JPH04334548A - Exhaust gas purifying catalyst - Google Patents

Exhaust gas purifying catalyst

Info

Publication number
JPH04334548A
JPH04334548A JP3133277A JP13327791A JPH04334548A JP H04334548 A JPH04334548 A JP H04334548A JP 3133277 A JP3133277 A JP 3133277A JP 13327791 A JP13327791 A JP 13327791A JP H04334548 A JPH04334548 A JP H04334548A
Authority
JP
Japan
Prior art keywords
cerium
zirconium
catalyst
exhaust gas
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3133277A
Other languages
Japanese (ja)
Other versions
JP2734808B2 (en
Inventor
Katsuo Suga
克雄 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3133277A priority Critical patent/JP2734808B2/en
Publication of JPH04334548A publication Critical patent/JPH04334548A/en
Application granted granted Critical
Publication of JP2734808B2 publication Critical patent/JP2734808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst excellent in exhaust gas purifying capacity after high temp. endurance, in an exhaust gas purifying catalyst purifying HC, CO and NOX in the exhaust gas discharged from an internal combustion engine, by adding an oxide powder containing at least cerium and zirconium to a coating layer containing rhodium. CONSTITUTION:In a monolithic exhaust gas purifying catalyst whose catalyst coating layer contains rhodium or rhodium and platinum or palladium, at least an oxide powder prepared from an aqueous solution containing at least cerium and zirconium ions by precipitate forming reaction and activated alumina, the oxide powder contains at least 10-30mol% of cerium and 70-90mol% of zirconium.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、自動車等の内燃機関
から排出される排ガス中の有害成分である炭化水素(H
C) 、一酸化炭素(CO) 、窒素酸化物(NOx)
を効率よく浄化する排ガス浄化用触媒に関する。
[Industrial Application Field] This invention focuses on hydrocarbons (H
C), carbon monoxide (CO), nitrogen oxides (NOx)
This invention relates to an exhaust gas purification catalyst that efficiently purifies the exhaust gas.

【0002】0002

【従来の技術】従来、内燃機関から排出される排ガス中
のHC、CO、NOx を浄化する排ガス浄化用触媒は
種々提案されている。なかでも貴金属を活性成分とする
排ガス浄化用触媒にセリウム、ジルコニウムを適当量添
加すると触媒性能が向上することから、例えば、特開昭
61−157347 号公報、特開平1−123636
号公報に開示されているように、モノリス担体にセリウ
ム、ジルコニウムそれぞれの酸化物あるいは炭酸塩粉末
を活性アルミナ等と混合塗布して熱処理した触媒や、特
開昭63−116741 号公報、特開平1−2811
44号公報に開示されているように、酸化セリウムの持
つO2ストレージ能向上を目的とし、セリウムを主成分
とするセリウム、ジルコニウム酸化物を添加した触媒が
提案されている。
2. Description of the Related Art Conventionally, various exhaust gas purifying catalysts have been proposed for purifying HC, CO, and NOx in exhaust gas discharged from internal combustion engines. In particular, adding appropriate amounts of cerium and zirconium to exhaust gas purification catalysts containing noble metals as active ingredients improves the catalyst performance.
As disclosed in Japanese Patent Laid-Open No. 116741/1983, catalysts prepared by applying oxide or carbonate powders of cerium and zirconium mixed with activated alumina etc. on a monolithic carrier and heat-treated the same, and -2811
As disclosed in Japanese Patent No. 44, a catalyst containing cerium and zirconium oxides containing cerium as a main component has been proposed for the purpose of improving the O2 storage capacity of cerium oxide.

【0003】0003

【発明が解決しようとする課題】しかしながら、このよ
うな従来の排ガス浄化用触媒においては、その製造工程
でセリウムおよびジルコニウムを排ガス浄化用触媒へ添
加するにあっては、 1)  セリウム、ジルコニウムのそれぞれの酸化物あ
るいは炭酸塩粉末を活性アルミナ等と混合添加して熱処
理する方法ではセリウム、ジルコニウムは複合化されに
くく、複合化等の相互作用による助触媒作用は充分に得
られない。 2)  また、従来報告されているセリウム、ジルコニ
ウム酸化物は、酸化セリウムを主成分としこれにジルコ
ニウム等を添加したものであるが、貴金属によってはセ
リウムを主成分とする酸化物が必ずしも触媒作用向上に
有効とはならない。等の問題点があった。
[Problems to be Solved by the Invention] However, in such conventional exhaust gas purification catalysts, when adding cerium and zirconium to the exhaust gas purification catalysts in the manufacturing process, 1) cerium and zirconium are added to each of the catalysts. In the method in which oxide or carbonate powder is mixed and added with activated alumina and the like and then heat treated, cerium and zirconium are difficult to be composited, and a sufficient cocatalytic effect due to interaction such as compositeization cannot be obtained. 2) In addition, the cerium and zirconium oxides that have been reported so far are mainly composed of cerium oxide and to which zirconium etc. are added, but depending on the noble metal, cerium-based oxides do not necessarily improve the catalytic activity. It will not be valid. There were problems such as.

