JPH02243707A - Manufacture of metal super fine particle - Google Patents

Manufacture of metal super fine particle

Info

Publication number
JPH02243707A
JPH02243707A JP6572489A JP6572489A JPH02243707A JP H02243707 A JPH02243707 A JP H02243707A JP 6572489 A JP6572489 A JP 6572489A JP 6572489 A JP6572489 A JP 6572489A JP H02243707 A JPH02243707 A JP H02243707A
Authority
JP
Japan
Prior art keywords
gas
thermal decomposition
transition metal
volume
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6572489A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sawada
沢田 義秋
Yoshiteru Kageyama
景山 芳輝
Tadashi Teramoto
正 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP6572489A priority Critical patent/JPH02243707A/en
Priority to US07/433,376 priority patent/US5064464A/en
Priority to EP89311682A priority patent/EP0368676A3/en
Publication of JPH02243707A publication Critical patent/JPH02243707A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain extremely fine acicular metal powder having excellent magnetic characteristic by specifying condition of thermal decomposition in production method of gas phase thermal decomposition of transition metal carbonyl compound. CONSTITUTION:Different points compared with the conventional method in thermal decomposition are dilution, introduction of internal heat source and impression of magnetic field of the transition metal carbonyl compound (indicates as T). That is, 96-55vol.% dilute gas having >=400 deg.C and 1-30vol.% dilute mixed gas for the compound T which is prediluted to 0.1-30vol.% in a mixing vessel 4 at <=200 deg.C, from the tubes 1, 5, respectively, is introduced into a refractory tube 7. Then, both the gases are brought into contact with each other at the nozzle outlet 6 where the magnetic field having >=300 gauss is impressed with a device 8 to execute the gas phase thermal decomposition of the compound T. At the time of introducing the mixed gas from a pipe 5, 3-15vol.% the dilute gas having <=200 deg.C from a tube 11 is introduced at the circumference of the introducing part to prevent caused by the thermal decomposition of the compound T in the tube 5. Further, it is prevented that the particle diameter of the product is largely grown with the dilution in the mixing vessel 4 and acicularity of the product particles is controlled with the impression of the magnetic field and coercive force can be increased.

Description

【発明の詳細な説明】 〔発明の背景〕 産業上の利用分野 本発明は、金属超微粒子の製法に関する。さらに詳しく
は、本発明は、遷移金属カルボニル化合物を特定の条件
下で気相熱分解することにより、高密度磁気記録媒体等
に適する優れた磁気特性、すなわち高保磁力および高飽
和磁化、を有する金属磁性超微粒子の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Background of the Invention] Industrial Application Field The present invention relates to a method for producing ultrafine metal particles. More specifically, the present invention produces a metal having excellent magnetic properties suitable for high-density magnetic recording media, such as high coercive force and high saturation magnetization, by subjecting transition metal carbonyl compounds to gas phase thermal decomposition under specific conditions. This article relates to a method for producing magnetic ultrafine particles.

従来の技術 Fe5Ni等の遷移金属カルボニル化合物の気相熱分解
により金属微粉末を得る方法は公知であって、例えば特
公昭43.、−24,316号、同4411529号、
同52−31.809号公報等が知られている。
2. Description of the Related Art A method for obtaining fine metal powder by gas-phase thermal decomposition of a transition metal carbonyl compound such as Fe5Ni is known, for example, as disclosed in Japanese Patent Publication No. 43, No. , No.-24,316, No. 4411529,
Publication No. 52-31.809 and the like are known.

しかし、本発明者らの知る限りでは、これら公報のいず
れにおいても、得られる粉末の粒子径は数ミクロン程度
と大きく、本発明が目的とするような短軸径の平均粒径
が0.05ミクロン以下の針状金属超微粒子は得られな
いし、更に高密度磁気記録媒体等に適した高保磁力およ
び高飽和磁化の優れた磁気特性を有する金属超微粒子も
得られていない。
However, as far as the present inventors know, in all of these publications, the particle size of the obtained powder is large, on the order of several microns, and the average particle size of the short axis diameter, which is the objective of the present invention, is 0.05. Acicular ultrafine metal particles of micron size or less have not been obtained, and furthermore, ultrafine metal particles having excellent magnetic properties such as high coercive force and high saturation magnetization suitable for high-density magnetic recording media have not been obtained.

