JPH04180835A - Production of catalyst for purifying exhaust gas - Google Patents

Production of catalyst for purifying exhaust gas

Info

Publication number
JPH04180835A
JPH04180835A JP2307593A JP30759390A JPH04180835A JP H04180835 A JPH04180835 A JP H04180835A JP 2307593 A JP2307593 A JP 2307593A JP 30759390 A JP30759390 A JP 30759390A JP H04180835 A JPH04180835 A JP H04180835A
Authority
JP
Japan
Prior art keywords
catalyst
powder
ceria
platinum group
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2307593A
Other languages
Japanese (ja)
Inventor
Takaaki Kanazawa
孝明 金沢
Hironori Satou
容規 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Original Assignee
Cataler Industrial Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Industrial Co Ltd, Toyota Motor Corp filed Critical Cataler Industrial Co Ltd
Priority to JP2307593A priority Critical patent/JPH04180835A/en
Publication of JPH04180835A publication Critical patent/JPH04180835A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an exhaust gas purifying catalyst excellent in durability, by a method wherein a platinum group catalyst is supported on a highly active ceria powder and the supported ceria powder is mixed with an activated alumina powder to prepare a slurry which is, in turn, applied to a carrier and a platinum group catalyst is further supported on the coated carrier. CONSTITUTION:A solution containing a platinum group catalytic metal compound such as a platinum compound or a rhodium compound is brought into contact with a highly active ceria powder having a specific surface area of 100m<2>/g or more and the impregnated ceria powder is subsequently baked to obtain a platinum group catalyst supported ceria catalyst powder. Next, this ceria catalyst powder and an activated alumina powder are mixed to prepare a slurry which is, in turn, applied to a carrier base material and the coated one is baked. A platinum group catalytic metal is further supported on the catalyst support layer. The catalyst thus obtained is enhanced in HC and CO purifying capacity while it keeps NOX purifying capacity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関の排気系(こ配置され、内燃機関より
排出される排気ガスを浄化する排気ガス浄化用触媒の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an exhaust gas purifying catalyst that is arranged in an exhaust system of an internal combustion engine and purifies exhaust gas discharged from the internal combustion engine.

[従来の技術] 例えば自動車の排気系には、従来よりモノリス触媒ある
いはペレット触媒なとの排気カス浄化用触媒が設けられ
ている。例えば特開昭48−103484号公報には、
アルミナを含む触媒担体に白金族触媒金属あるいは金属
の酸化物を担持させた排気ガス浄化用触媒が開示されて
いる。
[Prior Art] For example, the exhaust system of an automobile has conventionally been provided with an exhaust gas purifying catalyst such as a monolith catalyst or a pellet catalyst. For example, in Japanese Patent Application Laid-Open No. 48-103484,
An exhaust gas purifying catalyst is disclosed in which a platinum group catalyst metal or metal oxide is supported on a catalyst carrier containing alumina.

このような従来の排気ガス浄化用触媒を製造するには、
例えばハニカム状のコージェライト質モノリス担体基材
に活性アルミナからなる触媒担持層を形成する。そして
ジニトロジアンミン白金、硝酸ロジウム、硝酸パラジウ
ムなどの水溶性の白金族触媒金属化合物を溶解した水溶
液をこの触媒担持層に接触させ、焼成することにより白
金族触媒金属を触媒担持層に担持している。
To manufacture such a conventional exhaust gas purification catalyst,
For example, a catalyst support layer made of activated alumina is formed on a honeycomb-shaped cordierite monolith carrier base material. Then, an aqueous solution containing a water-soluble platinum group catalyst metal compound such as dinitrodiammine platinum, rhodium nitrate, palladium nitrate, etc. is brought into contact with this catalyst support layer and fired, thereby supporting the platinum group catalyst metal on the catalyst support layer. .

[発明が解決しようとする課題] 上記した排気ガス浄化用触媒は、HC,CoおよびNO
Xを効率良く浄化し、公害防止に奇与している。そして
この排気ガス浄化用触媒は、現在の排気カス規制に十分
適合している。しかしながら今後予想される排気ガス規
制においては、さらにHC,Goの規制が強化されるこ
とか予測される。
[Problem to be solved by the invention] The above-mentioned exhaust gas purification catalyst has HC, Co and NO
It efficiently purifies X and plays a miraculous role in pollution prevention. This exhaust gas purification catalyst fully complies with current exhaust gas regulations. However, in the future exhaust gas regulations, it is predicted that the regulations for HC and Go will be further strengthened.

