JPS63270405A - Production of metal hyperfine powder - Google Patents

Production of metal hyperfine powder

Info

Publication number
JPS63270405A
JPS63270405A JP62102567A JP10256787A JPS63270405A JP S63270405 A JPS63270405 A JP S63270405A JP 62102567 A JP62102567 A JP 62102567A JP 10256787 A JP10256787 A JP 10256787A JP S63270405 A JPS63270405 A JP S63270405A
Authority
JP
Japan
Prior art keywords
gas
reaction
carbonyl compound
powder
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62102567A
Other languages
Japanese (ja)
Inventor
Yoshiteru Kageyama
景山 芳輝
Yoshiaki Sawada
善秋 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP62102567A priority Critical patent/JPS63270405A/en
Priority to US07/184,280 priority patent/US4808216A/en
Priority to DE8888303689T priority patent/DE3867896D1/en
Priority to EP88303689A priority patent/EP0290177B1/en
Publication of JPS63270405A publication Critical patent/JPS63270405A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain metal hyperfine powder having excellent magnetic characteristic by diluting metal carbonyl compound by inert gas, etc., retaining this mixed gas to reaction system impressing magnetic field and executing gas phase heat decomposition reaction. CONSTITUTION:The transition metal carbonyl compound of Fe(CO)5, etc., is charged into a mixing chamber 2 from an introducing tube 1. By introducing the inert gas or hydrogen from dilution gas introducing pipe 3, the above compound is made to the metal carbonyl compound mixed gas having <=3 vol.% concn. The mixed gas is sent to the reaction tube 4 impressing the magnetic field haying >=100 gauss by a device 5 and retained for a short time, such as <=5 sec., to execute the gas phase heat decomposition reaction. The decomposition temp. is desirably >=300 deg.C. By this method, the metal magnetized hyperfine powder having excellent magnetic characteristic of high holding coercive force and high saturated magnetization, etc., is obtd.

Description

【発明の詳細な説明】 〔発明の背景〕 産業上の利用分野 本発明は、金属超微粉の製法に関する。さらに詳しくは
、本発明は、遷移金属カルボニル化合物を特定の条件下
で気相熱分解することにより、高密度磁気記録媒体等に
適する優れた磁気特性、すなわち高保磁力および高飽和
磁化、を有する金属磁性超微粉の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing ultrafine metal powder. More specifically, the present invention produces a metal having excellent magnetic properties suitable for high-density magnetic recording media, such as high coercive force and high saturation magnetization, by subjecting transition metal carbonyl compounds to gas phase thermal decomposition under specific conditions. Concerning a method for producing magnetic ultrafine powder.

従来の技術 Fe、Ni等の遷移金属カルボニル化合物の気相熱分解
により金属微粉末を得る方法は公知であって、例えば特
公昭43−24316号、同44−11529号、同5
2−31809号公報等が知られている。
2. Description of the Related Art Methods for obtaining fine metal powders by gas-phase thermal decomposition of carbonyl compounds of transition metals such as Fe and Ni are known, for example, as disclosed in Japanese Patent Publications No. 43-24316, No. 44-11529, No. 5
Publication No. 2-31809 and the like are known.

しかし、本発明者らの知る限りでは、これら公報のいず
れにおいても、得られる粉末の粒子径は数ミクロン程度
と大きく、本発明が目的とするような平均粒径0,5ミ
クロン以下の金属超微粉は、得られないし、更に高密度
磁気記録媒体等に適し、た高保磁力および高飽和磁化の
優れた磁気特性を有する金属超微粉も得られていない。
However, as far as the present inventors know, in all of these publications, the particle size of the obtained powder is large, on the order of several microns, and the particle size of the powder obtained is large, on the order of several microns. No fine powder has been obtained, and furthermore, no ultrafine metal powder has been obtained which is suitable for high-density magnetic recording media and has excellent magnetic properties such as high coercive force and high saturation magnetization.