また、特公昭39−1004号、同4516868号、
特開昭58−137202号公報等に於いては、遷移金
属カルボニル化合物を特殊な溶媒に溶解した液相状態で
熱分解反応を行なうことにより、溶媒中に分散した金属
超微粒子を得ることを提案している。
Also, Special Publication No. 39-1004, No. 4516868,
In JP-A-58-137202, etc., it is proposed to obtain ultrafine metal particles dispersed in a solvent by carrying out a thermal decomposition reaction in a liquid phase state in which a transition metal carbonyl compound is dissolved in a special solvent. are doing.

しかし、本発明者らの知る限りでは、金属超微粒子の工
業的製造において、液相法の製法では、金属超微粒子は
見掛は密度が極めて低いことなとから、超微粒子と溶媒
との分離プロセスが困難となったり、溶媒当りの生産量
が低く抑えられるなどして高コストになるなど、気相法
の製法に比較すると量産性、経済性の点で問題を生ずる
However, as far as the present inventors know, in the industrial production of ultrafine metal particles, in the liquid phase method, the ultrafine metal particles have an extremely low apparent density, so it is difficult to separate the ultrafine particles from the solvent. This poses problems in terms of mass production and economy compared to the gas phase method, such as the process being difficult and the production volume per solvent being kept low, resulting in high costs.

そこで本発明者らは、遷移金属カルボニル化合物を気相
熱分解して該遷移金属の粉末を製造する方法を、先に提
案した(特願昭63−28476号明細書) しかしながら、この方法を単に実施した場合には、 (1)反応部に設けられた金属カルボニル化合物供給導
入管に希釈ガスからの熱が直接供給される為に、供給導
入管内で金属カルボニル化合物の熱分解が生じて供給導
入管の閉塞か起こり、長時間運転に耐えないこと、 (2)金属カルボニル化合物の供給導入管先端部分が直
接希釈ガスの高温湯にさらされる為、該先端部分近傍で
滞留した金属カルボニルが分解を起こし、先端部分で成
長し、性能の安定性を阻害すること、 (3)金属カルボニル化合物と希釈ガスとの混合が充分
行われないうちに熱分解反応が進行する為に、反応濃度
、反応温度が不均一のまま粒子成長が起こり、粒子径分
布か広くなること、等実用化の点で大きな問題があるこ
とが判明した。
Therefore, the present inventors previously proposed a method for producing transition metal powder by vapor-phase pyrolysis of a transition metal carbonyl compound (Japanese Patent Application No. 63-28476). If carried out, (1) Heat from the diluent gas is directly supplied to the metal carbonyl compound supply introduction pipe installed in the reaction section, so thermal decomposition of the metal carbonyl compound occurs in the supply introduction pipe, causing the supply introduction. (2) Since the tip of the metal carbonyl compound supply introduction tube is directly exposed to the high-temperature water of the diluent gas, the metal carbonyl stagnant near the tip may be decomposed. (3) Since the thermal decomposition reaction proceeds before the metal carbonyl compound and diluent gas are sufficiently mixed, the reaction concentration and reaction temperature may It was found that there were major problems in terms of practical application, such as particle growth occurring while the particles remained non-uniform and the particle size distribution becoming broader.

〔発明の概要〕[Summary of the invention]

要旨 本発明者等は、以上の状況に鑑み、気相法金属超微粒子
の製法について鋭意検討の結果、本発明をなし得た。
Summary In view of the above circumstances, the present inventors have completed the present invention as a result of intensive studies on the method for producing ultrafine metal particles produced by vapor phase method.