本発明はこのような事情に鑑みてなされたものであり、
NOx浄化性能を従来と同等に維持しつつ、HC,Co
の浄化性能を一層向上させることを目的とする。
The present invention was made in view of these circumstances, and
While maintaining the same NOx purification performance as before, HC and Co
The purpose is to further improve the purification performance of

[課題を解決するための手段] 本発明の排気ガス浄化用触媒は、比表面積100m2/
Q以上の高活性セリア粉末に白金族触媒金属化合物含有
溶液を接触させ次いで焼成して白金族触媒金属か担持さ
れたセリア・触媒粉末とする第1工程と、 セリア・触媒粉末と活性アルミナ粉末とを混合してスラ
リーとしこのスラリーを触媒担体基材に被覆し焼成して
触媒担持層を形成する第2工程と、触媒担持層にさらに
白金族触媒金属を担持させる第3工程と、よりなること
を特徴とする。
[Means for Solving the Problems] The exhaust gas purifying catalyst of the present invention has a specific surface area of 100 m2/
A first step in which highly active ceria powder of Q or higher is brought into contact with a platinum group catalyst metal compound-containing solution and then calcined to form ceria/catalyst powder on which platinum group catalyst metal is supported; and ceria/catalyst powder and activated alumina powder. a second step in which a catalyst carrier base material is coated with the slurry and fired to form a catalyst support layer; and a third step in which a platinum group catalyst metal is further supported on the catalyst support layer. It is characterized by

本発明の一つの特徴は、比表面積100m2/q以上の
高活性セリア粉末を用いるところにある。
One feature of the present invention is the use of highly active ceria powder with a specific surface area of 100 m2/q or more.

セリアは公知のように酸素貯蔵性能を有している。As is known, ceria has oxygen storage ability.

したかって比表面積か大きな高活性セリア粉末は、極め
て酸素貯蔵能に優れ、白金族触媒金属の触媒作用を一層
促進する作用をもつ。比表面積が100m2/Clより
小さくなると、酸素貯蔵性能か低下し、触媒の浄化性能
が低下する。
Therefore, highly active ceria powder with a large specific surface area has an extremely excellent oxygen storage ability and has the effect of further promoting the catalytic action of the platinum group catalyst metal. When the specific surface area becomes smaller than 100 m2/Cl, the oxygen storage performance decreases and the purification performance of the catalyst decreases.

第1工程では、この高活性セリア粉末と白金族触媒金属
化合物含有溶液とを接触させ、次いて焼成する。これに
より高活性セリア粉末に白金族触媒金属が担持される。
In the first step, this highly active ceria powder is brought into contact with a solution containing a platinum group catalyst metal compound, and then fired. As a result, the platinum group catalyst metal is supported on the highly active ceria powder.

なお、白金族触媒金属としては、白金、ロジウム、パラ
ジウムから選択される。担持量はセリア粉末100重量
部に対して0゜1〜6重量部の範囲が好ましい。また、
この触媒金属含有溶液としてはコロイド溶液が好ましく
、PVA保護法によるコロイド、エマルジョン法による
コロイド、Turkev i ch法によるコロイドな
どが知られている。
Note that the platinum group catalyst metal is selected from platinum, rhodium, and palladium. The amount supported is preferably in the range of 0.1 to 6 parts by weight per 100 parts by weight of ceria powder. Also,
The catalyst metal-containing solution is preferably a colloidal solution, and colloids produced by the PVA protection method, colloids produced by the emulsion method, colloids produced by the Turkevich method, and the like are known.