【0004】0004

【課題を解決するための手段】発明者は上記問題点に鑑
み、以下に述べる新規の触媒により、従来の問題点が解
決されることを見出し、本発明を達成するに至った。即
ち、本発明の排ガス浄化用触媒は、触媒コート層がロジ
ウム或いはロジウムと白金またはパラジウムと、少くと
も、セリウム、ジルコニウムのイオンを含む水溶液から
沈澱生成反応を用いて製造された酸化物粉末と、活性ア
ルミナとを含んでなるモノリス型排ガス浄化用触媒にお
いて、該少くともセリウムとジルコニウムを含む酸化物
粉末が金属換算で10〜30モル%のセリウムと、70
〜90モル%のジルコニウムを含むことを特徴とする。
[Means for Solving the Problems] In view of the above-mentioned problems, the inventors have discovered that the conventional problems can be solved by the novel catalyst described below, and have achieved the present invention. That is, in the exhaust gas purifying catalyst of the present invention, the catalyst coat layer is an oxide powder produced using a precipitation reaction from an aqueous solution containing rhodium, rhodium, platinum or palladium, and at least cerium and zirconium ions; In a monolithic exhaust gas purifying catalyst comprising activated alumina, the oxide powder containing at least cerium and zirconium contains cerium of 10 to 30 mol% in terms of metal, and
It is characterized by containing ~90 mol% zirconium.

【0005】本発明で用いられる該少くともセリウムと
ジルコニウムを含む酸化物は、排ガス浄化用触媒に使用
される貴金属のうち特にロジウムの触媒性能向上に大き
く寄与する。ここで、セリウムとジルコニウムを含む酸
化物の少くとも1部は、ジルコニウムを主成分とした複
合酸化物であることをXRD回折し、確認している。
[0005] The oxide containing at least cerium and zirconium used in the present invention greatly contributes to improving the catalytic performance of rhodium, among the noble metals used in exhaust gas purification catalysts. Here, it has been confirmed by XRD diffraction that at least a part of the oxide containing cerium and zirconium is a composite oxide containing zirconium as a main component.

【0006】本発明で用いられるセリウムとジルコニウ
ムを含む酸化物粉末は、例えば硝酸セリウムと硝酸ジル
コニルの混合水溶液等セリウム、ジルコニウムのイオン
を含む酸性溶液に、アンモニア、尿素等を添加し、必要
に応じて加熱、加圧し、水酸化物等の沈澱を生成させ、
得られた沈澱物を乾燥、焼成することによって製造する
ことができる。この酸化物粉末は含有する金属種として
セリウム、ジルコニウムのみから成るもので十分な触媒
性能向上効果が得られるが、セリウム源としてセリウム
を主成分とし、他の希土類(例えばLa、Nd、Pr、
Y)をも同時に含む低濃度のセリウム塩を用いてもよい
The oxide powder containing cerium and zirconium used in the present invention is produced by adding ammonia, urea, etc. to an acidic solution containing cerium and zirconium ions, such as a mixed aqueous solution of cerium nitrate and zirconyl nitrate, as needed. heating and pressurizing to generate precipitates such as hydroxides,
It can be produced by drying and calcining the obtained precipitate. This oxide powder is composed only of cerium and zirconium as metal species and can sufficiently improve the catalytic performance.
A low concentration cerium salt containing Y) may also be used.

【0007】上記酸化物粉末を用いた本発明の触媒の製
造方法としては、例えば活性アルミナ粉末と、少くとも
該セリウムとジルコニウムを含む酸化物粉末を湿式にて
混合して水性スラリーを調整し、セラミック製または金
属製のモノリス担体に塗布し、乾燥、焼成後さらにロジ
ウム或いはロジウムと白金またはパラジウムから成る貴
金属を含む水溶液に浸漬し、再び乾燥、焼成を行なうこ
とによって目的の触媒を得る方法がある。また、別の触
媒製造法の例としては、予め貴金属を担持したアルミナ
粉末と該セリウムとジルコニウムを含む酸化物粉末と湿
式にて混合して水溶性スラリーを調整し、セラミック製
または金属製のモノリス担体に塗布し、乾燥、焼成する
方法がある。
[0007] A method for producing the catalyst of the present invention using the above oxide powder includes, for example, mixing activated alumina powder and the oxide powder containing at least cerium and zirconium in a wet manner to prepare an aqueous slurry; There is a method of obtaining the desired catalyst by coating it on a ceramic or metal monolithic carrier, drying and firing, then immersing it in an aqueous solution containing rhodium or a noble metal consisting of rhodium and platinum or palladium, and drying and firing again. . In addition, as an example of another catalyst manufacturing method, a water-soluble slurry is prepared by wet-mixing alumina powder supporting a noble metal with the oxide powder containing cerium and zirconium, and then a ceramic or metal monolith is prepared. There is a method in which it is applied to a carrier, dried, and fired.

【0008】これらいずれの触媒製造工程においても、
用いられるウォッシュコートスラリー中に少くともセリ
ウムとジルコニウムを含む酸化物粉末を添加する工程が
含まれることによって、得られる触媒は、本発明の目的
に合致した優れた排ガス浄化性能を有するものとなる。
[0008] In any of these catalyst manufacturing processes,
By including the step of adding an oxide powder containing at least cerium and zirconium to the washcoat slurry used, the resulting catalyst has excellent exhaust gas purification performance that meets the objective of the present invention.