すなわち、本発明による金属超微粒子の製造法は、水素
および/または不活性ガスからなる希釈ガスで希釈され
た遷移金属カルボニル化合物を気相熱分解して該遷移金
属の粉末を製造する方法において、予め0. 1〜30
体積%の濃度に希釈された200℃以下の遷移金属カル
ボニル化合物の希釈混合気体の1〜30体積%と、気相
熱分解の供給熱源としての400℃以上の更なる希釈ガ
ス96〜55体積%とを各々反応部に供給し、混合する
ことにより気相熱分解を行うこと、該カルボニル化合物
の希釈混合気体を反応部に導入する際、導入部周囲より
該混合気体の流出に逆らわない方向に200℃以下の低
温希釈ガス3〜15体積%を流出させること、および前
記気合熱分解を300ガウス以上の磁場の存在下に行う
こと、を特徴とするものである。
That is, the method for producing ultrafine metal particles according to the present invention is a method for producing powder of a transition metal by gas-phase pyrolysis of a transition metal carbonyl compound diluted with a diluent gas consisting of hydrogen and/or an inert gas. 0 in advance. 1-30
1-30% by volume of a diluted mixture gas of transition metal carbonyl compound below 200°C diluted to a concentration of % by volume and 96-55% by volume of a further diluent gas above 400°C as a feed heat source for gas phase pyrolysis. and gas-phase thermal decomposition by supplying and mixing them to the reaction section, and when introducing the diluted mixed gas of the carbonyl compound into the reaction section, from the periphery of the introduction section in a direction that does not oppose the outflow of the mixed gas. The method is characterized in that 3 to 15% by volume of a low-temperature diluent gas of 200° C. or lower is allowed to flow out, and that the vapor pyrolysis is performed in the presence of a magnetic field of 300 Gauss or higher.

効果 本発明方法によれば、極めて微細な、たとえば平均短軸
径0.05ミクロン以下の針状の、遷移金属粉末が安定
して得られる。そして、この遷移金属粉末は、磁気特性
が優れている。
Effects According to the method of the present invention, extremely fine, acicular transition metal powder having an average minor axis diameter of 0.05 microns or less, for example, can be stably obtained. This transition metal powder has excellent magnetic properties.

本発明の方法で、極めて微細な針状金属粉末が安定して
得られるのは、磁場の印加状態で、低温の金属カルボニ
ル化合物を希釈ガスで所定割合希釈した少量の混合気体
(ど対して、高温で多量の希釈ガスを混合することによ
り、金属カルボニルの分解に要する反応熱と分解熱を外
部熱源から与える場合に比較して、著しく急速に熱を供
給できる為および低温の希釈ガスで金属カルボニル供給
導入管を冷却保護することにより該管出口の閉塞や反応
物の付着を抑制できる為に、粒子形成時の核発生数が多
く、それだけ微細な粒子を安定的に形成できるものと考
えられる。
In the method of the present invention, extremely fine acicular metal powder can be stably obtained under the application of a magnetic field using a small amount of a mixed gas (as opposed to By mixing a large amount of diluent gas at high temperature, heat can be supplied significantly more rapidly than when the reaction heat and decomposition heat required for decomposing metal carbonyls is supplied from an external heat source, and metal carbonyls can be decomposed with low-temperature diluent gas. It is thought that by cooling and protecting the supply inlet pipe, it is possible to suppress the clogging of the pipe outlet and the adhesion of reactants, so that a large number of nuclei are generated during particle formation, and it is possible to stably form finer particles.

〔発明の詳細な説明〕[Detailed description of the invention]

遷移金属カルボニル化合物 本発明に於いて使用される遷移金属カルボニル化合物は
、Fe、Ni、Co、W、Mo等のカルボニル化合物及
びこれらの混合物であり、好ましくは低沸点のF e 
(CO) 5およびCo H(CO) 4である。
Transition metal carbonyl compound The transition metal carbonyl compound used in the present invention is a carbonyl compound such as Fe, Ni, Co, W, Mo, etc., or a mixture thereof, and is preferably a low boiling point Fe.
(CO) 5 and Co H(CO) 4.

高沸点のMoXW等のカルボニル化合物は、それ自身の
熱分解に加えて、これをF e (CO) 5あるいは
CoH(Co)4に少量溶解させて、反応系に供給する
ことで溶媒金属との合金粒子を得ることもできる。
In addition to thermally decomposing high-boiling point carbonyl compounds such as MoXW, carbonyl compounds such as MoXW can be dissolved with a solvent metal by dissolving a small amount in Fe (CO) 5 or CoH (Co) 4 and supplying it to the reaction system. Alloy particles can also be obtained.

