JPH11276907A - Catalyst for purifying exhaust gas and its production - Google Patents

Catalyst for purifying exhaust gas and its production

Info

Publication number
JPH11276907A
JPH11276907A JP10099942A JP9994298A JPH11276907A JP H11276907 A JPH11276907 A JP H11276907A JP 10099942 A JP10099942 A JP 10099942A JP 9994298 A JP9994298 A JP 9994298A JP H11276907 A JPH11276907 A JP H11276907A
Authority
JP
Japan
Prior art keywords
catalyst
honeycomb
exhaust gas
zeolite
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10099942A
Other languages
Japanese (ja)
Inventor
Hiroshi Akama
弘 赤間
Junji Ito
淳二 伊藤
Masanori Kamikubo
真紀 上久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10099942A priority Critical patent/JPH11276907A/en
Publication of JPH11276907A publication Critical patent/JPH11276907A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a practical level catalyst for purifying exhaust gas, improved in NOx purifying performance under a condition of low exhaust gas temp. and low HC/NOx ratio and to provide a production method of the catalyst. SOLUTION: The catalyst for purifying the exhaust gas is constituted by laminating in order an inner layer and a surface layer on a honeycomb-shaped monolithic carrier. The inner layer containes platinum and/or palladium and barium, and a concn. of the platinum and/or palladium has such a distribution that the concn. is higher as it is near to a wall surface of the honeycomb-shaped monolithic carrier and lower as it is near to the surface layer, and the surface layer containes copper, rhodium and cobalt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関、燃焼器
等から排出される排気ガスを浄化する触媒に係り、特に
酸素を過剰に含むディーゼルエンジン排気ガス中の窒素
酸化物を高効率で浄化する排気ガス浄化用触媒及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for purifying exhaust gas discharged from an internal combustion engine, a combustor, and the like, and more particularly, to purifying nitrogen oxides in a diesel engine exhaust gas containing excess oxygen with high efficiency. The present invention relates to an exhaust gas purifying catalyst and a method for producing the same.

【0002】[0002]

【従来の技術】従来のガソリンエンジン自動車の排気ガ
スのように、酸化成分と還元成分をほぼ等しく含む排気
ガスを浄化するための触媒としては、3元触媒が広く用
いられる。3元触媒は、白金、パラジウム、ロジウム等
の貴金属及びセリア(Ce)をはじめとする各種成分を
担持した活性アルミナを主成分とする触媒であり、排気
ガス中の有害成分である炭化水素類(HC)、一酸化炭
素(CO)及び窒素酸化物(NOx)を高効率で浄化す
ることができる。
2. Description of the Related Art A three-way catalyst is widely used as a catalyst for purifying an exhaust gas containing an oxidizing component and a reducing component substantially equally, such as the exhaust gas of a conventional gasoline engine automobile. The three-way catalyst is a catalyst mainly composed of activated alumina carrying various components such as noble metals such as platinum, palladium and rhodium and ceria (Ce), and hydrocarbons (harmful components in exhaust gas). HC), carbon monoxide (CO) and nitrogen oxides (NOx) can be purified with high efficiency.

【0003】一方、近年、燃費の向上や二酸化炭素の排
出量の削減の観点から、理論空燃比より高い空燃比で運
転するリーンバーンエンジンが注目され、理論空燃比よ
り高い高い空燃比で運転できるディーゼルエンジンも、
燃費の良さが見直されている。しかし、リーンバーンエ
ンジンやディーゼルエンジンの排気ガスは、酸素含有率
が高いため、上記3元触媒ではNOxの浄化が不十分と
なる。また、これらの排気ガスは、排気ガスの温度が低
く、NOxを浄化するためのHCが少ない等の排気ガス
の浄化に不利な条件を備えているが、このような悪条件
の下でも、高効率でNOxを浄化することができる新触
媒が望まれていた。
On the other hand, in recent years, attention has been paid to a lean burn engine that operates at an air-fuel ratio higher than the stoichiometric air-fuel ratio from the viewpoints of improving fuel efficiency and reducing carbon dioxide emissions, and can operate at a higher air-fuel ratio than the stoichiometric air-fuel ratio. Diesel engines,
The fuel economy is being reviewed. However, since the exhaust gas of a lean burn engine or a diesel engine has a high oxygen content, the three-way catalyst does not sufficiently purify NOx. In addition, these exhaust gases have disadvantageous conditions for purifying exhaust gas, such as low exhaust gas temperature and low HC for purifying NOx. A new catalyst capable of purifying NOx with high efficiency has been desired.

【0004】このような状況下において、各種の金属成
分をY型、L型、モルデナイト、MFIゼオライト等の
ゼオライトに担持したゼオライト系触媒は、リーン排気
ガス中のHCの共存下で、NOxを比較的効率良く浄化
できる能力を有している。かかる金属成分としては、銅
(Cu)、コバルト(Co)、銀(Ag)、ニッケル
(Ni)、鉄(Fe)等の遷移金属成分が挙げられ、貴
金属成分では白金(白金)も有効であることが認められ
ているが、中でもCuを担持したCu−ゼオライト系触
媒は、高流速ガス条件下であっても比較的優れたNOx
浄化能を示すため、自動車のような小型移動発生源や定
置型の自家発電用エンジン等の排気ガス浄化への適用に
期待が掛けられていた。
Under these circumstances, a zeolite-based catalyst in which various metal components are supported on a zeolite such as Y-type, L-type, mordenite, MFI zeolite, etc., compares NOx in the presence of HC in lean exhaust gas. It has the ability to purify efficiently and efficiently. Examples of such a metal component include transition metal components such as copper (Cu), cobalt (Co), silver (Ag), nickel (Ni), and iron (Fe), and platinum (platinum) is also effective as a noble metal component. Among them, Cu-supported Cu-zeolite-based catalysts have a relatively excellent NOx even under high flow rate gas conditions.
In order to demonstrate the purification ability, application to exhaust gas purification of small mobile sources such as automobiles and stationary type self-powered engines has been expected.

【0005】ところが、上記金属成分を担持したゼオラ
イト系触媒には、NOxを比較的効率良く浄化できる温
度範囲が狭く、特に150〜300℃の比較的低い温度
領域では十分なNOx浄化能力を得ることができないこ
と、また排気ガス中に炭化水素が比較的少ない、特にH
C/NOx比が5以下となる条件では、NOx浄化能力
が急激に低下すること、更に水蒸気を含む高温(600
℃以上)の条件(水熱条件)下で極めて劣化が大きいこ
と等の種々の問題点があるため、リーンバーンエンジン
の排気ガス浄化用触媒としては実用化に至っていない。
However, the zeolite-based catalyst supporting the above metal component has a narrow temperature range in which NOx can be purified relatively efficiently, and in particular, has a sufficient NOx purification capability in a relatively low temperature range of 150 to 300 ° C. And the exhaust gas contains relatively little hydrocarbons, especially H
Under the condition that the C / NOx ratio is 5 or less, the NOx purification ability is rapidly reduced, and further, the high temperature (600
However, the catalyst has not been put to practical use as a catalyst for purifying exhaust gas of a lean burn engine because of various problems such as extremely large deterioration under the condition (hydrothermal condition).

【0006】低温度領域でのNOx浄化能力の向上につ
いては、例えば、Cu−ゼオライト系触媒層の下層に貴
金属触媒層を設けることにより、貴金属触媒層での反応
熱を利用し、上層のCu−ゼオライト系触媒をより低温
から作動させることが既に提案されている(特開平1−
127044号、特開平5−68888号)。また、低
HC/NOx比の排気ガス条件では、Cu−ゼオライト
系触媒や比較的低温でNOxを転化し得る白金系触媒で
あっても、NOx浄化能が不十分となるため、HC、ア
ルコール類等の還元剤の入ったタンクを車載する方法、
燃料自体を還元剤として利用する方法などの触媒の入口
に二次的に還元剤を供給する方法も提案されている。
In order to improve the NOx purifying ability in a low temperature region, for example, by providing a noble metal catalyst layer below a Cu-zeolite catalyst layer, the heat of reaction in the noble metal catalyst layer is used to make the upper Cu— It has already been proposed to operate a zeolite-based catalyst from a lower temperature (Japanese Patent Laid-Open Publication No. Hei.
127704, JP-A-5-68888). Further, under exhaust gas conditions with a low HC / NOx ratio, even if a Cu-zeolite-based catalyst or a platinum-based catalyst capable of converting NOx at a relatively low temperature, the NOx purification ability becomes insufficient, so that HC, alcohols, etc. How to mount a tank containing a reducing agent such as
A method of secondary supplying the reducing agent to the inlet of the catalyst, such as a method using the fuel itself as the reducing agent, has also been proposed.