第2工程では、第1工程で得られたセリア・触媒粉末と
活性アルミナ粉末とが混合されてスラリーとされ、この
スラリーから触媒担持層が形成される。これは触媒担体
基材をスラリー中に浸漬し、引上げて余分なスラリーを
吹き飛し所定温度で焼成することで従来と同様に行うこ
とができる。なあ、触媒担持層におけるセリアとアルミ
ナとの比率は、重量比でセリア/アルミナ−115〜1
/1程度が好ましい。
In the second step, the ceria/catalyst powder obtained in the first step and activated alumina powder are mixed to form a slurry, and a catalyst support layer is formed from this slurry. This can be done in the same manner as in the past by immersing the catalyst carrier base material in the slurry, pulling it up, blowing off the excess slurry, and firing it at a predetermined temperature. By the way, the ratio of ceria and alumina in the catalyst support layer is ceria/alumina -115 to 1 by weight.
/1 is preferable.

触媒担体基材としては、ハニカム形状のモノリス担体基
材、ペレット状担体基材、メタル担体基材など、従来公
知のものをそのまま用いることができる。その材質も、
コージェライト、ムライト、アルミナ、スピネルなどの
セラミックス、フェライト鋼などの耐熱性金属など、従
来と同様のものを利用できる。
As the catalyst carrier base material, conventionally known ones such as a honeycomb-shaped monolith carrier base material, a pellet-shaped carrier base material, a metal carrier base material, etc. can be used as they are. The material also
The same materials as before can be used, such as ceramics such as cordierite, mullite, alumina, and spinel, and heat-resistant metals such as ferritic steel.

なお活性アルミナ粉末には、ランタナあるいは焼成によ
りランタナとなるランタン化合物を含むことが望ましい
。これにより活性アルミナの耐熱性が向上し、高い触媒
性能を長期間維持することができる。このランタナの含
有量は、活性アルミナ100重量部に対して5〜60重
量部の範囲が望ましい。
Note that the activated alumina powder preferably contains lanthana or a lanthanum compound that becomes lanthana upon firing. This improves the heat resistance of activated alumina, making it possible to maintain high catalytic performance for a long period of time. The content of lanthana is preferably in the range of 5 to 60 parts by weight per 100 parts by weight of activated alumina.

第3工程では、上記触媒担持層にざらに白金族触媒金属
が担持される。ここで担持される触媒金属は、第1工程
でセリア粉末に担持されるものと同一でもよいし異なる
ものを用いることもできる。
In the third step, a platinum group catalyst metal is roughly supported on the catalyst support layer. The catalyst metal supported here may be the same as that supported on the ceria powder in the first step, or may be different.

またPi、Rh、Pdの伯に、イリジウム、ルテニウム
、オスミウムなどの貴金属、あるいはクロム、ニッケル
、バナジウム、銅、コバルト、マンガンなどの卑金属を
添加することもできる。
Further, in addition to Pi, Rh, and Pd, noble metals such as iridium, ruthenium, and osmium, or base metals such as chromium, nickel, vanadium, copper, cobalt, and manganese can be added.

上記触媒担持層に担持される触媒金属の担持量は、目的
とする性能、コストなどの条件により、従来と同様に種
々選択することができる。そしてこの担持は、触媒金属
化合物の水溶液などを含浸させ、焼成することにより従
来と同様に行うことができる。
The amount of the catalyst metal supported on the catalyst support layer can be selected from various values as in the past, depending on the desired performance, cost, and other conditions. This support can be carried out in a conventional manner by impregnating with an aqueous solution of a catalytic metal compound and firing.

[発明の作用および効果コ 本発明の排気ガス浄化用触媒の製造方法では、高活性セ
リア粉末に白金族触媒金属をコロイド粒子の大きな粒子
として担持させることができる。
[Operations and Effects of the Invention] In the method for producing an exhaust gas purifying catalyst of the present invention, the platinum group catalyst metal can be supported on the highly active ceria powder as large colloidal particles.

したがって触媒金属どうしのシンタリングおよびセリア
粉末との固溶が防止され、初期の浄化性能を長期間保持
することができる。そしてこの触媒金属は高活性セリア
粉末に担持されるため、セリアの酸素貯蔵能により高い
触媒性能が確保される。
Therefore, sintering of catalyst metals and solid solution with ceria powder are prevented, and the initial purification performance can be maintained for a long period of time. Since this catalytic metal is supported on highly active ceria powder, high catalytic performance is ensured due to the oxygen storage capacity of ceria.

またコロイド粒子であるのでセリア粉末との固溶も防止
される。
Furthermore, since they are colloidal particles, solid solution with ceria powder is also prevented.