希釈ガス 希釈ガスとしては、窒素、アルゴン等の不活性ガスまた
は水素若しくはそれらの混合気体が使用される。
Diluting gas As the diluting gas, an inert gas such as nitrogen or argon, hydrogen, or a mixture thereof is used.

熱分解 本発明による熱分解は、原料遷移金属カルボニル化合物
の希釈ないし内部熱源の導入ならびに気相熱分解を磁場
の印加下で行なうことを除けば、従来公知のそれと本質
的には変らない。
Thermal decomposition The thermal decomposition according to the present invention is essentially the same as that known in the art, except that the raw transition metal carbonyl compound is diluted or an internal heat source is introduced, and the gas phase thermal decomposition is carried out under the application of a magnetic field.

第1図は、本発明方法を実施するための装置の一例を示
すものである。
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention.

第1図において、導入管1より高温の希釈ガスを、また
、導入管5より低温の金属カルボニルと希釈ガスの混合
気体を導入し、両者を磁場の印加されているノズル出口
6の位置で接触させることにより、金属カルボニルの分
解に必要な300℃以上、好ましくは400〜800℃
の範囲、の熱を高温側希釈ガスより瞬時に供給すること
ができる。
In Fig. 1, a high-temperature diluent gas is introduced through the introduction tube 1, and a mixed gas of metal carbonyl and dilution gas at a low temperature is introduced through the introduction tube 5, and the two are brought into contact at the nozzle outlet 6 where a magnetic field is applied. By heating, the temperature is 300°C or higher, preferably 400 to 800°C, which is necessary for the decomposition of metal carbonyl.
Heat in the range of 100 to 100% can be instantly supplied from the high-temperature side diluent gas.

この際、導入管5内での低温の金属カルボニルの分解反
応による閉塞を防止する為に、導入管11より低温の希
釈ガスを導入し保護する。
At this time, in order to prevent blockage due to the decomposition reaction of low-temperature metal carbonyl in the introduction pipe 5, low-temperature diluent gas is introduced from the introduction pipe 11 for protection.

導入管5より導入される混合気体は、金属カルボニル化
合物(導入管2より導入)と希釈ガス(導入管3より導
入)とを混合室4において混合して、所定の濃度の金属
カルボニル化合物混合気体として得られる。この導入管
5より導入される混合気体中の遷移金属カルボニル化合
物の濃度は、0.1〜30体積%、好ましくは0.5〜
25体積%、の範囲である。この濃度が高過ぎると得ら
れる金属粒子の粒径が大きく成長するので、本発明が目
的とする高保磁力を有する磁性超微粉は得られず、一方
、濃度が低過ぎると生産性が劣る。
The mixed gas introduced through the introduction pipe 5 is produced by mixing a metal carbonyl compound (introduced through the introduction pipe 2) and a diluent gas (introduced through the introduction pipe 3) in the mixing chamber 4 to produce a metal carbonyl compound mixed gas having a predetermined concentration. obtained as. The concentration of the transition metal carbonyl compound in the gas mixture introduced through the introduction pipe 5 is 0.1 to 30% by volume, preferably 0.5 to 30% by volume.
The range is 25% by volume. If this concentration is too high, the particle size of the metal particles obtained will grow large, making it impossible to obtain the magnetic ultrafine powder having a high coercive force, which is the object of the present invention.On the other hand, if the concentration is too low, productivity will be poor.

この導入管5より導入される混合気体は、200℃以下
、好ましくは180〜30℃、の温度範囲であって、そ
の導入量は導入管1と導入管5および導入管11との総
供給量に対して1〜30体積%、好ましくは3〜20体
積%、である。
The mixed gas introduced through the introduction pipe 5 has a temperature range of 200°C or less, preferably 180 to 30°C, and the amount introduced is the total amount supplied from the introduction pipe 1, the introduction pipe 5, and the introduction pipe 11. 1 to 30% by volume, preferably 3 to 20% by volume.