【0007】[0007]

【発明が解決しようとする課題】しかし、Cu−ゼオラ
イト系触媒層の下層に貴金属触媒層を設けても、下層の
貴金属触媒層で生じる酸化反応熱のため、劣化が大きく
なったり、貴金属触媒層の強い酸化活性のため、HCが
優先的に酸化消費されることから、NOxの浄化率が低
下するという課題があった。この影響は、Cu−ゼオラ
イト系触媒層に貴金属成分を共存させる場合(特開平1
−31074号、特開平5−168939号)には特に
大きくなる。一方、上述の如く白金系触媒を用いれば、
200〜250℃の比較的低温域でもNOxを転化でき
るが、N2への転化のみでなく、N2Oの生成も無視する
ことができず、環境への悪影響から、そのままでは使用
できない状況にあるという課題があった。また、還元剤
のタンクを車載する方法は、その収納場所の確保が困難
であり、タンク搭載による重量増や還元剤のインフラの
問題も生じるという課題があった。さらに、燃料を還元
剤として利用する方法では、エンジンの燃費の低下を避
けられないという課題があった。
However, even if a noble metal catalyst layer is provided below the Cu-zeolite catalyst layer, the deterioration of the noble metal catalyst layer increases due to the heat of oxidation reaction generated in the lower noble metal catalyst layer. Due to the strong oxidizing activity, HC is preferentially oxidized and consumed, so that there is a problem that the purification rate of NOx decreases. This effect is caused by the presence of a noble metal component in the Cu-zeolite catalyst layer (Japanese Unexamined Patent Publication No.
-31074, JP-A-5-168939). On the other hand, if a platinum-based catalyst is used as described above,
Although NOx can be converted even in a relatively low temperature range of 200 to 250 ° C., not only conversion to N 2 but also generation of N 2 O cannot be neglected. There was a problem that there was. In addition, in the method of mounting a reducing agent tank on a vehicle, it is difficult to secure a storage location, and there is a problem that the mounting of the tank increases the weight and causes a problem of reducing agent infrastructure. Further, the method of using fuel as a reducing agent has a problem that the fuel efficiency of the engine cannot be avoided.

【0008】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、その目的とするところ
は、低排気温度及び低HC/NOx比の条件の下で、N
Oxの浄化性能を向上させた実用レベルの排気ガス浄化
用触媒及びその触媒の製造方法を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a fuel cell system with a low exhaust temperature and a low HC / NOx ratio.
It is an object of the present invention to provide a practical exhaust gas purifying catalyst having improved Ox purification performance and a method for producing the catalyst.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討した結果、ハニカム状モノリス担
体上に積層した触媒層のうち、内層の触媒成分に特定の
分布をもたせること等により、低排気温度及び低HC/
NOx比の条件の下であっても、NOxの浄化性能が向
上すること等を見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, it has been found that, among the catalyst layers laminated on the honeycomb-shaped monolithic carrier, a specific distribution is given to the catalyst components in the inner layer. Low exhaust temperature and low HC /
The present inventors have found that the NOx purification performance is improved even under the condition of the NOx ratio, and have completed the present invention.

【0010】即ち、本発明の排気ガス浄化用触媒は、ハ
ニカム状モノリス担体上に、触媒層たる内層及び表層を
順次積層して成る排気ガス浄化用触媒において、上記内
層が、白金及び/又はパラジウムと、バリウムを含有
し、かつ該白金及び/又はパラジウムの濃度が、上記ハ
ニカム状モノリス担体の壁面に近い程高く、上記表層に
近い程低い分布を成し、上記表層が、銅、ロジウム及び
コバルトから成る群より選ばれた少なくとも1種の成分
を含有することを特徴とする。
That is, the exhaust gas purifying catalyst of the present invention is an exhaust gas purifying catalyst comprising a honeycomb monolithic carrier and an inner layer serving as a catalyst layer and a surface layer sequentially laminated thereon, wherein the inner layer is formed of platinum and / or palladium. And the barium-containing and platinum and / or palladium concentration is higher as it is closer to the wall surface of the honeycomb monolithic carrier and lower as it is closer to the surface layer, and the surface layer is made of copper, rhodium and cobalt. Characterized by containing at least one component selected from the group consisting of:

【0011】本発明の排気ガス浄化用触媒の好適形態
は、上記内層と上記表層との間に、MFIゼオライト、
モルデナイト、βゼオライト、アルミナ、シリカ、シリ
カ・アルミナ及びチタニアから成る群より選ばれた少な
くとも1種の耐火性無機化合物を含有する中間層を設け
たことを特徴とする。
A preferred embodiment of the exhaust gas purifying catalyst according to the present invention is that an MFI zeolite is provided between the inner layer and the surface layer.
An intermediate layer containing at least one refractory inorganic compound selected from the group consisting of mordenite, β zeolite, alumina, silica, silica-alumina and titania is provided.

【0012】本発明の排気ガス浄化用触媒の製造方法
は、上記の排気ガス浄化用触媒を製造するに当たり、
(1)上記ハニカム状モノリス担体に、上記白金及び/
又はパラジウムを含む水溶液を含浸し、(2)(1)工
程によって得られたハニカム状モノリス担体に、上記耐
火性無機化合物を塗布し、(3)(2)工程により耐火
性無機化合物を塗布したハニカム状モノリス担体を乾燥
することにより、上記ハニカム状モノリス担体上に内層
を積層することを特徴とする。
In the method for producing an exhaust gas purifying catalyst of the present invention, when producing the above exhaust gas purifying catalyst,
(1) The above-mentioned platinum and / or
Alternatively, the refractory inorganic compound was applied to the honeycomb monolithic carrier obtained in the step (2) (1) by impregnating with an aqueous solution containing palladium, and the refractory inorganic compound was applied in the step (3) (2). By drying the honeycomb monolith carrier, an inner layer is laminated on the honeycomb monolith carrier.

【0013】[0013]

【作用】通常、白金等のNOx吸着材とゼオライト系な
どのNOx還元触媒とを併用した場合、排気ガス温度が
高くなると、白金及び/又はパラジウムの酸化活性が高
まるため、NOxの還元に必要なHCが酸化消費されて
しまい、十分にNOxの浄化をすることができなくな
る。これに対し、本発明の排気ガス浄化用触媒では、後
述の分布構成を採用しているため、表層中の白金及び/
又はパラジウム並びにバリウムの作用により、200〜
300℃の比較的低温の排気ガス中でNOxが吸着さ
れ、吸着されたNOxは、排気ガスの温度が上昇すると
触媒から放出され、表層のNOx還元触媒層でHCと反
応して還元処理されるため、NOxを十分に浄化するこ
とができる。
Normally, when a NOx adsorbent such as platinum and a NOx reduction catalyst such as a zeolite are used in combination, if the exhaust gas temperature increases, the oxidation activity of platinum and / or palladium increases, so that it is necessary to reduce NOx. Since HC is oxidized and consumed, it becomes impossible to sufficiently purify NOx. On the other hand, in the exhaust gas purifying catalyst of the present invention, since the distribution configuration described later is adopted, platinum and / or
Or by the action of palladium and barium,
NOx is adsorbed in the exhaust gas at a relatively low temperature of 300 ° C., and the adsorbed NOx is released from the catalyst when the temperature of the exhaust gas rises, and is reduced by reacting with HC in the surface NOx reduction catalyst layer. Therefore, NOx can be sufficiently purified.