したがって本発明の製造方法によれば、耐久性に優れた
排気ガス浄化用触媒を安定して製造できる。
Therefore, according to the manufacturing method of the present invention, an exhaust gas purifying catalyst with excellent durability can be stably manufactured.

[実施例] 以下実施例により具体的に説明する。[Example] This will be explained in detail below using examples.

(実施例1) 〈第1工程〉 比表面積130m2/Qの高活性セリア粉末100重量
部と、白金コロイド溶液(白金として10g/Q含有>
  rptコロイド」日中貴金属(株〉製)120cc
を混合し、300℃で1時間焼成してセリア・白金粉末
を形成した。なおこのセリア・白金粉末には、セリフ1
00重量部に対して白金が1.2重量部担持されている
(Example 1) <First step> 100 parts by weight of highly active ceria powder with a specific surface area of 130 m2/Q and a platinum colloid solution (containing 10 g/Q of platinum)
rpt colloid” manufactured by Nichō Kikinzoku Co., Ltd. 120cc
were mixed and fired at 300°C for 1 hour to form ceria/platinum powder. Furthermore, this ceria/platinum powder has Serif 1.
1.2 parts by weight of platinum is supported per 00 parts by weight.

く第2工程〉 次に上記セリア・白金粉末と、ランタナを4重量%含む
活性アルミナ粉末とを重量比で1:2となるように混合
し、スラリーを形成する。そしてコージェライト質モノ
リス担体基材をこのスラリー中に浸漬し、引上げて余分
なスラリーを吹き飛ばし、650℃で2時間焼成して触
媒担持層を形成した。なお担体基材1p当り触媒担持層
は150CI形成され、白金は0.6C]含まれている
Second Step> Next, the ceria/platinum powder and activated alumina powder containing 4% by weight of lantana are mixed at a weight ratio of 1:2 to form a slurry. Then, a cordierite monolith carrier base material was immersed in this slurry, pulled up to blow away excess slurry, and fired at 650° C. for 2 hours to form a catalyst support layer. The catalyst support layer was formed at 150 CI per p of the carrier base material, and platinum was contained at 0.6 C].

〈第3工程〉 次にジニトロジアンミン白金水溶液に上記担持層をもつ
担体基材を浸漬し、余分な水溶液を吹き飛ばし、300
℃で1時間焼成して白金を担持させた。ざらに塩化ロジ
ウム水溶液を用意し、同様にしてロジウムを担持させた
。それぞれの担持量は、担体基材11当り白金がCL 
6にl、ロジウムが0.40である。したがって白金の
合計担持量は1.2gである。このようにして本実施例
の触媒を製造した。
<Third Step> Next, the carrier base material with the above-mentioned support layer was immersed in a dinitrodiammine platinum aqueous solution, the excess aqueous solution was blown off, and 300
It was baked at ℃ for 1 hour to support platinum. An aqueous rhodium chloride solution was prepared in a colander, and rhodium was supported in the same manner. The amount of supported platinum per 11 carrier base materials is CL
6 and 1, and rhodium is 0.40. Therefore, the total amount of platinum supported is 1.2 g. In this way, the catalyst of this example was manufactured.

(実施例2) 白金コロイド溶液の代わりにパラジウムコロイド溶液(
パラジウムとして10C]15;!含有)「Pdコロイ
ド」田中員金属(株)製)を用いたこと、及びジニトロ
ジアンミン白金水溶液の代わりに塩化パラジウム水溶液
を用いたこと以外は実施例1と同様にして本実施例の触
媒を製造した。それぞれの担持量は、担体基材1f1当
りパラジウムが1゜2g、ロジウムが0.4gである。
(Example 2) Palladium colloid solution (
10C as palladium] 15;! The catalyst of this example was produced in the same manner as in Example 1, except that "Pd colloid" (containing) "Pd colloid" manufactured by Tanaka Kamen Metal Co., Ltd.) was used and a palladium chloride aqueous solution was used instead of the dinitrodiammine platinum aqueous solution. did. The amount of each supported is 1.2 g of palladium and 0.4 g of rhodium per 1f of carrier base material.