導入量が少な過ぎると生産性が劣り、一方、多過ぎると
十分な反応熱が得られないので反応速度が低下し、生成
金属粒子が大きく成長して超微粒子が得られない。また
、この混合ガスの温度が高すぎると、導入管5内での金
属カルボニルの分解反応が生じ、所望の超微粒子は得ら
れない。
If the amount introduced is too small, the productivity will be poor, while if it is too large, sufficient reaction heat will not be obtained, so the reaction rate will be reduced, and the produced metal particles will grow large, making it impossible to obtain ultrafine particles. Furthermore, if the temperature of this mixed gas is too high, a decomposition reaction of the metal carbonyl occurs within the introduction pipe 5, making it impossible to obtain the desired ultrafine particles.

また、導入管1より導入される高温の希釈ガスは、40
0℃以上、好ましくは450℃以上(上限は1000℃
程度)、であって、その導入量は導入管1と導入管5お
よび導入管11との総供給量に対して96〜55体積%
、好ましくは92〜70体積%、である。このガスの温
度が低すぎたり、導入量が少ないと、十分な反応熱が得
られないので反応速度が著しく低下し、金属粒子形成時
の核発生量も減少するので粒径が大きく成長して本発明
が目的とする超微粒子は得られない。
In addition, the high temperature diluent gas introduced from the introduction pipe 1 is
0°C or higher, preferably 450°C or higher (upper limit is 1000°C)
degree), and the amount introduced is 96 to 55% by volume based on the total supply amount of introduction tube 1, introduction tube 5, and introduction tube 11.
, preferably 92 to 70% by volume. If the temperature of this gas is too low or the amount introduced is too small, sufficient reaction heat will not be obtained and the reaction rate will drop significantly, and the amount of nuclei generated during metal particle formation will also decrease, causing the particle size to grow larger. The ultrafine particles targeted by the present invention cannot be obtained.

また導入管11より導入される低温の希釈ガスは、20
0℃以下、好ましくは100℃以下であって、その導入
量は総供給量の3〜15体積%、好ましくは5〜10体
積%である。このガス導入量が少ないと、原料金属カル
ボニル化合物導入管5内での分解反応による閉塞、ある
いは導入管5先端での付着を防止する事ができず、長時
間の安定運転が継続できない。一方、多すぎると反応温
度が充分保てず、目的とする超微粒子が得られない。
In addition, the low temperature diluent gas introduced from the introduction pipe 11 is
The temperature is 0°C or lower, preferably 100°C or lower, and the amount introduced is 3 to 15% by volume, preferably 5 to 10% by volume of the total amount supplied. If the amount of gas introduced is small, it will not be possible to prevent blockage due to decomposition reaction within the raw material metal carbonyl compound introduction tube 5 or adhesion at the tip of the introduction tube 5, making it impossible to continue stable operation for a long time. On the other hand, if the amount is too large, the reaction temperature cannot be maintained sufficiently and the desired ultrafine particles cannot be obtained.

ノズル出口6の位置で接触混合されたガスは、7の反応
管内で5秒以下、好ましくは2秒以下、滞留して気相分
解反応を行う。
The gases catalytically mixed at the nozzle outlet 6 remain in the reaction tube 7 for 5 seconds or less, preferably 2 seconds or less, to perform a gas phase decomposition reaction.

反応系への磁場の印加は、永久磁石、電磁石、ソレノイ
ドコイル等の装置8のいずれも使用可能である。印加す
る磁場は、300ガウス以上、好ましくは400〜15
00ガウスの範囲、である。
Any device 8 such as a permanent magnet, an electromagnet, or a solenoid coil can be used to apply the magnetic field to the reaction system. The applied magnetic field is 300 Gauss or more, preferably 400 to 15
00 Gauss range.

磁場を印加することで、生成する金属超微粒子の針状性
を制御して、保磁力を大きくすることができる。
By applying a magnetic field, the acicularity of the produced ultrafine metal particles can be controlled and the coercive force can be increased.

熱分解によって生成した金属超微粒子は、管路9を経て
捕集室10へ送って回収する。
Ultrafine metal particles generated by thermal decomposition are sent to a collection chamber 10 via a pipe 9 and collected.

