量の85体積
% (ロ) 管路5からの混合気体導入量 窒素:60℃、反応管7への流入ガス総量の8.5体積
% Fe(Co)   ・60℃、反応管7への流5゜ 大ガス総量の1.5体積% (ハ) 管路11からの希釈ガス導入量窒素=60℃、
反応管7への流入ガス総量の5体積% (ニ) 滞留時間  0,1秒 (ホ) 熱分解反応管(7)平均温度 495°C(へ
) 管路15からの希釈ガス導入量窒素:常温、反応管
7への流入ガス総量100体積部に対して10体積部 (ト)  管路12からの窒素、酸素及び水蒸気導入量
(反応管7への流入ガス総量100体積部に対して) 窒素:120℃、4体積部 酸素:120°C,1体積部 水蒸気=120°C,5体積部 (チ) 滞留時間  3.2秒 (す) 酸化反応管(10)平均温度 180°C得ら
れた磁性鉄粉は、透過電子顕微鏡写真の観察により、短
軸径0.02ミクロン、長袖径0.20ミクロンの針状
形を呈し、磁気特性は、飽和磁化(6s): 135e
mu/g、保磁カニ1580 (Oe) 、角形比:0
.51であった。
(b) Amount of nitrogen introduced from pipe 1 Nitrogen: 500°C, 85% by volume of the total amount of gas flowing into reaction tube 7 (B) Amount of mixed gas introduced from pipe 5 Nitrogen: 60°C, into reaction tube 7 8.5% by volume of the total amount of incoming gas Fe(Co) - 60°C, flow to reaction tube 7 5° 1.5% by volume of the total amount of large gas (c) Amount of dilution gas introduced from pipe 11 Nitrogen = 60°C ,
5% by volume of the total amount of gas flowing into reaction tube 7 (d) Residence time 0.1 seconds (e) Average temperature of pyrolysis reaction tube (7) 495°C (f) Amount of diluent gas introduced from pipe 15 Nitrogen: Room temperature, 10 parts by volume (g) per 100 parts by volume of the total amount of gas flowing into the reaction tube 7 Amounts of nitrogen, oxygen and water vapor introduced from the pipe 12 (relative to 100 parts by volume of the total amount of gas flowing into the reaction tube 7) Nitrogen: 120°C, 4 parts by volume Oxygen: 120°C, 1 part by volume Steam = 120°C, 5 parts by volume (H) Residence time 3.2 seconds (S) Oxidation reaction tube (10) Average temperature 180°C obtained Observation of transmission electron micrographs revealed that the magnetic iron powder had a needle-like shape with a short axis diameter of 0.02 microns and a long sleeve diameter of 0.20 microns, and its magnetic properties were as follows: saturation magnetization (6s): 135e
mu/g, coercivity crab 1580 (Oe), squareness ratio: 0
.. It was 51.

実施例2 実施例1の条件において、長時間安定性の確認を行った
結果次の通りであった。
Example 2 The long-term stability was confirmed under the conditions of Example 1, and the results were as follows.

経過時間    保磁力    飽和磁化 ゛〔日) 
       (Oe )      (emu/g)
1     ’1,580    1352     
1、 578    1343     1、 590
    1B64     1、 585    13
55     1、 590    136上記に示す
ように、磁気特性は経時的に非常に安定している。また
、反応終了後、反応管及び出口管を解体して内部を確認
したが、付着等は一切認められなかった。
Elapsed time Coercive force Saturation magnetization ゛ [days]
(Oe) (emu/g)
1 '1,580 1352
1, 578 1343 1, 590
1B64 1, 585 13
55 1, 590 136 As shown above, the magnetic properties are very stable over time. Furthermore, after the reaction was completed, the reaction tube and outlet tube were disassembled and the inside was checked, but no adhesion was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法を実施するための装置の一例を示
す概略構成図であり、第2図は第1図のA−A’線の拡
大断面図である。 1・・・高温の稀釈ガス導入管、2・・・遷移金属カル
ボニル化合物導入管、3・・・稀釈ガス導入管、4・・
・混合槽、5・・・混合ガス導入管、6・・・ノズル出
口、7・・・熱分解反応管、8・・・磁界印加装置、9
・・・管路、10・・・酸化反応管、11・・・低温の
稀釈ガス導Δ管、12・・・酸化剤導入管、13・・・
捕集室、14・・・冷却水、15・・・希釈ガス導入管
。 出願人代理人  佐  藤  −雄
FIG. 1 is a schematic configuration diagram showing an example of an apparatus for implementing the method of the present invention, and FIG. 2 is an enlarged sectional view taken along line AA' in FIG. 1. DESCRIPTION OF SYMBOLS 1... High temperature dilution gas introduction pipe, 2... Transition metal carbonyl compound introduction pipe, 3... Dilution gas introduction pipe, 4...
-Mixing tank, 5...Mixed gas introduction pipe, 6...Nozzle outlet, 7...Pyrolysis reaction tube, 8...Magnetic field application device, 9
... Pipe line, 10... Oxidation reaction tube, 11... Low temperature dilution gas conduit Δ pipe, 12... Oxidizing agent introduction pipe, 13...
Collection chamber, 14... Cooling water, 15... Dilution gas introduction pipe. Applicant's agent Mr. Sato