(比較例1) ランタナを4重量%含有する活性アルミナ粉末よりスラ
リーを形成し、これを実施例1と同様の担体基材に付@
させ、ついで焼成して触媒担持層を形成した。この触媒
担持層は担体基材11当り100にl形成されている。
(Comparative Example 1) A slurry was formed from activated alumina powder containing 4% by weight of lantana, and this was applied to the same carrier base material as in Example 1.
The mixture was then fired to form a catalyst support layer. This catalyst supporting layer is formed in an amount of 100 l per carrier base material 11.

この触媒担持層をもつ担体基材を硝酸セリウム水溶液中
に浸漬し、引上げた後余分な水溶液を吹き飛ばして焼成
することにより、セリアを担体基材11当り50g担持
させた。さらにジニトロジアンミン白金水溶液及び塩化
ロジウム水溶液に実施例1と同様に浸漬し、同様に焼成
して担体基材1.1!当り白金を1.20、ロジウムを
0.4gそれぞれ担持した比較例1の触媒を得た。
The carrier base material having this catalyst support layer was immersed in an aqueous cerium nitrate solution, pulled up, and then the excess aqueous solution was blown off and fired, thereby supporting 50 g of ceria per 11 carrier base materials. Further, it was immersed in a dinitrodiammine platinum aqueous solution and a rhodium chloride aqueous solution in the same manner as in Example 1, and fired in the same manner as in Example 1 to obtain carrier base material 1.1! A catalyst of Comparative Example 1 was obtained in which 1.20 g of platinum and 0.4 g of rhodium were supported per catalyst.

(比較例2) ジニトロジアンミン白金を塩化パラジウムに代えたこと
以外は比較例1と同様にして、比較例2の触媒を製造し
た。それぞれの担持量は、担体基材11当りパラジウム
が1.20、ロジウムが0゜40である。
(Comparative Example 2) A catalyst of Comparative Example 2 was produced in the same manner as Comparative Example 1 except that dinitrodiammine platinum was replaced with palladium chloride. The respective supported amounts were 1.20 for palladium and 0.40 for rhodium per 11 carrier base materials.

(試験例) 上記により得られた実施例及び比較例の触媒をそれぞれ
以下の条件で耐久試験を行い、その後触媒通過前と通過
後の排気ガス成分を比較することにより、HC,Coお
よびNOXの浄化率をそれぞれ測定した。この結果を第
1表に示す。
(Test Example) The catalysts of Examples and Comparative Examples obtained above were subjected to durability tests under the following conditions, and then the exhaust gas components before and after passing through the catalyst were compared. The purification rate was measured for each. The results are shown in Table 1.

(1)耐久条件 A/F=7.6 (ストイキ) S、V=90000h−1 触媒床温=900℃ 耐久時間=50時間 (2)評価条件 A/F=7.6 (ストイキ) S、V=50000h−1 入ガス温度=400℃ 第1表 (評価) 第1表より、実施例の触媒は比較例の触媒に比べて耐久
後のHC,Co及びNOXの浄化性能に優れていること
か明らかである。例えば実施例1と比較例1とを比較す
ると、触媒金属の担持量は両方とも同一であるが、実施
例1の触媒の浄化性能がこのように向上しているのは、
第1工程で白金コロイド溶液を用いてセリア粉末に白金
を担持させたことに起因していることが明らかである。
(1) Durability conditions A/F = 7.6 (stoichiometric) S, V = 90000h-1 Catalyst bed temperature = 900°C Durability time = 50 hours (2) Evaluation conditions A/F = 7.6 (stoichiometric) S, V = 50000h-1 Inlet gas temperature = 400°C Table 1 (Evaluation) From Table 1, the catalyst of the example is superior to the catalyst of the comparative example in the purification performance of HC, Co, and NOX after durability. It is obvious. For example, when comparing Example 1 and Comparative Example 1, both have the same amount of catalyst metal supported, but the reason why the purification performance of the catalyst of Example 1 is improved is because
It is clear that this is due to the platinum being supported on the ceria powder using a platinum colloid solution in the first step.