【0014】即ち、本発明の排気ガス浄化用触媒では、
内層中の白金及び/又はパラジウムの濃度をハニカム状
担体のセル内壁面に近い程高く、表層に近い程低くする
ことにより、排気ガス中のHCが貴金属触媒に接近する
ことを妨害する構成としたため、高温域でのHCの消費
を防止することができ、高いNOx浄化率を発揮するこ
とができる。一方、NOxは分子サイズが小さいため、
内層にまで比較的容易に拡散することから、NOxの吸
着及び脱離特性は、上述のような貴金属触媒の分布には
影響されず、所期の低排温時のNOx除去性能も低下し
ない。
That is, in the exhaust gas purifying catalyst of the present invention,
Because the concentration of platinum and / or palladium in the inner layer is higher as it is closer to the inner wall surface of the cell of the honeycomb-shaped carrier and lower as it is closer to the surface layer, the structure prevents the HC in the exhaust gas from approaching the noble metal catalyst. In addition, it is possible to prevent the consumption of HC in a high temperature range, and to exhibit a high NOx purification rate. On the other hand, NOx has a small molecular size,
Since it diffuses relatively easily to the inner layer, the NOx adsorption and desorption characteristics are not affected by the distribution of the noble metal catalyst as described above, and the NOx removal performance at the expected low exhaust temperature does not decrease.

【0015】本発明の排気ガス浄化用触媒の内層と表層
の間に、MFIゼオライト、モルデナイト、βゼオライ
ト、アルミナ、シリカ、シリカ・アルミナ、チタニアか
ら成る群より選ばれた少なくとも1種の耐火性無機化合
物からなる中間層を設けることも可能であり、これによ
り、HCの内層への拡散がさらに抑制されるので、より
一層NOx浄化率が高くなる。
At least one refractory inorganic material selected from the group consisting of MFI zeolite, mordenite, β zeolite, alumina, silica, silica-alumina, and titania is provided between the inner layer and the surface layer of the exhaust gas purifying catalyst of the present invention. It is also possible to provide an intermediate layer made of a compound, whereby the diffusion of HC into the inner layer is further suppressed, so that the NOx purification rate is further increased.

【0016】本発明の排気ガス浄化用触媒の製造方法で
は、従来法とは全く反対に、まずハニカム状担体に貴金
属水溶液を含浸させ、貴金属水溶液を含浸したハニカム
状担体に耐火性無機化合物を塗布し、その耐火性無機化
合物を塗布したハニカム状担体を乾燥することから、ハ
ニカム状担体中から耐火性無機化合物中への貴金属の移
動が抑制され、内層における白金及び/又はパラジウム
の濃度が、ハニカム状担体の壁面に近い程高く、表層に
近い程低くなる分布を実現することができる。
In the method for manufacturing an exhaust gas purifying catalyst according to the present invention, the honeycomb-shaped carrier is impregnated with a noble metal aqueous solution, and the refractory inorganic compound is applied to the honeycomb-shaped carrier impregnated with the noble metal aqueous solution. Then, since the honeycomb-shaped carrier coated with the refractory inorganic compound is dried, the movement of the noble metal from the honeycomb-shaped carrier to the refractory inorganic compound is suppressed, and the concentration of platinum and / or palladium in the inner layer is reduced. It is possible to realize a distribution in which the distribution becomes higher as it is closer to the wall surface of the carrier and lower as it is closer to the surface layer.

【0017】[0017]

【発明の実施の形態】以下、本発明の排気ガス浄化用触
媒及びその製造方法について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an exhaust gas purifying catalyst and a method for producing the same according to the present invention will be described in detail.

【0018】本発明の排気ガス浄化用触媒は、ハニカム
状モノリス担体上に、白金及び/又はパラジウム並びに
バリウムを含有する内層を設け、その上に銅、ロジウム
又はコバルト及びこれらの任意の混合物を含有する表層
を設けた触媒であり、内層における白金及び/又はパラ
ジウムの濃度が、ハニカム状担体の壁面に近い程高く、
表層に近い程低い分布を成すものである。
In the exhaust gas purifying catalyst of the present invention, an inner layer containing platinum and / or palladium and barium is provided on a honeycomb-shaped monolith carrier, and copper, rhodium or cobalt and an arbitrary mixture thereof are contained thereon. A catalyst provided with a surface layer, wherein the concentration of platinum and / or palladium in the inner layer is higher as it is closer to the wall surface of the honeycomb-shaped carrier,
The distribution is lower as it is closer to the surface.

【0019】本発明の排気ガス浄化用触媒では、ハニカ
ム形状のモノリス担体を使用する。かかる担体を使用し
て触媒の形状をハニカム状とすることにより、触媒と排
気ガスとの接触面積が大きくなり、圧力損失も抑えられ
るため、振動があり、かつ限られた空間内で多量の排ガ
スを処理することが要求される自動車用触媒として用い
る場合に有利である。このハニカム材料としては、耐熱
性、耐酸化性及び熱衝撃性に優れ、かつ気孔率の高い材
料が好ましく、一般にコージェライト質のものが広く用
いられるが、これに限定されるものではない。
In the exhaust gas purifying catalyst of the present invention, a honeycomb-shaped monolith carrier is used. By making the shape of the catalyst honeycomb using such a carrier, the contact area between the catalyst and the exhaust gas is increased, and the pressure loss is suppressed, so that there is vibration and a large amount of exhaust gas in a limited space. This is advantageous when used as a catalyst for automobiles required to be treated. As the honeycomb material, a material having excellent heat resistance, oxidation resistance, and thermal shock resistance and having high porosity is preferable. In general, cordierite is widely used, but is not limited thereto.

【0020】本発明の排気ガス浄化用触媒に係る内層
は、白金及び/又はパラジウム並びにバリウムを、耐火
性無機化合物に担持して形成される。
The inner layer of the exhaust gas purifying catalyst of the present invention is formed by supporting platinum and / or palladium and barium on a refractory inorganic compound.

【0021】この耐火性無機化合物には、MFIゼオラ
イト、モルデナイト、βゼオライト、アルミナ、シリ
カ、シリカ・アルミナ及びチタニアがあり、これらは、
単独でも任意の組み合わせでも使用することができる
が、100m2/g以上の高比表面積、700℃程度の
高温に長時間曝されても高い比表面積を維持する高耐熱
性を有することが好ましい。
The refractory inorganic compounds include MFI zeolite, mordenite, β zeolite, alumina, silica, silica-alumina and titania.
Although they can be used alone or in any combination, they preferably have a high specific surface area of 100 m 2 / g or more and a high heat resistance that maintains a high specific surface area even when exposed to a high temperature of about 700 ° C. for a long time.

【0022】内層における白金及び/又はパラジウムの
含有量は、ハニカム状モノリス触媒1L当たり0.1〜
1.2gとすることが好ましい。白金及び/又はパラジ
ウムの含有量が0.1g/L未満では、貴金属の効果が
得られないことがあり、1.2g/Lを超えると、白金
及び/又はパラジウムの濃度がハニカム状担体の接触面
に近い程高く、表層に近い程低いという本発明による分
布の効果が得られなくなり、高温域でのHCの酸化消費
が抑制できなくなることがあり、好ましくない。内層に
おけるバリウムの含有量は、ハニカム状モノリス触媒1
L当たり0.03〜0.3モルとすることが好ましい。
バリウムの含有量が0.03モル/Lより少ないと、貴
金属の酸化力を抑制し、かつNOx吸着能を増すという
バリウムの効果が得られないことがあるからであり、
0.3モル/Lを超えると、貴金属成分の効果が消失し
て、NOx吸着の効果が得られなくなることがあるから
である。
The content of platinum and / or palladium in the inner layer is from 0.1 to 1 L per 1 L of the honeycomb-shaped monolith catalyst.
It is preferably 1.2 g. If the content of platinum and / or palladium is less than 0.1 g / L, the effect of the noble metal may not be obtained, and if the content exceeds 1.2 g / L, the concentration of platinum and / or palladium may be lower than that of the honeycomb-shaped carrier. The effect of the distribution according to the present invention, that is, higher as the surface is closer to the surface and lower as the surface is closer to the surface, cannot be obtained. The content of barium in the inner layer is determined by the honeycomb monolith catalyst 1
It is preferred to be 0.03-0.3 mol per L.
If the content of barium is less than 0.03 mol / L, the barium effect of suppressing the oxidizing power of the noble metal and increasing the NOx adsorption ability may not be obtained,
If it exceeds 0.3 mol / L, the effect of the noble metal component may be lost and the effect of NOx adsorption may not be obtained.