【0009】本発明で用いられる少くともセリウムとジ
ルコニウムを含む酸化物粉末の組成としては、セリウム
金属の含有量が10〜30モル%で、残部がジルコニウ
ムを主成分とすることが好ましい。セリウム含有量が1
0モル%未満ではセリウム、ジルコニウムの複合酸化物
生成量が充分とならず、セリウム含有量が30モル%よ
り多くなるとセリウムが固溶しきれずCeO2が生成し
、充分な触媒性能向上が得られなくなる。
[0009] As for the composition of the oxide powder containing at least cerium and zirconium used in the present invention, it is preferable that the content of cerium metal is 10 to 30 mol %, and the balance is mainly composed of zirconium. Cerium content is 1
If it is less than 0 mol%, the amount of composite oxide of cerium and zirconium produced will not be sufficient, and if the cerium content is more than 30 mol%, cerium will not be completely dissolved and CeO2 will be produced, making it impossible to obtain a sufficient improvement in catalyst performance. .

【0010】また、本発明で用いられる少くともセリウ
ムとジルコニウムを含む酸化物粉末の触媒への添加量と
しては、触媒容量1L当り20〜100gで、かつモノ
リス担体に塗布される触媒層固形分中5〜60重量%で
あることが好ましい。添加量がこれより少い場合は、添
加効果は認められるものの、ロジウムとの接触が充分で
ないためロジウムとの相互作用が小さくなり、本発明に
よる触媒性能上の優位性は充分に発揮されない。また、
添加量が上記数値より多い場合には、有意な添加量増量
効果はみられない。
[0010] Furthermore, the amount of the oxide powder containing at least cerium and zirconium used in the present invention to be added to the catalyst is 20 to 100 g per liter of catalyst volume, and the amount is in the solid content of the catalyst layer coated on the monolithic carrier. It is preferably 5 to 60% by weight. If the amount added is less than this, although the addition effect is observed, the interaction with rhodium is insufficient because the contact with rhodium is insufficient, and the superiority of the catalyst performance of the present invention is not fully exhibited. Also,
When the amount added is larger than the above value, no significant effect of increasing the amount added is observed.

【0011】[0011]

【作用】本発明の排ガス浄化用触媒に用いるセリウムと
ジルコニウムを含む酸化物粉末は、少くとも一部がジル
コニウムを主成分とする複合酸化物として存在している
。このセリウムとジルコニウムを含む酸化物粉末をロジ
ウムを含むコート層中に添加することにより、ロジウム
の持つ触媒作用が向上しその結果排ガス浄化作用が向上
する。その機構はまだ明らかとなっていないが、複合化
により酸化セリウム、酸化ジルコニウム単独では得られ
ないO2ストレージ能が発現することが判った。
[Operation] At least a portion of the oxide powder containing cerium and zirconium used in the exhaust gas purifying catalyst of the present invention exists as a composite oxide containing zirconium as a main component. By adding this oxide powder containing cerium and zirconium to the coating layer containing rhodium, the catalytic action of rhodium is improved, and as a result, the exhaust gas purification action is improved. Although the mechanism has not yet been clarified, it has been found that by combining cerium oxide and zirconium oxide, an O2 storage ability that cannot be obtained alone is exhibited.

【0012】表1に、下記反応条件でO2パルス法によ
り、本発明で用いられるセリウムとジルコニウムを含む
酸化物粉末(実施例2で用いたもの)、酸化セリウム粉
末、酸化ジルコニウム粉末につき、それぞれの酸素吸収
量を測定した結果を示す。 反応条件:H2還元  500℃、2時間O2パルス温
度  20℃ 触媒量  0.2 g
Table 1 shows that the oxide powder containing cerium and zirconium used in the present invention (used in Example 2), the cerium oxide powder, and the zirconium oxide powder were prepared using the O2 pulse method under the following reaction conditions. The results of measuring the amount of oxygen absorbed are shown. Reaction conditions: H2 reduction 500°C, 2 hours O2 pulse temperature 20°C Catalyst amount 0.2 g

【0013】表1より明らかなように、本発明で用いら
れるセリウムとジルコニウムを含む酸化物粉末は、酸化
セリウム粉末、酸化ジルコニウム粉末に比較し優れた酸
素吸収能力を示す。酸素吸収能力が向上することにより
、例えば排ガス雰囲気が酸素過剰の状態でも酸素を吸収
し排ガス浄化に適した酸素濃度に保つことが可能となる
。また、貴金属の酸化状態を排ガス浄化に適した状態に
保つ可能性もある。
As is clear from Table 1, the oxide powder containing cerium and zirconium used in the present invention exhibits superior oxygen absorption ability compared to cerium oxide powder and zirconium oxide powder. By improving the oxygen absorption capacity, it becomes possible to absorb oxygen and maintain an oxygen concentration suitable for exhaust gas purification, for example, even when the exhaust gas atmosphere is in an oxygen-excess state. It also has the potential to maintain the oxidation state of precious metals in a state suitable for exhaust gas purification.