また、特公昭39−1004号、同45−16868号
、特開昭58−137202号公報等に於いては、遷移
金属カルボニル化合物を特殊な溶媒に溶解した液相状態
で熱分解反応を行なうことにより、溶媒中に分散した金
属超微粉を得ることを提案している。
In addition, in Japanese Patent Publication Nos. 39-1004, 45-16868, and 58-137202, the thermal decomposition reaction is conducted in a liquid phase state in which a transition metal carbonyl compound is dissolved in a special solvent. proposed to obtain ultrafine metal powder dispersed in a solvent.

しかし、本発明者らの知る限りでは、金属超微粉の工業
的製造において、液相法の製法では、金属超微粉は見掛
は密度が極めて低いことなどから、超微粉と溶媒との分
離プロセスが困難となったり、溶媒当りの生産量が低く
抑えられるなどして高コストになるなど、気相法の製法
に比較すると量産性、経済性の点で聞届を生ずる。
However, as far as the present inventors know, in the industrial production of ultrafine metal powder, the liquid phase method requires a separation process between the ultrafine powder and the solvent because the ultrafine metal powder has an extremely low apparent density. Compared to the gas phase method, it is difficult to mass produce and is economically disadvantageous, as it is difficult to process, and the production volume per solvent is kept low, resulting in high costs.

〔発明の概要〕[Summary of the invention]

要旨 本発明者等は、以上の状況に鑑み、気相法金属超微粉の
製法について鋭意検討の結果、本発明をなし得た。
Summary In view of the above circumstances, the inventors of the present invention have completed the present invention as a result of intensive studies on the method for producing ultrafine metal powder produced by vapor phase method.

すなわち、本発明による金属超微細粉末の製造法は、遷
移金属カルボニル化合物を気相熱分解反応に付して該遷
移金属の粉末を製造する方法において、該カルボニル化
合物を不活性ガスまたは水素でその濃度を3体積%以下
に希釈した混合気体を、100ガウス以上の磁場を印加
した反応系内に5秒以下滞留させて気相熱分解反応を行
なうこと、を特徴とするものである。
That is, the method for producing ultrafine metal powder according to the present invention is a method for producing a transition metal powder by subjecting a transition metal carbonyl compound to a gas phase pyrolysis reaction, in which the carbonyl compound is dehydrated with an inert gas or hydrogen. The method is characterized in that a gaseous mixture diluted to a concentration of 3% by volume or less is retained in a reaction system to which a magnetic field of 100 Gauss or more is applied for 5 seconds or less to perform a gas phase pyrolysis reaction.

効果 本発明方法によれば、極めて微細な、たとえば長軸径0
.5ミクロン以下、短軸径0.1ミクロン以下、の遷移
金属粉末が得られる。そして、この遷移金属粉末は、磁
気特性がすぐれている。
Effects According to the method of the present invention, extremely fine, for example, major axis diameter 0
.. A transition metal powder with a diameter of 5 microns or less and a minor axis diameter of 0.1 microns or less is obtained. This transition metal powder has excellent magnetic properties.

本発明方法は、磁場の印加下に行なうという点を除けば
通常の熱分解法と同じであるから、前記した公知改良法
に認められるような問題点は存在しない。
Since the method of the present invention is the same as a conventional pyrolysis method except that it is carried out under the application of a magnetic field, it does not have the problems found in the known improved methods described above.

特定の希釈された条件での熱分解を特定の強さの磁場の
印加下に行なうことによって超微粉が得られ、しかもそ
れが磁気特性のすぐれたものであるということは思いが
けなかったことと思料される。
It was unexpected that ultrafine powder could be obtained by performing pyrolysis under specific diluted conditions and under the application of a magnetic field of a specific strength, and that it also had excellent magnetic properties. be done.

〔発明の詳細な説明〕[Detailed description of the invention]

遷移金属カルボニル化合物 本発明に於いて使用される遷移金属カルボニル化合物は
、F e、、N jSCo、 W、 Mo等のカルボニ
ル化合物及びこれらの混合物であり、好ましくは低沸点
のF e (CO) c、およびN i(CO) 4で
ある。
Transition metal carbonyl compounds The transition metal carbonyl compounds used in the present invention are carbonyl compounds such as Fe, NjSCo, W, Mo, etc., and mixtures thereof, preferably Fe(CO)c having a low boiling point. , and N i (CO) 4.