【0023】本触媒の表層は、銅、ロジウム又はコバル
ト及びこれらの任意の混合物からなる成分を、耐火性無
機化合物に担持して形成される。
The surface layer of the present catalyst is formed by supporting a component comprising copper, rhodium or cobalt and any mixture thereof on a refractory inorganic compound.

【0024】この耐火性無機化合物には、MFIゼオラ
イト、モルデナイト、βゼオライト、アルミナ、シリ
カ、シリカ・アルミナ、チタニア及びジルコニアが含ま
れ、これらは、単独でも組み合わせても使用することが
できる。また、この耐火性無機化合物は、上記と同様に
高比表面積、高耐熱性であることが好ましい。
The refractory inorganic compounds include MFI zeolite, mordenite, β zeolite, alumina, silica, silica-alumina, titania and zirconia, and these can be used alone or in combination. Further, it is preferable that the refractory inorganic compound has a high specific surface area and a high heat resistance similarly to the above.

【0025】また上述した内層と表層の間には、MFI
ゼオライト、モルデナイト、βゼオライト、アルミナ、
シリカ、シリカ・アルミナ又はチタニア及びこれらの任
意の混合物である耐火性無機化合物を含む中間層を設け
ることが好ましく、より一層NOx浄化率を高くするこ
とができる。但し、中間層はあまり厚くしないことがよ
く、中間層が厚くなると、触媒による圧力損失が増加す
ることがある。
The MFI is provided between the inner layer and the surface layer.
Zeolite, mordenite, β zeolite, alumina,
It is preferable to provide an intermediate layer containing a refractory inorganic compound which is silica, silica-alumina, titania, or an arbitrary mixture thereof, so that the NOx purification rate can be further increased. However, the intermediate layer should not be too thick, and if the intermediate layer is thick, the pressure loss due to the catalyst may increase.

【0026】本発明の排気ガス浄化用触媒を製造するに
は、内層における白金及び/又はパラジウムの濃度がハ
ニカム状担体との接触面に近い程高く、表層に近い程低
くなることが必要とされるため、(1)ハニカム状担体
に、白金及び/又はパラジウムを含む水溶液を含浸させ
る工程、(2)白金及び/又はパラジウムを含む水溶液
を含浸させたハニカム状担体に耐火性無機化合物を塗布
する工程、(3)耐火性無機化合物を塗布した後に乾燥
する工程を順次行うことが好ましい。これに対し、ハニ
カム状担体に耐火性無機化合物を塗布して固着させた
後、ハニカム状担体ごと貴金属を含む水溶液に浸漬して
貴金属を耐火性無機化合物に担持する従来一般に行われ
てきた方法では、貴金属は、乾燥工程での水分の移動、
蒸発に伴って、ハニカム状担体との接触面側から表層側
に移動するため、ハニカム状担体との接触面側の貴金属
成分の濃度が低くなることがあり、好ましくない。
In order to manufacture the exhaust gas purifying catalyst of the present invention, it is necessary that the concentration of platinum and / or palladium in the inner layer is higher as the surface is closer to the surface in contact with the honeycomb-shaped carrier and lower as the surface layer is closer. Therefore, (1) a step of impregnating the honeycomb-shaped carrier with an aqueous solution containing platinum and / or palladium, and (2) applying a refractory inorganic compound to the honeycomb-shaped carrier impregnated with an aqueous solution containing platinum and / or palladium. It is preferable to sequentially perform a step and (3) a step of drying after applying the refractory inorganic compound. On the other hand, after the refractory inorganic compound is applied and fixed on the honeycomb-shaped carrier, the honeycomb carrier is immersed in an aqueous solution containing a noble metal, and the noble metal is supported on the refractory inorganic compound. , Precious metals transfer moisture during the drying process,
As the solvent moves from the contact surface side with the honeycomb-shaped carrier to the surface layer with evaporation, the concentration of the noble metal component on the contact surface side with the honeycomb-shaped carrier may decrease, which is not preferable.

【0027】なお、ハニカム状担体に白金及び/又はパ
ラジウムを含む貴金属水溶液を含浸させた後には、余分
な溶液を吹き飛ばしたり、適当な乾燥工程を入れたりし
て、液だれが起こらないようにすることが好ましい。ま
た、貴金属水溶液を含浸させたハニカム状担体に耐火性
無機化合物を塗布する際、ハニカム状担体は、適当に湿
潤していることが好ましい。ハニカム状担体を過度に乾
燥させると、乾燥工程において、貴金属がハニカム状担
体中から耐火性無機化合物中へ移動しなくなることがあ
るからである。
After the honeycomb-shaped carrier is impregnated with an aqueous solution of a noble metal containing platinum and / or palladium, excess solution is blown off or an appropriate drying step is performed to prevent dripping. Is preferred. Further, when the refractory inorganic compound is applied to the honeycomb-shaped carrier impregnated with the noble metal aqueous solution, it is preferable that the honeycomb-shaped carrier is appropriately moistened. This is because if the honeycomb-shaped carrier is excessively dried, the noble metal may not move from the honeycomb-shaped carrier into the refractory inorganic compound in the drying step.

【0028】バリウムを内層に含ませる工程は、(1)
〜(3)のいずれの工程中又は工程後であってもよい
が、バリウムも貴金属と同様の分布をもたせることが好
ましく、溶液濃度、ハニカム担体の気孔率等の条件に応
じて、上述の工程の順序を最適化することが好ましい。
The step of including barium in the inner layer is as follows:
Although barium may have the same distribution as the noble metal during or after any of the steps (3) to (3), the above-described step may be performed depending on conditions such as the solution concentration and the porosity of the honeycomb carrier. Is preferably optimized.

【0029】[0029]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0030】(実施例1) (1)内層の形成 ジニトロジアンミン白金水溶液中に、1平方インチ断面
当たり約400個の流路を持つコージェライト質ハニカ
ム担体1.0Lを浸し、その後引き上げ、余分な溶液を
吹き飛ばした。一方、比表面積が約280m2/gの活
性Al23粉末に、アルミナゾル4wt%及び水を混合
し、磁性ボールミルポットで約10分間混合、粉砕して
活性Al23のスラリーを得た。こうして得られた活性
Al23のスラリーを、ジニトロジアンミン白金水溶液
を含浸したコージェライト質ハニカム担体1.0Lに塗
布し、ハニカムセルに150℃の熱風を通じて乾燥した
後、500℃で1時間焼成してコート量約50g/Lの
ハニカム触媒1を得た。次いで、このハニカム触媒1を
酢酸バリウム水溶液に浸した後、120℃で乾燥、50
0℃で1時間焼成し、バリウムをハニカム触媒1L当た
り0.065モルを含有するハニカム触媒体1Aを得
た。ハニカム触媒体1Aのコート層における白金の分布
をEPMAで分析した結果、コート層の上半層部には、
白金は検出されなかったが、下半層部には、0.4g/
Lの白金が検出された。ハニカム担体からは、0.1g
/Lの白金が検出された。
Example 1 (1) Formation of Inner Layer 1.0 L of a cordierite-based honeycomb carrier having about 400 flow channels per square inch cross section was immersed in an aqueous dinitrodiammineplatinum solution, and then pulled up to remove excess The solution was blown off. On the other hand, 4 wt% of alumina sol and water were mixed with active Al 2 O 3 powder having a specific surface area of about 280 m 2 / g, mixed and pulverized in a magnetic ball mill pot for about 10 minutes to obtain a slurry of active Al 2 O 3 . . The thus-obtained slurry of active Al 2 O 3 was applied to 1.0 L of cordierite-based honeycomb carrier impregnated with an aqueous solution of dinitrodiammine platinum, dried in a honeycomb cell through hot air at 150 ° C., and fired at 500 ° C. for 1 hour. Thus, a honeycomb catalyst 1 having a coating amount of about 50 g / L was obtained. Next, this honeycomb catalyst 1 was immersed in an aqueous barium acetate solution, and then dried at 120 ° C.
Calcination was performed at 0 ° C. for 1 hour to obtain a honeycomb catalyst body 1A containing 0.065 mol of barium per liter of the honeycomb catalyst. The distribution of platinum in the coat layer of the honeycomb catalyst body 1A was analyzed by EPMA, and as a result,
No platinum was detected, but 0.4 g /
L platinum was detected. 0.1 g from honeycomb carrier
/ L of platinum was detected.