上記の条件により、金属超微粒子を生成させることで、
たとえば、保磁力800〜2500エルステツド、飽和
磁化120〜200emu/gの磁気特性を有する金属
超微粒子が安定的に得られる。
By generating ultrafine metal particles under the above conditions,
For example, ultrafine metal particles having magnetic properties of a coercive force of 800 to 2,500 oersted and a saturation magnetization of 120 to 200 emu/g can be stably obtained.

本発明で得られる金属超微粒子は、高密度記録媒体とし
て好ましいものであるが、金属超微粒子を要する分野は
、これに限るものではないし、本発明による超微粒子の
用途もそれに限られるものではない。
The ultrafine metal particles obtained by the present invention are preferable as high-density recording media, but the fields that require ultrafine metal particles are not limited to this, nor are the uses of the ultrafine particles according to the present invention limited thereto. .

実験例1 第1図に示すような反応装置において、内径27+nm
、長さ1mの反応管に600ガウスの磁場を印加し、下
記の反応条件でF e (CO) 5の気相熱分解反応
を行なって、鉄用微粒子を形成させた。
Experimental Example 1 In a reaction apparatus as shown in Fig. 1, an inner diameter of 27+nm was used.
A magnetic field of 600 Gauss was applied to a reaction tube having a length of 1 m, and a gas phase pyrolysis reaction of Fe (CO) 5 was carried out under the following reaction conditions to form fine particles for iron.

(イ)管路1からの窒素導入量 窒素:500℃、総供給量の85体積%(ロ)管路5か
らの混合気体導入量 窒素=60℃、総供給量の8.5体積%Fe (Co)
 5: 60℃、総供給量の1.5体積% (ハ)管路11からの希釈ガス導入量 窒素=60℃、総供給量の5体積% (ニ)滞留時間  0,1秒 (ホ)反応管内平均温度 495℃ 得られた鉄用微粒子は、透過電子顕微鏡写真の観察によ
り、短軸径0.02ミクロン、長軸径0.20ミクロン
の針状形を呈し、磁気特性は、飽和磁化130 (em
u/g ) 、保磁力1520(Oe)であった。
(a) Amount of nitrogen introduced from pipe 1 Nitrogen: 500°C, 85% by volume of the total supply (b) Amount of mixed gas introduced from pipe 5 Nitrogen = 60°C, 8.5% by volume of the total supply Fe (Co)
5: 60°C, 1.5% by volume of the total supply (c) Amount of diluent gas introduced from pipe 11 Nitrogen = 60°C, 5% by volume of the total supply (d) Residence time 0.1 seconds (e) Average temperature inside the reaction tube: 495°C. Observation of transmission electron micrographs shows that the obtained fine particles for iron exhibit an acicular shape with a minor axis diameter of 0.02 microns and a major axis diameter of 0.20 microns, and the magnetic properties are saturation magnetization. 130 (em
u/g) and coercive force of 1520 (Oe).

実施例2 実施例1の条件において長時間安定性の確認を行なった
結果、 経過時間 [時間] 次の通りであった。
Example 2 The long-term stability was confirmed under the conditions of Example 1. As a result, the elapsed time [hours] was as follows.

保磁力  飽和磁化 [Oe]    [emu / g] 印加装置、9・・・管路、10・・・捕集室、11・・
・低温の希釈ガス導入管、12・・・冷却水管。
Coercive force Saturation magnetization [Oe] [emu/g] Application device, 9... Conduit, 10... Collection chamber, 11...
・Low temperature dilution gas introduction pipe, 12...cooling water pipe.

Claims (1)