Claims (1)

【特許請求の範囲】[Claims] 水素、一酸化炭素、不活性ガスまたはこれらの混合物か
らなる希釈ガスで希釈された遷移金属カルボニル化合物
を気相熱分解して該金属の磁性粉末を製造する方法にお
いて、生成磁性粉末を熱分解反応管出口部分にて急冷す
ること、および該分解反応管出口部分において該管の断
面に対して接線方向に上記希釈ガスから選ばれた少なく
とも1種のガスを導入して該生成磁性粉末の管壁付着を
抑制することを特徴とする金属磁性粉の製造法。
In a method for producing magnetic powder of a transition metal carbonyl compound diluted with a diluent gas consisting of hydrogen, carbon monoxide, an inert gas, or a mixture thereof in the gas phase, the resulting magnetic powder is subjected to a pyrolysis reaction. quenching at the outlet of the tube, and introducing at least one gas selected from the diluent gases in a tangential direction to the cross section of the tube at the outlet of the decomposition reaction tube to cool the tube wall of the generated magnetic powder. A method for producing metal magnetic powder characterized by suppressing adhesion.
JP2314633A 1990-11-20 1990-11-20 Manufacture of metallic magnetic powder Pending JPH04183807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2314633A JPH04183807A (en) 1990-11-20 1990-11-20 Manufacture of metallic magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2314633A JPH04183807A (en) 1990-11-20 1990-11-20 Manufacture of metallic magnetic powder

Publications (1)

Publication Number Publication Date
JPH04183807A true JPH04183807A (en) 1992-06-30

Family

ID=18055669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2314633A Pending JPH04183807A (en) 1990-11-20 1990-11-20 Manufacture of metallic magnetic powder

Country Status (1)

Country Link
JP (1) JPH04183807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100572245B1 (en) * 2003-11-05 2006-04-19 한국기계연구원 Manufacturing method of nano iron powder with polymer coating layer
KR100593265B1 (en) * 2004-09-02 2006-06-26 한국기계연구원 A Fabrication Process of Nano-Powder using Plasma Arc Discharge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100572245B1 (en) * 2003-11-05 2006-04-19 한국기계연구원 Manufacturing method of nano iron powder with polymer coating layer
KR100593265B1 (en) * 2004-09-02 2006-06-26 한국기계연구원 A Fabrication Process of Nano-Powder using Plasma Arc Discharge

Similar Documents

Publication Publication Date Title
US5064464A (en) Process for producing ultrafine metal particles
JPS61106408A (en) Preparation of acicular particle containing iron carbide
JPH02167810A (en) Superfine magnetic particles of epsilon' iron carbide and its production
DE3409164C2 (en)
Miguel et al. Magnetic nanoparticles prepared by laser pyrolysis
JPH04183807A (en) Manufacture of metallic magnetic powder
Yang et al. Synthesis of α-Fe2O3 templates via hydrothermal route and Fe3O4 particles through subsequent chemical reduction
JPH04202602A (en) Manufacture of metal magnetic powder
US7396502B2 (en) Method of producing nano-sized Fe powder having polymer coated layer
JPH02243707A (en) Manufacture of metal super fine particle
Zhao et al. Growth of γ′-Fe4N and γ-Fe ultrafine powders synthesized by laser-induced pyrolysis of mixtures of Fe (CO) 5and NH3
JPH04183806A (en) Manufacture of metallic magnetic powder
JPS63270405A (en) Production of metal hyperfine powder
JPH0313511A (en) Manufacture of metal magnetic powder
JPH02133503A (en) Manufacture of super fine metal particles
JPS6133241B2 (en)
JPH032303A (en) Manufacture of super fine metal powder
JPH02111804A (en) Manufacture of magnetic metal powder
JPS63270406A (en) Production of metal hyperfine powder
JPS61111921A (en) Production of acicular particle containing iron carbide
JPS5853689B2 (en) Method for producing acicular crystal metal iron magnetic particle powder
JPH0298904A (en) Cobalt magnetic powder containing carbon
JPH0692641A (en) Production of needle gamma-feooh
JPS5853686B2 (en) Method for producing acicular crystal metal iron magnetic particle powder
JPS58192308A (en) Manufacture of acicular alpha-feooh for magnetic recording material