【0014】さらに本法では、コートスラリー調整時の
配合比あるいは、スラリー塗布量によってセリウムとジ
ルコニウムを含む酸化物量を調整することが容易であり
、自動車排ガスなど排ガス組成が酸素雰囲気と還元雰囲
気との間で変動する場合に、その使用条件に応じて添加
量を調整することが可能となっている。
Furthermore, in this method, it is easy to adjust the amount of oxides containing cerium and zirconium by changing the mixing ratio when preparing the coating slurry or the amount of slurry applied, and the composition of exhaust gas such as automobile exhaust gas is different between oxygen atmosphere and reducing atmosphere. The amount added can be adjusted depending on the conditions of use.

【0015】この様な作用効果により、本発明の排ガス
浄化用触媒は優れた排ガス浄化作用を持つ。
Due to these effects, the exhaust gas purifying catalyst of the present invention has an excellent exhaust gas purifying effect.

【0016】[0016]

【実施例】以下、本発明を実施例、比較例および試験例
により説明する。
[Examples] The present invention will be explained below with reference to Examples, Comparative Examples, and Test Examples.

【0017】実施例1 セリウム塩とジルコニウム塩の混合水溶液にアンモニア
水溶液を徐々に加え、生じた沈澱を濾過し焼成してセリ
ウムとジルコニウムを含む酸化物粉末を得た(Ce/Z
r比=1/9)。また、あらかじめZrを3重量%担持
し焼成した活性アルミナ粉末に硝酸ロジウム水溶液を噴
霧し焼成してロジウム担持アルミナ粉末を得た(Rh 
1.5重量%)。上記酸化物粉末450g、ロジウム担
持アルミナ粉末450g及び酢酸10重量%水溶液90
0gとを磁性ボールミルに投入し、混合粉砕してスラリ
ー液を得た。このスラリー液をコーディライト質モノリ
ス担体(1.3 L)に噴霧し、空気流にてセル内の余
剰のスラリーを取り除いて乾燥し、400 ℃で1時間
焼成してコート層重量 80g/L −担体の(触媒−
1)を得た。
Example 1 An ammonia aqueous solution was gradually added to a mixed aqueous solution of a cerium salt and a zirconium salt, and the resulting precipitate was filtered and calcined to obtain an oxide powder containing cerium and zirconium (Ce/Z).
r ratio = 1/9). In addition, a rhodium nitrate aqueous solution was sprayed onto activated alumina powder, which had previously been loaded with 3% by weight of Zr and fired, and then fired to obtain a rhodium-supported alumina powder (Rh
1.5% by weight). 450 g of the above oxide powder, 450 g of rhodium-supported alumina powder, and 90 g of a 10% aqueous acetic acid solution
0 g was put into a magnetic ball mill, mixed and pulverized to obtain a slurry liquid. This slurry liquid was sprayed onto a corderitic monolithic support (1.3 L), the excess slurry inside the cells was removed using an air stream, the slurry was dried, and the coating layer was baked at 400 °C for 1 hour to give a coating layer weight of 80 g/L. of the carrier (catalyst)
1) was obtained.

【0018】実施例2 実施例1におけるセリウムとジルコニウムを含む酸化物
粉末のCe/Zr比2/8としたものを用いた以外は実
施例1と同様の方法で(触媒−2)を得た。
Example 2 Catalyst-2 was obtained in the same manner as in Example 1 except that the oxide powder containing cerium and zirconium in Example 1 with a Ce/Zr ratio of 2/8 was used. .

【0019】実施例3 実施例1におけるセリウムとジルコニウムを含む酸化物
粉末のCe/Zr比を3/7としたものを用いた以外は
実施例1と同様の方法で(触媒−3)を得た。
Example 3 Catalyst-3 was obtained in the same manner as in Example 1 except that the oxide powder containing cerium and zirconium in Example 1 with a Ce/Zr ratio of 3/7 was used. Ta.

【0020】比較例1 実施例1におけるセリウムとジルコニウムを含む酸化物
粉末のCe/Zr比4/6としたものを用いた以外は実
施例1と同様の方法で(触媒−4)を得た。
Comparative Example 1 Catalyst-4 was obtained in the same manner as in Example 1 except that the oxide powder containing cerium and zirconium in Example 1 with a Ce/Zr ratio of 4/6 was used. .

【0021】比較例2 実施例1におけるセリウムとジルコニウムを含む酸化物
粉末の代わりに酸化ジルコニウムを用いた以外は実施例
1と同様の方法で(触媒−5)を得た。
Comparative Example 2 A catalyst (Catalyst-5) was obtained in the same manner as in Example 1 except that zirconium oxide was used instead of the oxide powder containing cerium and zirconium in Example 1.

【0022】比較例3 実施例1におけるセリウムとジルコニウムを含む酸化物
粉末の代わりに酸化セリウムを用いた以外は実施例1と
同様の方法で(触媒−6)を得た。
Comparative Example 3 Catalyst-6 was obtained in the same manner as in Example 1, except that cerium oxide was used instead of the cerium- and zirconium-containing oxide powder in Example 1.

【0023】比較例4 実施例1におけるセリウムとジルコニウムを含む酸化物
粉末の代わりに酸化ジルコニウムに硝酸セリウム水溶液
をCe/Zr比=1/9となるよう含浸担持し、650
 ℃で1時間焼成したものを用いた以外は実施例1と同
様の方法で(触媒−7)を得た。
Comparative Example 4 Instead of the oxide powder containing cerium and zirconium in Example 1, cerium nitrate aqueous solution was impregnated and supported on zirconium oxide so that the Ce/Zr ratio was 1/9.
Catalyst-7 was obtained in the same manner as in Example 1, except that the catalyst was calcined at ℃ for 1 hour.