【0031】(2)表層の形成 濃度0.2Mの酢酸銅水溶液の中に、SiO2/Al2
3モル比が、約30のNa型MFIゼオライトの粉末を
添加して良く撹拌し、次いで濾過して固液を分離した。
上記の攪枠、濾過を5回繰り返し、Cuをイオン交換担
持したMFIゼオライトの触媒ケーキを得た。この触媒
ケーキを乾燥器中、80℃で24時間以上乾燥し、次い
で電気炉を用い、大気雰囲気下600℃で4時間焼成
し、Cuが5.6wt%担持されたCu−MFI触媒粉
を得た。このCu−MFI触媒粉に、アルミナゾル及び
水を混合し、磁性ボールミルポットで20分間粉砕して
Cu−MFIのスラリーを得た。アルミナゾルの添加量
は、Al23として全固形分に対して8wt%とした。
得られたCu−MFIのスラリーをハニカム触媒体1A
に塗布し、乾燥器中120℃で1時間乾燥、空気気流中
450℃で1時間焼成して、実施例1になる触媒を得
た。実施例1の表層におけるコート量は、約220g/
Lであった。
(2) Formation of Surface Layer In a copper acetate aqueous solution having a concentration of 0.2 M, SiO 2 / Al 2 O was added.
3 molar ratio, thoroughly stirred by adding powder of about 30 Na-type MFI zeolite, then filtered to separate the solid-liquid.
The above stirring and filtration were repeated 5 times to obtain a catalyst cake of MFI zeolite carrying Cu ion exchange. The catalyst cake was dried in a dryer at 80 ° C. for 24 hours or more, and then calcined at 600 ° C. for 4 hours in an air atmosphere using an electric furnace to obtain a Cu-MFI catalyst powder carrying 5.6 wt% of Cu. Was. Alumina sol and water were mixed with the Cu-MFI catalyst powder, and pulverized in a magnetic ball mill pot for 20 minutes to obtain a Cu-MFI slurry. The addition amount of the alumina sol was 8 wt% with respect to the total solid content as Al 2 O 3 .
The obtained slurry of Cu-MFI was mixed with the honeycomb catalyst 1A.
And dried in an oven at 120 ° C. for 1 hour, and calcined in an air stream at 450 ° C. for 1 hour to obtain a catalyst of Example 1. The coating amount on the surface layer of Example 1 was about 220 g /
L.

【0032】(実施例2) (1)内層の形成 ジニトロジアンミン白金水溶液を、硝酸パラジウム水溶
液とし、比表面積が約280m2/gの活性Al23
末を、比表面積が約430m2/g、SiO2/Al23
モル比が約34のH型MFIゼオライトに代えた以外
は、実施例1と同様の操作を繰り返し、コート量が約5
0g/Lのハニカム触媒体2Aを得た。ハニカム触媒体
2Aにおけるバリウムの含有量は、ハニカム1L当たり
0.07モル、パラジウムの含有量は、0.6g/Lで
あった。ハニカム触媒体2Aのコート層におけるパラジ
ウムの分布は、実施例1のハニカム触媒体1Aとほぼ同
様であった。
[0032] (Example 2) (1) an inner layer forming dinitrodiammineplatinum solution, and aqueous palladium nitrate solution, the active Al 2 O 3 powder having a specific surface area of about 280 meters 2 / g, a specific surface area of about 430m 2 / g , SiO 2 / Al 2 O 3
The same operation as in Example 1 was repeated except that the H-type MFI zeolite having a molar ratio of about 34 was used.
0 g / L of a honeycomb catalyst body 2A was obtained. The barium content in the honeycomb catalyst body 2A was 0.07 mol per 1 L of the honeycomb, and the palladium content was 0.6 g / L. The distribution of palladium in the coat layer of the honeycomb catalyst 2A was substantially the same as that of the honeycomb catalyst 1A of Example 1.

【0033】(2)中間層の形成 比表面積が約280m2/gの活性Al23粉末に、ア
ルミナゾル4wt%及び水を混合し、磁性ボールミルポ
ットで約10分間混合、粉砕して活性Al23のスラリ
ーを得た。こうして得られたスラリーを、ハニカム触媒
体2Aに塗布し、ハニカムセルに150℃の熱風を通じ
て乾燥した後、500℃で1時間焼成し、約15g/L
のコート層を形成したハニカム触媒体2Bを得た。
(2) Formation of Intermediate Layer An active Al 2 O 3 powder having a specific surface area of about 280 m 2 / g was mixed with 4 wt% of alumina sol and water, and mixed and pulverized for about 10 minutes in a magnetic ball mill pot to obtain active Al. A slurry of 2 O 3 was obtained. The slurry thus obtained was applied to the honeycomb catalyst body 2A, dried by passing hot air through a honeycomb cell at 150 ° C., and calcined at 500 ° C. for 1 hour to obtain about 15 g / L.
Thus, a honeycomb catalyst body 2B having a coating layer formed thereon was obtained.

【0034】(3)表層の形成 実施例1と同様の操作を繰り返し、ハニカム触媒体2B
に、Cu−MFIのスラリーを塗布してハニカム触媒体
2Cを得た。これとは別に、濃度0.1Mの硝酸銅水溶
液の中に、SiO2/Al23モル比が約35のNa型
βゼオライトの粉末を添加して良く撹拌し、次いで濾過
して固液を分離した。上記の撹拌濾過を2回繰り返した
後、水洗を施してCuを1.2wt%担持させたβゼオ
ライトの触媒粉を得た。このようにして得られたCu−
βゼオライトを、実施例1と同様の操作を繰り返し、ハ
ニカム触媒体2Cに、塗布、乾燥及び焼成して実施例2
になる触媒を得た。実施例2の表層におけるコート量
は、Cu−MFIゼオライトが約150g/L、Cu−
βゼオライトが約70g/Lであった。
(3) Formation of Surface Layer The same operation as in Example 1 was repeated to obtain the honeycomb catalyst 2B.
Was coated with a slurry of Cu-MFI to obtain a honeycomb catalyst body 2C. Separately, a powder of Na-type β zeolite having a SiO 2 / Al 2 O 3 molar ratio of about 35 was added to an aqueous solution of copper nitrate having a concentration of 0.1 M, stirred well, and then filtered to obtain a solid-liquid solution. Was isolated. After repeating the above-mentioned stirring filtration twice, it was washed with water to obtain a β zeolite catalyst powder carrying 1.2 wt% of Cu. The thus obtained Cu-
The same operation as in Example 1 was repeated on β zeolite to apply, dry, and calcine the honeycomb catalyst body 2C to obtain Example 2.
Was obtained. The coating amount in the surface layer of Example 2 was about 150 g / L for Cu-MFI zeolite,
β zeolite was about 70 g / L.