高沸点のCo5W等のカルボニル化合物は、それ自身の
熱分解に加えて、これをF e (CO) 5あるいは
N i  (CO) 4に少量溶解させて、反応系に供
給することで溶媒金属との合金粒子を得ることもできる
In addition to thermally decomposing the high-boiling point carbonyl compound such as Co5W, it can be dissolved in a small amount in Fe (CO) 5 or Ni (CO) 4 and supplied to the reaction system to dissolve the solvent metal. It is also possible to obtain alloy particles of

熱分解 本発明による熱分解は、操作上は、特定の磁場を熱分解
帯域に印加するという点を除けば、従来のそれと本質的
には異ならない。
Pyrolysis Pyrolysis according to the invention does not differ essentially from conventional ones in operation, except that a specific magnetic field is applied to the pyrolysis zone.

第1図は、そのような本発明による熱分解の要旨を説明
するものである。
FIG. 1 explains the gist of such thermal decomposition according to the present invention.

第1図において、金属カルボニル化合物を導入管1より
混合室2に装入する。これに、希釈ガス導入管3より希
釈ガスを導入して、所定濃度の金属カルボニル化合物混
合ガスを得る。
In FIG. 1, a metal carbonyl compound is introduced into a mixing chamber 2 through an introduction pipe 1. A diluent gas is introduced into this through the diluent gas introduction pipe 3 to obtain a metal carbonyl compound mixed gas having a predetermined concentration.

希釈ガスとしては、窒素、ア゛ルゴン等の不活性ガスま
たは水素及びそれらの混合気体が使用される。希釈ガス
中の遷移金属カルボニル化合物の濃度は、3体積%以下
、好ましくは1.5〜0.01体積%の範囲、である。
As the diluent gas, an inert gas such as nitrogen or argon, hydrogen, or a mixture thereof is used. The concentration of the transition metal carbonyl compound in the diluent gas is 3% by volume or less, preferably in the range of 1.5 to 0.01% by volume.

希釈濃度が、3体積%超過では粒径が大きく成長するの
で、本発明が目的とする高保磁力を有する磁性超微粉は
得られない。
If the dilution concentration exceeds 3% by volume, the particle size will increase, making it impossible to obtain the magnetic ultrafine powder having the high coercive force that is the object of the present invention.

混合ガスは、管路3を経て反応管4へ送る。反応管内で
の滞留時間は、5秒以下、好ましくは2秒以下、である
。滞留時間が5秒超過となると粒子径が大きくなって、
本発明の目的とする磁性金属超微粉は得られない。本発
明でいう「滞留」はこのような短時間であるから、熱分
解は実質的には混合ガスを反応帯域を連続的に通過させ
て行なうということもできる。
The mixed gas is sent to the reaction tube 4 via the pipe line 3. The residence time in the reaction tube is 5 seconds or less, preferably 2 seconds or less. When the residence time exceeds 5 seconds, the particle size increases,
The ultrafine magnetic metal powder targeted by the present invention cannot be obtained. Since "retention" in the present invention is defined as such a short time, it can be said that thermal decomposition is substantially carried out by continuously passing the mixed gas through the reaction zone.

反応系への磁場の印加は、永久磁石、電磁石、ソレノイ
ドコイル等の装置5のいずれもが使用可能である。印加
する磁場は、100ガウス以上、好ましくは300〜1
500ガウスの範囲、である。磁場を印加することで、
保磁力を大きくし、しかも生成する金属超微粉の粒子径
を制御することもできる。
Any device 5 such as a permanent magnet, an electromagnet, or a solenoid coil can be used to apply the magnetic field to the reaction system. The magnetic field to be applied is 100 Gauss or more, preferably 300 to 1
500 Gauss range. By applying a magnetic field,
It is also possible to increase the coercive force and control the particle size of the produced ultrafine metal powder.