【0024】実施例4 実施例1と同様の製法でRhを1.0 重量%担持した
ロジウム担持アルミナ粉末を得た。またあらかじめCe
を8重量%、Zrを4重量%、Baを4重量%担持し焼
成したアルミナ粉末を得、これを攪拌しながら硝酸パラ
ジウム水溶液を噴霧し、その後焼成してPdを1.07
重量%担持したパラジウム1.07重量%担持アルミナ
粉末を得た。さらに同様の方法でパラジウム1.19重
量%パラジウム担持アルミナを得た。また硝酸ジルコニ
ウムと硝酸セリウムを含む水溶液にアンモニア水溶液を
添加し、生成した沈澱物を焼成して、ZrO2を10重
量%含むジルコニア10重量%−セリウム酸化物を得た
。上記パラジウム1.19%担持アルミナ粉末772g
、上記ジルコニア10重量%−セリウム酸化物428g
、酢酸10重量%水溶液1200g を実施例1と同様
の方法でモノリス担体(1.7 L)に担持し、コート
層重量140g/ L−担体を得た。さらに上記ロジウ
ム担持アルミナ粉末114g、上記パラジウム1.07
重量%担持アルミナ306g、実施例2と同様のセリウ
ムとジルコニウムを含む酸化物粉末480g、酢酸10
重量%水溶液900gを実施例1と同様の方法で上記コ
ート層重量140g/ L−担体に担持し、コート層重
量合計210g/ L−担体の(触媒−8)を得た。
Example 4 Rhodium-supported alumina powder supporting 1.0% by weight of Rh was obtained by the same manufacturing method as in Example 1. Also, in advance Ce
A fired alumina powder supporting 8% by weight of Zr, 4% by weight of Zr, and 4% by weight of Ba was obtained, which was sprayed with an aqueous solution of palladium nitrate while stirring, and then fired to reduce Pd to 1.07% by weight.
An alumina powder carrying 1.07% by weight of palladium was obtained. Furthermore, palladium-supported alumina with 1.19% by weight of palladium was obtained in the same manner. Further, an ammonia aqueous solution was added to an aqueous solution containing zirconium nitrate and cerium nitrate, and the resulting precipitate was calcined to obtain a 10% by weight zirconia-cerium oxide containing 10% by weight of ZrO2. 772g of the above palladium 1.19% supported alumina powder
, 10% by weight of the above zirconia - 428g of cerium oxide
, 1200 g of a 10% by weight aqueous acetic acid solution was supported on a monolithic carrier (1.7 L) in the same manner as in Example 1 to obtain a coating layer weight of 140 g/L-carrier. Furthermore, 114 g of the above rhodium-supported alumina powder, 1.07 g of the above palladium
306 g of alumina supported by weight%, 480 g of oxide powder containing cerium and zirconium similar to Example 2, 10 acetic acid
900 g of the wt% aqueous solution was supported on the L-carrier with a coat layer weight of 140 g in the same manner as in Example 1 to obtain (Catalyst-8) with a total coat layer weight of 210 g/L-carrier.

【0025】比較例5 実施例5におけるセリウムとジルコニウムを含む酸化物
の代わりに比較例3と同様のセリウム、ジルコニウム酸
化物を用いた以外は実施例5と同様の方法で(触媒−9
)を得た。
Comparative Example 5 The same method as in Example 5 was used except that the same cerium and zirconium oxides as in Comparative Example 3 were used instead of the oxides containing cerium and zirconium in Example 5 (catalyst-9).
) was obtained.

【0026】実施例5 実施例1と同様の方法でRhを1.0 重量%担持した
ロジウム担体アルミナ粉末を得た。また、あらかじめC
eを8重量%、Zrを4重量%、Laを4重量%担持し
焼成して得たCe−Zr−La−アルミナ粉末を得、こ
れを攪拌しながら硝酸パラジウム水溶液を噴霧し、その
後焼成してPdを1.16重量%担持したパラジウム担
体アルミナ粉末を得た。上記パラジウム担持アルミナ粉
末772g、実施例5と同様のジルコニア10重量%−
セリウム酸化物428g、硝酸酸性アルミナゾル120
0g を実施例1と同様の方法で担持し、コート層重量
142g/L−担体を得た。さらに上記ロジウム担持ア
ルミナ粉末114g、上記パラジウム担持アルミナ粉末
279g、実施例2と同様のセリウムとジルコニウムを
含む酸化物粉末380g、上記Ce−Zr−La−アル
ミナ粉末89g 、硝酸酸性アルミナゾル900gを、
実施例1と同様の方法で上記コート層重量142g/ 
L−担体に担持し、コート層重量合計213g/ L−
担体の(触媒−10) を得た。
Example 5 A rhodium-supported alumina powder carrying 1.0% by weight of Rh was obtained in the same manner as in Example 1. Also, in advance, C
A Ce-Zr-La-alumina powder was obtained by carrying 8% by weight of E, 4% by weight of Zr, and 4% by weight of La, and then spraying an aqueous solution of palladium nitrate while stirring the powder, followed by baking. A palladium-supported alumina powder carrying 1.16% by weight of Pd was obtained. 772 g of the above palladium-supported alumina powder, 10% by weight of zirconia similar to Example 5.
Cerium oxide 428g, nitric acid acidic alumina sol 120g
0 g was supported in the same manner as in Example 1 to obtain a coat layer weight of 142 g/L-carrier. Furthermore, 114 g of the above rhodium-supported alumina powder, 279 g of the above palladium-supported alumina powder, 380 g of the oxide powder containing cerium and zirconium similar to Example 2, 89 g of the above Ce-Zr-La-alumina powder, and 900 g of the nitric acid acidic alumina sol,
In the same manner as in Example 1, the weight of the coating layer was 142 g/
Supported on L-carrier, total coating layer weight 213g/L-
A carrier (catalyst-10) was obtained.