【0035】(実施例3) (1)内層の形成 比表面積が約280m2/gの活性Al23粉末を、比
表面積が約470m2/g、SiO2/Al23モル比が
約38のH型βゼオライトに代えた以外は、実施例1と
同様の操作を繰り返し、コート量が約50g/Lのハニ
カム触媒体3Aを得た。ハニカム触媒体3Aにおける白
金の含有量は、約0.6g/Lであり、バリウムの含有
量は、0.07モル/Lであった。コート層における白
金の分布は、実施例1のハニカム触媒体1Aとほぼ同様
であった。
(Example 3) (1) Formation of inner layer An active Al 2 O 3 powder having a specific surface area of about 280 m 2 / g was prepared, and a specific surface area of about 470 m 2 / g and a SiO 2 / Al 2 O 3 molar ratio were obtained. The same operation as in Example 1 was repeated except that about 38 H-type β zeolite was used, to obtain a honeycomb catalyst body 3A having a coating amount of about 50 g / L. The platinum content in the honeycomb catalyst body 3A was about 0.6 g / L, and the barium content was 0.07 mol / L. The distribution of platinum in the coat layer was almost the same as that of the honeycomb catalyst 1A of Example 1.

【0036】(2)中間層の形成 比表面積が約280m2/gの活性Al23粉末を、比
表面積が約450m2/gのSiO2・Al23粉末に代
えた以外は、実施例2と同様の操作を繰り返し、ハニカ
ム触媒体3Aに、コート量約15g/Lを形成したハニ
カム触媒体3Bを得た。
[0036] (2) except that forming specific surface area of the intermediate layer is an active Al 2 O 3 powder of about 280 meters 2 / g, specific surface area instead of the SiO 2 · Al 2 O 3 powder of about 450 m 2 / g is The same operation as in Example 2 was repeated to obtain a honeycomb catalyst body 3B in which a coating amount of about 15 g / L was formed on the honeycomb catalyst body 3A.

【0037】(3)表層の形成 濃度0.1Mの酢酸コバルト水溶液の中に、SiO2
Al23モル比が約35のNa型βゼオライトの粉末を
添加して良く撹拌し、次いで濾過して固液を分離した。
上記の撹拌濾過を2回繰り返した後、水洗を施してCu
が約2.4wt%担持されたβゼオライトの触媒粉を得
た。これとは別に、実施例1と同様の操作を繰り返し、
Cu−MFIゼオライトの粉末を得た。このようにして
得られたCu−βゼオライトの粉末及びCu−MFIゼ
オライトの混合粉末を、実施例1と同様の操作を繰り返
し、ハニカム触媒体3Bに、塗布、乾燥及び焼成して実
施例3になる触媒を得た。実施例3の表層におけるコー
ト量は、約220g/Lであり、その内訳は、Cu−M
FIゼオライトが約150g/L、Co−βゼオライト
が約70g/Lであった。
(3) Formation of Surface Layer In an aqueous solution of cobalt acetate having a concentration of 0.1 M, SiO 2 /
A powder of Na-type β zeolite having an Al 2 O 3 molar ratio of about 35 was added, and the mixture was stirred well and then filtered to separate a solid and a liquid.
After repeating the above-mentioned stirring filtration twice, washing with water is performed to remove Cu.
Was carried at about 2.4 wt% to obtain a catalyst powder of β zeolite. Apart from this, the same operation as in Example 1 is repeated,
A powder of Cu-MFI zeolite was obtained. The obtained powder of Cu-β zeolite and mixed powder of Cu-MFI zeolite were coated on the honeycomb catalyst body 3B, dried and calcined by repeating the same operation as in Example 1 to obtain Example 3. Catalyst was obtained. The coating amount in the surface layer of Example 3 was about 220 g / L, and the content was Cu-M
The FI zeolite was about 150 g / L, and the Co-β zeolite was about 70 g / L.

【0038】(実施例4) (1)内層の形成 ジニトロジアンミン白金水溶液の濃度及び酢酸バリウム
の濃度を変更し、比表面積が約470m2/g、SiO2
/Al23モル比が約38のH型βゼオライトを、比表
面積が約340m2/g、SiO2・Al23モル比が約
28のH型モルデナイトに代えた以外は、実施例3と同
様の操作を繰り返し、コート量が約50g/Lのハニカ
ム触媒体4Aを得た。ハニカム触媒体4Aにおける白金
の含有量は、0.15g/L、バリウムの含有量は、
0.035モル/Lであった。ハニカム触媒体4Aのコ
ート層における白金の分布は、実施例1のハニカム触媒
体1Aとほぼ同様であった。
[0038] (Example 4) (1) to change the concentration and the concentration of barium acetate inner layer forming dinitrodiammineplatinum aqueous solution, a specific surface area of about 470m 2 / g, SiO 2
Example 1 was repeated except that the H-type β zeolite having a / Al 2 O 3 molar ratio of about 38 was replaced with an H-type mordenite having a specific surface area of about 340 m 2 / g and a SiO 2 · Al 2 O 3 molar ratio of about 28. The same operation as in Example 3 was repeated to obtain a honeycomb catalyst body 4A having a coating amount of about 50 g / L. The platinum content in the honeycomb catalyst body 4A was 0.15 g / L, and the barium content was
It was 0.035 mol / L. The distribution of platinum in the coat layer of the honeycomb catalyst 4A was substantially the same as that of the honeycomb catalyst 1A of Example 1.

【0039】(2)中間層の形成 比表面積が約450m2/gのSiO2・Al23粉末
を、比表面積が約470m2/gのSiO2/Al23
ル比が約38のH型βゼオライトの粉末に代えた以外
は、実施例3と同様の操作を繰り返し、ハニカム触媒体
4Aに、約20g/Lのコート層を形成したハニカム触
媒体4Bを得た。
[0039] (2) the SiO 2 · Al 2 O 3 powder of forming specific surface area of the intermediate layer is about 450 m 2 / g, a specific surface area of SiO 2 / Al 2 O 3 molar ratio of about 470m 2 / g of about 38 The same procedure as in Example 3 was repeated, except that the powder was replaced with the H type β zeolite powder, to obtain a honeycomb catalyst body 4B in which a coat layer of about 20 g / L was formed on the honeycomb catalyst body 4A.

【0040】(3)表層の形成 実施例3と同様の操作を繰り返し、Cu−βゼオライト
の粉末及びCu−MFIゼオライトの混合粉末を、ハニ
カム触媒体4Bに、塗布、乾燥及び焼成して実施例4に
なる触媒を得た。実施例4の表層におけるコート量は、
約230g/Lであり、その内訳は、Cu−MFIゼオ
ライトが約150g/L、Co−βゼオライトが約80
g/Lであった。
(3) Formation of Surface Layer The same operation as in Example 3 was repeated, and the powder of Cu-β zeolite and the mixed powder of Cu-MFI zeolite were applied to the honeycomb catalyst body 4B, dried and calcined. 4 was obtained. The coating amount in the surface layer of Example 4 was
About 230 g / L, of which about 150 g / L for Cu-MFI zeolite and about 80 g for Co-β zeolite
g / L.

【0041】(実施例5) (1)内層の形成 ジニトロジアンミン白金水溶液を、ジニトロジアンミン
白金及び硝酸パラジウムの混合水溶液にし、比表面積が
約280m2/gの活性Al23粉末を、比表面積が約
70m2/gのTiO2粉末及び比表面積が約350m2
/gのSiO2粉末の混合粉末に代え、酢酸バリウム水
溶液の濃度を変更した以外は、実施例1と同様の操作を
繰り返し、コート量が約80g/Lのハニカム触媒体5
Aを得た。ハニカム触媒体5Aのコート層におけるバリ
ウムの含有量は、0.6モル/L、白金の含有量は、
0.6g/L、パラジウムの含有量は、0.5g/Lで
あった。ハニカム触媒体5Aのコート層における白金及
びパラジウムの分布は、実施例1のハニカム触媒体1A
とほぼ同様であった。
Example 5 (1) Formation of Inner Layer An aqueous solution of dinitrodiammine platinum was converted into a mixed aqueous solution of dinitrodiammineplatinum and palladium nitrate, and an active Al 2 O 3 powder having a specific surface area of about 280 m 2 / g was prepared. There TiO 2 powder and the specific surface area of about 70m 2 / g is approximately 350 meters 2
/ G of SiO 2 powder, and the same operation as in Example 1 was repeated, except that the concentration of the aqueous barium acetate solution was changed, to obtain a honeycomb catalyst 5 having a coating amount of about 80 g / L.
A was obtained. The barium content in the coat layer of the honeycomb catalyst body 5A was 0.6 mol / L, and the platinum content was
0.6 g / L and the content of palladium were 0.5 g / L. The distribution of platinum and palladium in the coat layer of the honeycomb catalyst body 5A is the same as that of the honeycomb catalyst body 1A of Example 1.
It was almost the same.