分解温度は、300℃以上、好ましくは400℃以上、
が好ましい。300℃未満の条件に於いても金属超微粉
は得られるが、目的とする高保磁力の磁性金属超微粉は
得られない。
The decomposition temperature is 300°C or higher, preferably 400°C or higher,
is preferred. Although ultrafine metal powder can be obtained under conditions of less than 300°C, ultrafine magnetic metal powder with the desired high coercive force cannot be obtained.

熱分解によって生成した金属微粉は、管路5を得て捕収
室6へ送って回収する。
Fine metal powder generated by thermal decomposition is sent to a collection chamber 6 through a pipe 5 and collected.

図示の装置は各種の改変が可能であることはいうまでも
ない。従って、たとえば、混合ガスの反応室への送入を
下向きに行なうこともできる。
It goes without saying that the illustrated device can be modified in various ways. Thus, for example, the mixed gas can also be introduced downward into the reaction chamber.

上記の条件により、金属超微粉を生成させることで、保
磁力500〜1200エルステツド、飽和磁化120〜
200 e m u / gの磁気特性を宜する金属超
微粉が得られる。
By producing ultrafine metal powder under the above conditions, the coercive force is 500 to 1200 oersted, and the saturation magnetization is 120 to 1200 oersted.
Ultrafine metal powder with magnetic properties of 200 emu/g is obtained.

本発明で得られる金属超微粉は高密度記録媒体として好
ましいものであるが、金属超微粉を要する分野は、これ
に限るものではないし、本発明による超微粉の用途もそ
れに限られるものでない。
Although the ultrafine metal powder obtained by the present invention is preferable as a high-density recording medium, the field requiring ultrafine metal powder is not limited to this, and the use of the ultrafine powder according to the present invention is not limited thereto.

実験例 実施例−1 図に示すような反応装置において、内径27IIl11
1長さ1mの反応管に450ガウスの磁場を印加し、窒
素で希釈した1、5体積%のFe(Co)5混合気体を
反応温度600℃/滞留時間0.8秒の条件で供給して
、気相熱分解反応を行なった。
Experimental Examples Example-1 In a reactor as shown in the figure, the inner diameter is 27IIl11.
1 A magnetic field of 450 Gauss was applied to a reaction tube with a length of 1 m, and a 1.5% by volume Fe(Co) mixed gas diluted with nitrogen was supplied at a reaction temperature of 600°C and a residence time of 0.8 seconds. Then, a gas phase pyrolysis reaction was carried out.

生成物の転化率は、供給F e (Co) c、に対し
て35%であった。
The product conversion was 35% based on the feed Fe(Co)c.

生成物の形状は、透過電子顕微鏡の観察により、直鎖状
をした金属超微粉(長軸径:約0.5ミクロン、短軸径
:約0.04ミクロン)であった。
The shape of the product was found to be linear ultrafine metal powder (long axis diameter: about 0.5 micron, short axis diameter: about 0.04 micron) as observed by transmission electron microscopy.

比表面積は19ゴ/g、磁気特性は振動型磁力計による
測定により、保磁力850エルステツド、飽和磁化16
0 e m u / gであった。
The specific surface area is 19g/g, and the magnetic properties are measured using a vibrating magnetometer, with a coercive force of 850 oersted and a saturation magnetization of 16
It was 0 emu/g.

実施例−2 実施例−1における金属粉の製造において、F e (
Co) c、に替えてCo2(CO)8/F e (C
o) c、=1/ 20 (モル比)の混合溶液を反応
に供した他は実施例−1と全く同様にして気相熱分解反
応を行なった。
Example-2 In the production of metal powder in Example-1, F e (
Co) c, instead of Co2(CO)8/F e (C
o) A gas phase thermal decomposition reaction was carried out in exactly the same manner as in Example-1, except that a mixed solution of c, = 1/20 (molar ratio) was subjected to the reaction.