【0027】比較例6 実施例6におけるセリウムとジルコニウムを含む酸化物
粉末を254g、Ce−Zr−La−アルミナ粉末を2
15gとした以外は実施例6と同様の方法で触媒を調整
し、(触媒−11) を得た。
Comparative Example 6 254 g of oxide powder containing cerium and zirconium and 2 g of Ce-Zr-La-alumina powder in Example 6 were used.
A catalyst was prepared in the same manner as in Example 6, except that the amount was changed to 15 g, and (Catalyst-11) was obtained.

【0028】比較例7 実施例6におけるセリウムとジルコニウムを含む酸化物
粉末を127g、Ce−Zr−La−アルミナ粉末を3
42gとした以外は実施例6と同様の方法で触媒を調整
し、(触媒−12) を得た。
Comparative Example 7 127 g of oxide powder containing cerium and zirconium in Example 6 and 3 g of Ce-Zr-La-alumina powder were used.
A catalyst was prepared in the same manner as in Example 6 except that the amount was changed to 42 g, and (Catalyst-12) was obtained.

【0029】実施例6 実施例1と同様の方法でRhを2.253 重量%担持
したロジウム担持アルミナ粉末を得た。また、あらかじ
めCeを3重量%担持し焼成したCe−アルミナ粉末を
得、これを攪拌しながらジニトロジアンミン白金酸水溶
液を噴霧し、その後焼成してPtを1.1 重量%担持
した白金担持アルミナ粉末を得た。上記白金担持アルミ
ナ粉末611g、実施例5と同様のジルコニア10重量
%−セリウム酸化物453g、上記Ce−アルミナ粉末
43g 、硝酸酸性アルミナゾル1200g を実施例
1と同様の方法で担持し、コート層重量210g/ L
−担体を得た。さらに上記ロジウム担持アルミナ粉末1
72g、上記Ce−アルミナ粉末331g、実施例2と
同様のセリウムとジルコニウムを含む酸化物粉末327
g、硝酸酸性アルミナゾル900gを実施例1と同様の
方法で上記コート層重量210g/ L担体に担持し、
コート層重量合計265g/ L−担体の(触媒−13
) を得た。
Example 6 A rhodium-supported alumina powder carrying 2.253% by weight of Rh was obtained in the same manner as in Example 1. In addition, we obtained a Ce-alumina powder that had previously carried 3% by weight of Ce and fired it, and sprayed it with an aqueous solution of dinitrodiammine platinum acid while stirring, and then fired it to obtain a platinum-supported alumina powder that supported 1.1% by weight of Pt. I got it. 611 g of the above platinum-supported alumina powder, 453 g of the same zirconia 10% by weight-cerium oxide as in Example 5, 43 g of the above Ce-alumina powder, and 1200 g of nitric acid acidic alumina sol were supported in the same manner as in Example 1, and the coating layer weight was 210 g. / L
- A carrier was obtained. Furthermore, the above rhodium-supported alumina powder 1
72 g, 331 g of the above Ce-alumina powder, 327 oxide powder containing cerium and zirconium similar to Example 2
g, 900 g of nitric acid acidic alumina sol was supported on the above coating layer weight 210 g/L carrier in the same manner as in Example 1,
Coat layer total weight 265g/L-carrier (catalyst-13
) obtained.

【0030】比較例8 実施例7におけるセリウムとジルコニウムを含む酸化物
粉末の代わりに実施例5と同様のジルコニウム10重量
%−セリウム酸化物を用いた以外は実施例7と同様の方
法で(触媒−14) を得た。
Comparative Example 8 The same method as in Example 7 was used except that 10% by weight of zirconium-cerium oxide as in Example 5 was used instead of the oxide powder containing cerium and zirconium in Example 7. -14) was obtained.