【0042】(2)中間層の形成 比表面積が約280m2/gの活性Al23粉末を、比
表面積が約430m2/g、SiO2/Al23モル比が
約34のH型MFIゼオライトに代えた以外は、実施例
2と同様の操作を繰り返し、ハニカム触媒体5Aに、約
20g/Lのコート層を形成したハニカム触媒体5Bを
得た。
(2) Formation of Intermediate Layer An active Al 2 O 3 powder having a specific surface area of about 280 m 2 / g was converted into H 2 having a specific surface area of about 430 m 2 / g and a SiO 2 / Al 2 O 3 molar ratio of about 34. The same operation as in Example 2 was repeated except that the type MFI zeolite was used, to obtain a honeycomb catalyst body 5B in which a coat layer of about 20 g / L was formed on the honeycomb catalyst body 5A.

【0043】(3)表層の形成 硝酸ロジウム水溶液に比表面積が約280m2/gの活
性Al23粉末を添加して良く撹拌し、次いで乾燥機で
120℃で5時間乾燥した後、550℃で4時間焼成す
ることにより、ロジウムが2.2%担持されたAl23
の粉末を得た。このロジウム担持Al23粉末にアルミ
ナゾル及び水を混合し、磁性ボールミルポットで20分
間粉砕してRh−Al23のスラリーを得た。アルミナ
ゾルの添加量は、Al23として全固形分に対して8w
t%とした。得られたRh−Al23のスラリーをハニ
カム触媒体5Bに塗布してハニカム触媒体5Cを得た。
これとは別に、実施例1と同様の操作を繰り返し、Cu
−MFIゼオライトのスラリーを得た。得られたCu−
MFIゼオライトのスラリーを、実施例1と同様の操作
を繰り返し、ハニカム触媒体5Cに、塗布、乾燥及び焼
成して実施例5になる触媒を得た。実施例5の表層にお
けるコート量は、Rh−Al23が約100g/L、C
u−MFIゼオライトが約160g/Lであった。
(3) Formation of Surface Layer An active Al 2 O 3 powder having a specific surface area of about 280 m 2 / g was added to an aqueous rhodium nitrate solution, stirred well, dried at 120 ° C. for 5 hours in a drier, and then dried. Baked at 4 ° C. for 4 hours to obtain Al 2 O 3 carrying 2.2% of rhodium.
Was obtained. Alumina sol and water were mixed with this rhodium-supported Al 2 O 3 powder, and ground with a magnetic ball mill pot for 20 minutes to obtain a slurry of Rh—Al 2 O 3 . The addition amount of alumina sol, 8w on the total solid content as Al 2 O 3
t%. The obtained slurry of Rh-Al 2 O 3 was applied to the honeycomb catalyst 5B to obtain a honeycomb catalyst 5C.
Separately, the same operation as in Example 1 was repeated to obtain Cu
-A slurry of MFI zeolite was obtained. The obtained Cu-
The same operation as in Example 1 was repeated with the slurry of the MFI zeolite, applied to the honeycomb catalyst body 5C, dried and calcined to obtain a catalyst of Example 5. The coating amount in the surface layer of Example 5 was about 100 g / L for Rh-Al 2 O 3 ,
The u-MFI zeolite was about 160 g / L.

【0044】(実施例6) (1)内層の形成 ジニトロジアンミン白金水溶液の濃度及び酢酸バリウム
水溶液濃度を変更した以外は、実施例3と同様の操作を
繰り返し、コート量が約60g/Lのハニカム触媒体6
Aを得た。ハニカム触媒体6Aのコート層における白金
の含有量は、0.8g/L、バリウムの含有量は、0.
1モル/Lであった。コート層における白金の分布は、
実施例1のハニカム触媒体1Aとほぼ同様であった。
Example 6 (1) Formation of Inner Layer The same operation as in Example 3 was repeated except that the concentration of the dinitrodiammine platinum aqueous solution and the concentration of the barium acetate aqueous solution were changed, and a honeycomb having a coating amount of about 60 g / L was used. Catalyst 6
A was obtained. The content of platinum in the coat layer of the honeycomb catalyst body 6A was 0.8 g / L, and the content of barium was 0.1 g / L.
It was 1 mol / L. The distribution of platinum in the coat layer is
It was almost the same as the honeycomb catalyst body 1A of Example 1.

【0045】(2)中間層の形成 比表面積が約450m2/gのSiO2・Al23粉末
を、比表面積が約340m2/g、SiO2/Al23
ル比が約28のH型モルデナイトに代えた以外は、実施
例3と同様の操作を繰り返し、ハニカム触媒体6Aに、
約20g/Lのコート層を形成したハニカム触媒体6B
を得た。
(2) Formation of Intermediate Layer An SiO 2 .Al 2 O 3 powder having a specific surface area of about 450 m 2 / g was converted to a powder having a specific surface area of about 340 m 2 / g and a SiO 2 / Al 2 O 3 molar ratio of about 28. The same operation as in Example 3 was repeated except that the H-type mordenite was replaced with a honeycomb catalyst body 6A,
Honeycomb catalyst body 6B having a coating layer of about 20 g / L
I got

【0046】(3)表層の形成 比表面積が約280m2/gの活性Al23粉末を、比
表面積が約470m2/g、SiO2/Al23モル比が
約38のH型βゼオライトに代えた以外は、実施例4と
同様の操作を繰り返し、ハニカム触媒体6Bに、塗布、
乾燥及び焼成して実施例6になる触媒を得た。ここで、
Rh−βゼオライトのRh担持量は2.5wt%であっ
た。実施例6の表層におけるコート量は、Rh−βゼオ
ライトが約100g/L、Cu−MFIゼオライトが約
160g/Lであった。
(3) Formation of Surface Layer An active Al 2 O 3 powder having a specific surface area of about 280 m 2 / g was converted to an H type powder having a specific surface area of about 470 m 2 / g and a SiO 2 / Al 2 O 3 molar ratio of about 38. The same operation as in Example 4 was repeated, except that the zeolite was replaced with β zeolite.
Drying and calcining yielded a catalyst of Example 6. here,
The Rh-supporting amount of the Rh-β zeolite was 2.5 wt%. The coating amount in the surface layer of Example 6 was about 100 g / L for Rh-β zeolite and about 160 g / L for Cu-MFI zeolite.

【0047】(実施例7) (1)内層の形成 実施例6と同様の操作を繰り返し、ハニカム触媒体7A
を得た。
Example 7 (1) Formation of Inner Layer The same operation as in Example 6 was repeated to obtain a honeycomb catalyst body 7A.
I got

【0048】(2)中間層の形成 比表面積が約340m2/g、SiO2/Al23モル比
が約28のH型モルデナイトを、比表面積が約70m2
/gのTiO2に代えた以外は、実施例6と同様の操作
を繰り返し、ハニカム触媒体7Aに、約20g/Lのコ
ート層を形成したハニカム触媒体7Bを得た。
[0048] (2) forming specific surface area of the intermediate layer is about 340m 2 / g, the H-type mordenite of SiO 2 / Al 2 O 3 molar ratio of about 28, a specific surface area of about 70m 2
The same operation as in Example 6 was repeated, except that TiO 2 / g of TiO 2 was used, to obtain a honeycomb catalyst body 7B in which a coat layer of about 20 g / L was formed on the honeycomb catalyst body 7A.