生成したFe−Co超微粉の転化率は38%であり、比
表面積18rf/g、保磁力1080エルステツド、飽
和磁化155emu/zであった。
The conversion rate of the produced ultrafine Fe--Co powder was 38%, the specific surface area was 18 rf/g, the coercive force was 1080 oersted, and the saturation magnetization was 155 emu/z.

実施例−3 実施例−1における金属粉の製造において、反応温度を
300℃に変更した他は実施例−1と全く同様にして気
相熱分解反応を行なった。
Example 3 In producing the metal powder in Example 1, a gas phase pyrolysis reaction was carried out in the same manner as in Example 1, except that the reaction temperature was changed to 300°C.

生成物の転化率は15%であり、比表面積12rtr/
g、保磁力550エルステツド、飽和磁化160 e 
m u / gであった@比較例−1 実施例−1における金属粉の製造において、接触時間を
8秒に変更した他は実施例−1と全く同様にして気相熱
分解反応を行なった。
The conversion rate of the product is 15%, and the specific surface area is 12 rtr/
g, coercive force 550 oersted, saturation magnetization 160 e
m u / g @ Comparative Example-1 In the production of metal powder in Example-1, a gas phase pyrolysis reaction was carried out in exactly the same manner as in Example-1, except that the contact time was changed to 8 seconds. .

生成物の比表面積は6rr?/gであり、保磁力350
エルステツド、飽和磁化153 e m u / gで
あった。
Is the specific surface area of the product 6rr? /g, and the coercive force is 350
The saturation magnetization was 153 emu/g.

比較例−2 実施例−1における金属粉の製造において、反応系へ供
給するF e (CO) 5の濃度を5体積%に変更し
た他は実施例−1と全く同様にして気相熱分解反応を行
なった。
Comparative Example-2 In the production of metal powder in Example-1, gas phase pyrolysis was carried out in the same manner as in Example-1, except that the concentration of Fe (CO) 5 supplied to the reaction system was changed to 5% by volume. The reaction was carried out.

生成物の比表面積は3.2rrr/gであり、保磁力2
50エルステツド、飽和磁化170emu/gであった
〇 比較例−3 実施例−1における金属粉の製造において、印加磁場を
50ガウスに変更した他は実施例−1と全く同様にして
気相熱分解反応を行なった。
The specific surface area of the product is 3.2 rrr/g, and the coercive force is 2
50 oersted and saturation magnetization was 170 emu/g. Comparative Example-3 Vapor phase pyrolysis was carried out in the same manner as in Example-1 except that the applied magnetic field was changed to 50 Gauss in the production of metal powder in Example-1. The reaction was carried out.

生成物の比表面積は8.5rf/gであり、保磁力は4
70エルステツド、飽和磁化は148e m u / 
gであった。
The specific surface area of the product is 8.5 rf/g, and the coercive force is 4
70 oersted, saturation magnetization is 148 e m u /
It was g.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明方法を実施する装置の一具体例を模式的
に示す説明図である。
The drawing is an explanatory view schematically showing a specific example of an apparatus for carrying out the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  遷移金属カルボニル化合物を気相熱分解反応に付して
該遷移金属の粉末を製造する方法において、該カルボニ
ル化合物を不活性ガスまたは水素で希釈してその濃度を
3体積%以下とした混合気体を、100ガウス以上の磁
場を印加した反応系内に5秒以下滞留させて気相熱分解
反応を行なうことを特徴とする、金属超微細粉末の製造
法。
In a method for producing a transition metal powder by subjecting a transition metal carbonyl compound to a gas phase pyrolysis reaction, the carbonyl compound is diluted with an inert gas or hydrogen to obtain a mixed gas with a concentration of 3% by volume or less. , a method for producing ultrafine metal powder, which comprises retaining the powder for 5 seconds or less in a reaction system to which a magnetic field of 100 Gauss or more is applied to carry out a gas phase pyrolysis reaction.
JP62102567A 1987-04-25 1987-04-25 Production of metal hyperfine powder Pending JPS63270405A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62102567A JPS63270405A (en) 1987-04-25 1987-04-25 Production of metal hyperfine powder
US07/184,280 US4808216A (en) 1987-04-25 1988-04-21 Process for producing ultrafine metal powder
DE8888303689T DE3867896D1 (en) 1987-04-25 1988-04-25 METHOD FOR PRODUCING ULTRAFINE METAL POWDER.
EP88303689A EP0290177B1 (en) 1987-04-25 1988-04-25 Process for producing ultrafine metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62102567A JPS63270405A (en) 1987-04-25 1987-04-25 Production of metal hyperfine powder