【特許請求の範囲】[Claims] 水素および/または不活性ガスからなる希釈ガスで希釈
された遷移金属カルボニル化合物を気相熱分解して該遷
移金属の粉末を製造する方法において、予め0.1〜3
0体積%の濃度に希釈された200℃以下の遷移金属カ
ルボニル化合物の希釈混合気体の1〜30体積%と、気
相熱分解の供給熱源としての400℃以上の更なる希釈
ガス96〜55体積%とを各々反応部に供給し、混合す
ることにより気相熱分解を行うこと、該カルボニル化合
物の希釈混合気体を反応部に導入する際、導入部周囲よ
り該混合気体の流出に逆らわない方向に200℃以下の
低温希釈ガス3〜15体積%を流出させること、および
前記気相熱分解を300ガウス以上の磁場の存在下に行
うこと、を特徴とする金属超微粒子の製造法。
In a method for producing a transition metal powder by vapor-phase pyrolysis of a transition metal carbonyl compound diluted with a diluent gas consisting of hydrogen and/or an inert gas,
1-30% by volume of a diluted gas mixture of transition metal carbonyl compounds below 200°C diluted to a concentration of 0% by volume and 96-55% by volume of a further diluent gas above 400°C as a feed heat source for gas phase pyrolysis. % respectively to the reaction section and mix them to perform gas phase thermal decomposition, and when introducing the diluted mixed gas of the carbonyl compound into the reaction section, a direction that does not oppose the outflow of the mixed gas from around the introduction section. 1. A method for producing ultrafine metal particles, comprising: flowing out 3 to 15% by volume of a low-temperature diluent gas of 200° C. or lower; and performing the gas phase pyrolysis in the presence of a magnetic field of 300 Gauss or higher.
JP6572489A 1988-11-10 1989-03-17 Manufacture of metal super fine particle Pending JPH02243707A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6572489A JPH02243707A (en) 1989-03-17 1989-03-17 Manufacture of metal super fine particle
US07/433,376 US5064464A (en) 1988-11-10 1989-11-09 Process for producing ultrafine metal particles
EP89311682A EP0368676A3 (en) 1988-11-10 1989-11-10 Process for producing ultrafine metal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6572489A JPH02243707A (en) 1989-03-17 1989-03-17 Manufacture of metal super fine particle

Publications (1)

Publication Number Publication Date
JPH02243707A true JPH02243707A (en) 1990-09-27

Family

ID=13295253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6572489A Pending JPH02243707A (en) 1988-11-10 1989-03-17 Manufacture of metal super fine particle

Country Status (1)

Country Link
JP (1) JPH02243707A (en)

Similar Documents

Publication Publication Date Title
US5064464A (en) Process for producing ultrafine metal particles
Willard et al. Chemically prepared magnetic nanoparticles
Papirer et al. The preparation of a ferrofluid by decomposition of dicobalt octacarbonyl: II. Nucleation and growth of particles
US2884319A (en) Acicular metal particles from metal carbonyls and method of preparation
Chaitoglou et al. Arc-discharge synthesis of iron encapsulated in carbon nanoparticles for biomedical applications
Van Wonterghem et al. An investigation of the chemical reactions leading to the formation of ultrafine amorphous fe100− xcx alloy particles
US4526611A (en) Process for producing superfines of metal
Zhao et al. Preparation and characterization of single phase γ-Fe nanopowder from cw CO2 laser induced pyrolysis of iron pentacarbonyl
Miguel et al. Magnetic nanoparticles prepared by laser pyrolysis
Yang et al. Synthesis of α-Fe2O3 templates via hydrothermal route and Fe3O4 particles through subsequent chemical reduction
JPH02243707A (en) Manufacture of metal super fine particle
JPH09143502A (en) Graphite coated metallic particle and its production
JPH04202602A (en) Manufacture of metal magnetic powder
US3672867A (en) Submicron ferromagnetic alloy particles containing cobalt,boron,and zinc
Pei et al. Controlled monodisperse Fe nanoparticles synthesized by chemical method
JPH01306510A (en) Improvement for manufacturing super fine particle powder
Zhao et al. Growth of γ′-Fe4N and γ-Fe ultrafine powders synthesized by laser-induced pyrolysis of mixtures of Fe (CO) 5and NH3
JPH04183807A (en) Manufacture of metallic magnetic powder
JPS63270405A (en) Production of metal hyperfine powder
JPH02133503A (en) Manufacture of super fine metal particles
Feng et al. Synthesis of carbon-encapsulated Iron and iron nitride nanoparticles from ferrocene through reactive radio-frequency thermal plasma
US4915728A (en) Iron/cobalt alloy filaments
KR100453554B1 (en) Producing method for cobalt ultrafine particles by the gas phase reduction
JPH04183806A (en) Manufacture of metallic magnetic powder
JPS63270406A (en) Production of metal hyperfine powder