【0031】試験例1 実施例1〜3および5、比較例1〜4および6〜7の各
触媒(触媒1〜7および10〜12) につき、下記条
件でエンジン耐久を行った後の性能評価を行い、耐久劣
化触媒のHC、CO、NOx 浄化率を測定した。 触媒性能評価結果を表2に示す。 <エンジン耐久条件>   触媒入口排ガス温度              
  850 ℃  耐久時間            
               50 時間  エンジ
ン                        
  排気量  4400 CC   燃料      
                        無
鉛ガソリン  耐久中入口エミッション       
     CO     0.4〜 0.6%    
                         
       O2     0.5± 0.1%  
                         
         NO    約1000 ppm 
                         
          HC    約2500 ppm
                         
           CO2   14.9± 0.
1%<性能評価条件>   触媒入口排ガス温度              
  400 ℃  エンジン            
              排気量  4400 C
C   燃料                   
           無鉛ガソリン  平均空燃比(
制御中心値)          14.6
Test Example 1 Performance evaluation of each catalyst of Examples 1 to 3 and 5 and Comparative Examples 1 to 4 and 6 to 7 (catalysts 1 to 7 and 10 to 12) after engine durability was performed under the following conditions. The HC, CO, and NOx purification rates of the durable deteriorated catalyst were measured. Table 2 shows the catalyst performance evaluation results. <Engine durability conditions> Catalyst inlet exhaust gas temperature
850℃ durability time
50 hours engine
Displacement 4400 CC Fuel
Unleaded gasoline Endurance medium inlet emissions
CO 0.4-0.6%

O2 0.5± 0.1%

NO approx. 1000 ppm

HC approx. 2500 ppm

CO2 14.9±0.
1% <Performance evaluation conditions> Catalyst inlet exhaust gas temperature
400℃ engine
Displacement 4400C
C Fuel
Unleaded gasoline average air-fuel ratio (
control center value) 14.6

【0032
】試験例2 実施例4および比較例5の触媒(触媒8〜9)につき触
媒入口ガス温度を750℃、耐久時間を 100時間と
した以外は試験例1の場合と同じ条件でエンジン耐久を
行った後の性能評価を行い、耐久劣化触媒のHC、CO
、NOx 浄化率を測定した。触媒性能評価結果を表2
に示す。 試験例3 実施例6および比較例8の触媒(触媒13〜14) に
つき、触媒入口ガス温度を900 ℃、燃料を有鉛ガソ
リンとした以外は試験例1の場合と同じ条件でエンジン
耐久を行った後の性能評価を行い、耐久劣化触媒のHC
、CO、NOx 浄化率を測定した。触媒評価結果を表
2に示す。
0032
Test Example 2 Engine durability was conducted under the same conditions as in Test Example 1, except that the catalysts of Example 4 and Comparative Example 5 (catalysts 8 to 9) had a catalyst inlet gas temperature of 750°C and an endurance time of 100 hours. The performance of the catalyst after deterioration was evaluated, and the HC and CO
, NOx purification rate was measured. Table 2 shows the catalyst performance evaluation results.
Shown below. Test Example 3 Engine durability was conducted for the catalysts of Example 6 and Comparative Example 8 (catalysts 13 to 14) under the same conditions as in Test Example 1, except that the catalyst inlet gas temperature was 900 °C and the fuel was leaded gasoline. We evaluated the performance of the catalyst after deterioration, and
, CO, and NOx purification rates were measured. Table 2 shows the catalyst evaluation results.

【0033】[0033]

【表2】[Table 2]

【0034】[0034]

【発明の効果】以上説明してきたようにこの発明によれ
ば、少くともセリウムとジルコニウムのイオンを含む水
溶液から沈澱生成反応を用いて製造されたセリウムとジ
ルコニウムを含む酸化物粉末をロジウムを含むコート層
中に添加することにより、他のセリウムおよびジルコニ
ウム酸化物の添加に比べ、高温耐久後の排ガス浄化性能
において明らかに優れた触媒性能が得られる。これは実
施例からわかるように、排ガス浄化用触媒に用いられた
セリウムとジルコニウムを含む酸化物が、その少くとも
一部がジルコニウムを主成分とし複合化している効果に
よるものであることは明らかである。さらに、本発明の
効果はセリウムとジルコニウムを含む酸化物の添加量が
比較的大きい場合に顕著であり、またセリウムとジルコ
ニウムの比率に好適な範囲が存在する。
As explained above, according to the present invention, an oxide powder containing cerium and zirconium produced by a precipitation reaction from an aqueous solution containing at least cerium and zirconium ions is coated with rhodium. By adding it to the layer, compared to the addition of other cerium and zirconium oxides, clearly superior catalyst performance in exhaust gas purification performance after high-temperature durability can be obtained. As can be seen from the examples, it is clear that this is due to the fact that the oxide containing cerium and zirconium used in the exhaust gas purification catalyst is at least partially composed of zirconium as its main component. be. Furthermore, the effects of the present invention are remarkable when the amount of the oxide containing cerium and zirconium added is relatively large, and there is a suitable range for the ratio of cerium and zirconium.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  触媒コート層がロジウム或いはロジウ
ムと白金またはパラジウムと、少くとも、セリウム、ジ
ルコニウムのイオンを含む水溶液から沈澱生成反応を用
いて製造された酸化物粉末と、活性アルミナとを含んで
なるモノリス型排ガス浄化用触媒において、該少くとも
セリウムとジルコニウムを含む酸化物粉末が金属換算で
10〜30モル%のセリウムと、70〜90モル%のジ
ルコニウムを含むことを特徴とする排ガス浄化用触媒。
Claim 1: The catalyst coat layer contains rhodium or rhodium and platinum or palladium, an oxide powder produced by a precipitation reaction from an aqueous solution containing at least cerium and zirconium ions, and activated alumina. A monolithic exhaust gas purifying catalyst characterized in that the oxide powder containing at least cerium and zirconium contains 10 to 30 mol% of cerium and 70 to 90 mol% of zirconium in terms of metal. catalyst.
【請求項2】  該少くともセリウムとジルコニウムを
含む酸化物粉末がロジウムを含むコート層中に添加され
ていることを特徴とする請求項1記載の排ガス浄化用触
媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the oxide powder containing at least cerium and zirconium is added to a coating layer containing rhodium.
【請求項3】  該少くともセリウムとジルコニウムを
含む酸化物粉末が触媒1L当り20〜100g、かつ、
モノリス担体に塗布される触媒コート層固形分中5〜6
0重量%であることを特徴とする請求項1または2記載
の排ガス浄化用触媒。
3. The oxide powder containing at least cerium and zirconium is present in an amount of 20 to 100 g per liter of catalyst, and
5 to 6 in the solid content of the catalyst coating layer applied to the monolithic carrier
The exhaust gas purifying catalyst according to claim 1 or 2, characterized in that the content is 0% by weight.
JP3133277A 1991-05-10 1991-05-10 Exhaust gas purification catalyst Expired - Lifetime JP2734808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3133277A JP2734808B2 (en) 1991-05-10 1991-05-10 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3133277A JP2734808B2 (en) 1991-05-10 1991-05-10 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH04334548A true JPH04334548A (en) 1992-11-20
JP2734808B2 JP2734808B2 (en) 1998-04-02