特許出願人  トヨタ自動車株式会社Patent applicant: Toyota Motor Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)比表面積100m^2/g以上の高活性セリア粉
末に白金族触媒金属化合物含有溶液を接触させ次いで焼
成して該白金族触媒金属が担持されたセリア・触媒粉末
とする第1工程と、 該セリア・触媒粉末と活性アルミナ粉末とを混合してス
ラリーとし該スラリーを触媒担体基材に被覆し焼成して
触媒担持層を形成する第2工程と、該触媒担持層にさら
に白金族触媒金属を担持させる第3工程と、よりなるこ
とを特徴とする排気ガス浄化用触媒の製造方法。
(1) A first step in which highly active ceria powder with a specific surface area of 100 m^2/g or more is brought into contact with a solution containing a platinum group catalyst metal compound, and then calcined to obtain a ceria/catalyst powder on which the platinum group catalyst metal is supported. , a second step of mixing the ceria/catalyst powder and activated alumina powder to form a slurry, coating the slurry on a catalyst carrier base material and firing it to form a catalyst support layer, and further adding a platinum group catalyst to the catalyst support layer. A method for producing an exhaust gas purifying catalyst, comprising a third step of supporting a metal.
JP2307593A 1990-11-13 1990-11-13 Production of catalyst for purifying exhaust gas Pending JPH04180835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2307593A JPH04180835A (en) 1990-11-13 1990-11-13 Production of catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2307593A JPH04180835A (en) 1990-11-13 1990-11-13 Production of catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH04180835A true JPH04180835A (en) 1992-06-29

Family

ID=17970934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2307593A Pending JPH04180835A (en) 1990-11-13 1990-11-13 Production of catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH04180835A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312825A (en) * 1999-04-23 2000-11-14 Degussa Huels Ag High performance catalyst containing precious metal and manufacture thereof
JP2006055748A (en) * 2004-08-20 2006-03-02 Tanaka Kikinzoku Kogyo Kk Manufacturing method for catalyst
JP2007229641A (en) * 2006-03-01 2007-09-13 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas and its manufacturing method
US7776783B2 (en) 2005-10-24 2010-08-17 Toyota Jidosha Kabushiki Kaisha Catalyst carrier and exhaust gas purification catalyst
EP2098292A4 (en) * 2006-11-14 2010-09-15 Nissan Motor Exhaust gas purifying catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312825A (en) * 1999-04-23 2000-11-14 Degussa Huels Ag High performance catalyst containing precious metal and manufacture thereof
JP2006055748A (en) * 2004-08-20 2006-03-02 Tanaka Kikinzoku Kogyo Kk Manufacturing method for catalyst
US7776783B2 (en) 2005-10-24 2010-08-17 Toyota Jidosha Kabushiki Kaisha Catalyst carrier and exhaust gas purification catalyst
JP2007229641A (en) * 2006-03-01 2007-09-13 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas and its manufacturing method
JP4715556B2 (en) * 2006-03-01 2011-07-06 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
EP2098292A4 (en) * 2006-11-14 2010-09-15 Nissan Motor Exhaust gas purifying catalyst
US9080491B2 (en) 2006-11-14 2015-07-14 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst

Similar Documents

Publication Publication Date Title
JPH0582259B2 (en)
JPS63162043A (en) Catalyst for cleaning exhaust gas
JPH09500570A (en) Layered catalyst composite
JP2003126694A (en) Catalyst for cleaning exhaust gas
JP5078062B2 (en) Exhaust gas purification catalyst
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH08131830A (en) Catalyst for purification of exhaust gas
JP2825420B2 (en) Diesel engine exhaust gas purification catalyst
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPH05285387A (en) Catalyst for purification of exhaust gas and purification method
JP3406001B2 (en) Exhaust gas purification catalyst
JPH04180835A (en) Production of catalyst for purifying exhaust gas
JP4275801B2 (en) Exhaust gas purification catalyst
JPH0578378B2 (en)
JPH1076159A (en) Exhaust gas purification catalyst and its production
JPH07155605A (en) Exhaust gas purifying catalyst and production thereof
JPH04334548A (en) Exhaust gas purifying catalyst
JPH04166228A (en) Oxidation catalyst
JP5641585B2 (en) Exhaust gas purification catalyst
JPH0578379B2 (en)
JPH02191548A (en) Catalyst for purification of exhaust gas
JPS6241066B2 (en)
JPH0573464B2 (en)
JPH0573465B2 (en)
JP2001259425A (en) Catalyst for cleaning exhaust gas