Publications (1)

Publication Number Publication Date
JPS63270405A true JPS63270405A (en) 1988-11-08

Family

ID=14330798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62102567A Pending JPS63270405A (en) 1987-04-25 1987-04-25 Production of metal hyperfine powder

Country Status (1)

Country Link
JP (1) JPS63270405A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010099547A (en) * 2000-04-27 2001-11-09 허승헌 A design of a nanometer size metal, nonmetal, and alloy particle generator
US6468446B1 (en) * 1998-05-12 2002-10-22 American Air Liquide, Inc. Generation of metal-carbonyl standards for the calibration of spectroscopic systems
KR100572245B1 (en) * 2003-11-05 2006-04-19 한국기계연구원 Manufacturing method of nano iron powder with polymer coating layer
JP4932718B2 (en) * 2004-09-03 2012-05-16 ヴァーレ、インコ、リミテッド Method for producing metal powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468446B1 (en) * 1998-05-12 2002-10-22 American Air Liquide, Inc. Generation of metal-carbonyl standards for the calibration of spectroscopic systems
KR20010099547A (en) * 2000-04-27 2001-11-09 허승헌 A design of a nanometer size metal, nonmetal, and alloy particle generator
KR100572245B1 (en) * 2003-11-05 2006-04-19 한국기계연구원 Manufacturing method of nano iron powder with polymer coating layer
JP4932718B2 (en) * 2004-09-03 2012-05-16 ヴァーレ、インコ、リミテッド Method for producing metal powder

Similar Documents

Publication Publication Date Title
US5064464A (en) Process for producing ultrafine metal particles
Yiping et al. Magnetic and structural properties of ultrafine Co-B particles
EP0290177B1 (en) Process for producing ultrafine metal powder
JPS63270405A (en) Production of metal hyperfine powder
JPS60162704A (en) Production of magnetic fluid
US5766306A (en) Continuous process for making nanoscale amorphous magnetic metals
US4526611A (en) Process for producing superfines of metal
Nakatani et al. Iron-nitride magnetic fluids prepared by plasma CVD technique and their magnetic properties
JPS63270406A (en) Production of metal hyperfine powder
CN101220447A (en) Method for producing Fe-B amorphous alloy nano-wire
JPS61154112A (en) Stabilization method of ferromagnetic metallic particulate
JPS597321B2 (en) How to stabilize pyrophoric metal powders
JPH04202602A (en) Manufacture of metal magnetic powder
JPH032303A (en) Manufacture of super fine metal powder
Zhao et al. Growth of γ′-Fe4N and γ-Fe ultrafine powders synthesized by laser-induced pyrolysis of mixtures of Fe (CO) 5and NH3
JPH02133503A (en) Manufacture of super fine metal particles
Amagasa et al. Effect of laser irradiation on iron carbide nanoparticles produced by laser ablation in ethanol
JPH02243707A (en) Manufacture of metal super fine particle
JPH02111804A (en) Manufacture of magnetic metal powder
US4915728A (en) Iron/cobalt alloy filaments
JPH0313511A (en) Manufacture of metal magnetic powder
JPH04183807A (en) Manufacture of metallic magnetic powder
JPH04183806A (en) Manufacture of metallic magnetic powder
Matsumoto et al. Preparation of YIG fine particles by mist pyrolysis
WO2023286409A1 (en) Magnetic particle powder and magnetic particle dispersion