Family

ID=15100879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3133277A Expired - Lifetime JP2734808B2 (en) 1991-05-10 1991-05-10 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP2734808B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286462A (en) * 1997-04-11 1998-10-27 Nissan Motor Co Ltd Catalyst of purifying exhaust gas
JP2006326527A (en) * 2005-05-27 2006-12-07 Cataler Corp Catalyst for exhaust gas purification
JP2007105632A (en) * 2005-10-13 2007-04-26 Nissan Motor Co Ltd Exhaust gas cleaning catalyst
JP2011515220A (en) * 2008-03-27 2011-05-19 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Base metal and base metal modified diesel oxidation catalyst
US8778831B2 (en) 2008-03-27 2014-07-15 Umicore Ag & Co. Kg Base metal and base metal modified diesel oxidation catalysts
US9403151B2 (en) 2009-01-30 2016-08-02 Umicore Ag & Co. Kg Basic exchange for enhanced redox OS materials for emission control applications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116741A (en) * 1986-11-04 1988-05-21 Toyota Motor Corp Catalyst for purifying exhaust gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116741A (en) * 1986-11-04 1988-05-21 Toyota Motor Corp Catalyst for purifying exhaust gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286462A (en) * 1997-04-11 1998-10-27 Nissan Motor Co Ltd Catalyst of purifying exhaust gas
JP2006326527A (en) * 2005-05-27 2006-12-07 Cataler Corp Catalyst for exhaust gas purification
JP4648089B2 (en) * 2005-05-27 2011-03-09 株式会社キャタラー Exhaust gas purification catalyst
JP2007105632A (en) * 2005-10-13 2007-04-26 Nissan Motor Co Ltd Exhaust gas cleaning catalyst
JP2011515220A (en) * 2008-03-27 2011-05-19 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Base metal and base metal modified diesel oxidation catalyst
US8778831B2 (en) 2008-03-27 2014-07-15 Umicore Ag & Co. Kg Base metal and base metal modified diesel oxidation catalysts
US9403151B2 (en) 2009-01-30 2016-08-02 Umicore Ag & Co. Kg Basic exchange for enhanced redox OS materials for emission control applications

Also Published As

Publication number Publication date
JP2734808B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
US5814576A (en) Catalyst for purifying exhaust gas and method of producing same
JP4092441B2 (en) Exhaust gas purification catalyst
US7745371B2 (en) Exhaust gas purifying catalyst, metal oxide particle and production process thereof
JPH08281107A (en) Catalyst for purifying exhaust gas
KR20140079233A (en) LNT Catalysts with Enhanced Storage Capacities of Nitrogen Oxide at Low Temperature
JPH0663403A (en) Exhaust gas cleaning catalyst
JPH10286462A (en) Catalyst of purifying exhaust gas
JP6538053B2 (en) Oxygen storage material
JP3144880B2 (en) Method for producing three-way catalyst with excellent low-temperature activity
JP2578219B2 (en) Method for producing exhaust gas purifying catalyst
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH08131830A (en) Catalyst for purification of exhaust gas
JP3799466B2 (en) Exhaust gas purification catalyst
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH06114264A (en) Production of catalyst for purification of exhaust gas
JP2734808B2 (en) Exhaust gas purification catalyst
JPH09248462A (en) Exhaust gas-purifying catalyst
JPH02265648A (en) Exhaust gas purification catalyst
JPH06378A (en) Catalyst for purification of exhaust gas
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH07171392A (en) Catalyst for exhaust gas purification
JP4382180B2 (en) Exhaust gas purification catalyst
JP2837864B2 (en) Exhaust gas purifying catalyst for purifying exhaust gas from internal combustion engines using alcohol as fuel
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JPH07155605A (en) Exhaust gas purifying catalyst and production thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 14