【0049】(3)表層の形成 H型βゼオライトを、比表面積が約65m2/gのZr
2に代えた以外は、実施例6と同様の操作を繰り返
し、ハニカム触媒体7Bに、Cu−MFIゼオライト及
びRh−ZrO2を、塗布、乾燥及び焼成して実施例7
になる触媒を得た。実施例7の表層におけるコート量
は、Cu−MFIゼオライトが約160g/L、Rh−
ZrO2が約100g/Lであった。
(3) Formation of Surface Layer H-type zeolite was converted to Zr having a specific surface area of about 65 m 2 / g.
The same operation as in Example 6 was repeated, except that O 2 was used, and Cu-MFI zeolite and Rh-ZrO 2 were coated, dried and calcined on the honeycomb catalyst body 7B to obtain Example 7.
Was obtained. The coating amount in the surface layer of Example 7 was about 160 g / L for Cu-MFI zeolite,
ZrO 2 was about 100 g / L.

【0050】(実施例8) (1)内層の形成 実施例6と同様の操作を繰り返し、ハニカム触媒体8A
を得た。
Example 8 (1) Formation of Inner Layer The same operation as in Example 6 was repeated to obtain a honeycomb catalyst body 8A.
I got

【0051】(2)中間層の形成 比表面積が約340m2/g、SiO2/Al23モル比
が約28のH型モルデナイトを、比表面積が約480m
2/gのSiO2に代えた以外は、実施例6と同様の操作
を繰り返し、ハニカム触媒体8Aに、約20g/Lのコ
ート層を形成したハニカム触媒体8Bを得た。
(2) Formation of Intermediate Layer H-type mordenite having a specific surface area of about 340 m 2 / g and a SiO 2 / Al 2 O 3 molar ratio of about 28 was prepared.
The same operation as in Example 6 was repeated, except that 2 / g of SiO 2 was used, to obtain a honeycomb catalyst body 8B in which a coat layer of about 20 g / L was formed on the honeycomb catalyst body 8A.

【0052】(3)表層の形成 H型βゼオライトを比表面積が約70m2/gのTiO2
に代えた以外は、実施例6と同様の操作を繰り返し、ハ
ニカム触媒体8Bに、Cu−MFIゼオライト及びRh
−TiO2を、塗布、乾燥及び焼成して実施例8になる
触媒を得た。実施例8の表層におけるコート量は、Cu
−MFIゼオライトが約160g/L、Rh−TiO2
が約100g/Lであった。
(3) Formation of Surface Layer The H-type β zeolite is made of TiO 2 having a specific surface area of about 70 m 2 / g.
The same operation as in Example 6 was repeated, except that the Cu-MFI zeolite and Rh were added to the honeycomb catalyst body 8B.
The -TiO 2, applied to obtain a dry and calcined catalyst comprising in Example 8. The coating amount in the surface layer of Example 8 was Cu
About 160 g / L of MFI zeolite, Rh-TiO 2
Was about 100 g / L.

【0053】(実施例9) (1)内層の形成 実施例6と同様の操作を繰り返し、ハニカム触媒体9A
を得た。
Example 9 (1) Formation of Inner Layer The same operation as in Example 6 was repeated to obtain a honeycomb catalyst 9A.
I got

【0054】(2)中間層の形成 比表面積が約340m2/g、SiO2/Al23モル比
が約28のH型モルデナイトを、比表面積が約470m
2/g、SiO2/Al23モル比が約38のH型βゼオ
ライトに代えた以外は、実施例6と同様の操作を繰り返
し、ハニカム触媒体9Aに、約20g/Lのコート層を
形成したハニカム触媒体9Bを得た。
(2) Formation of Intermediate Layer H-type mordenite having a specific surface area of about 340 m 2 / g and a SiO 2 / Al 2 O 3 molar ratio of about 28 was prepared.
The same operation as in Example 6 was repeated except that the H type β zeolite having a molar ratio of 2 / g and SiO 2 / Al 2 O 3 of about 38 was used, and the honeycomb catalyst 9A was coated with a coat layer of about 20 g / L. Was formed to obtain a honeycomb catalyst body 9B.

【0055】(3)表層の形成 H型βゼオライトを、比表面積が約480m2/gのS
iO2に代えた以外は、実施例6と同様の操作を繰り返
し、ハニカム触媒体9Bに、Cu−MFIゼオライト及
びRh−SiO2を、塗布、乾燥及び焼成して実施例9
になる触媒を得た。実施例9の表層におけるコート量
は、Cu−MFIゼオライトが約160g/L、Rh−
SiO2が約100g/Lであった。
(3) Formation of Surface Layer The H-type β zeolite was converted to S-type having a specific surface area of about 480 m 2 / g.
The same operation as in Example 6 was repeated, except that iO 2 was used, and Cu-MFI zeolite and Rh-SiO 2 were coated, dried and calcined on the honeycomb catalyst 9B to obtain Example 9.
Was obtained. The coating amount in the surface layer of Example 9 was about 160 g / L for Cu-MFI zeolite,
SiO 2 was about 100 g / L.

【0056】(比較例1) (1)内層の形成 ジニトロジアンミン白金水溶液中に、比表面積が約28
0m2/gの活性Al23粉末を添加し、乾燥、焼成工
程を経てPt−Al23粉末を得た。得られたPt−A
23粉末を、実施例1と同様の操作を繰り返し、1平
方インチ断面当たり約400個の流路を持つコージェラ
イト質ハニカム担体1.0Lに塗布、乾燥、焼成してコ
ート量約50g/Lのハニカム触媒R1を得た。次い
で、得られたハニカム触媒R1を酢酸バリウム水溶液に
浸した後、120℃で乾燥、500℃で1時間焼成し、
白金を0.5g/L、バリウムを0.065モル/L含
有するハニカム触媒体R1Aを得た。ハニカム触媒体R
1Aのコート層における白金の分布をEPMAで分析し
た結果、白金がコート層に均一に分布していることが確
認された。
(Comparative Example 1) (1) Formation of Inner Layer A specific surface area of about 28 in an aqueous dinitrodiammineplatinum solution was measured.
0 m 2 / g of activated Al 2 O 3 powder was added, followed by drying and firing steps to obtain a Pt-Al 2 O 3 powder. Pt-A obtained
The same operation as in Example 1 was repeated to apply l 2 O 3 powder to 1.0 L of cordierite-based honeycomb carrier having about 400 channels per square inch cross section, dried, and fired to coat about 50 g. / L of the honeycomb catalyst R1 was obtained. Next, the obtained honeycomb catalyst R1 was immersed in an aqueous barium acetate solution, dried at 120 ° C., and calcined at 500 ° C. for 1 hour,
A honeycomb catalyst body R1A containing 0.5 g / L of platinum and 0.065 mol / L of barium was obtained. Honeycomb catalyst body R
As a result of analyzing the distribution of platinum in the coat layer of 1A by EPMA, it was confirmed that platinum was uniformly distributed in the coat layer.

【0057】(2)表層の形成 実施例1と同様の操作を繰り返し、ハニカム触媒体R1
Aに、Cu−MFIゼオライトを塗布、乾燥及び焼成し
て比較例1になる触媒を得た。比較例1の表層における
コート量は、約220g/Lであった。
(2) Formation of Surface Layer The same operation as in Example 1 was repeated to obtain the honeycomb catalyst body R1.
A was coated with Cu-MFI zeolite, dried and calcined to obtain a catalyst of Comparative Example 1. The coating amount on the surface layer of Comparative Example 1 was about 220 g / L.

【0058】(比較例2) (1)内層の形成 コージェライト質ハニカム担体1.0Lに、実施例1と
同様の操作を繰り返して得られた活性Al23のスラリ
ーを塗布し、コート層を形成させた。コート層を形成さ
せたハニカム担体を、ジニトロジアンミン白金水溶液中
に浸した後、実施例1と同様の操作を繰り返し、乾燥及
び焼成したハニカム触媒R2を得た。さらに、ハニカム
触媒R2を酢酸バリウム水溶液に浸した後、乾燥、焼成
し、バリウムを0.065モル/L、白金を0.5g/
L含有するハニカム触媒体R2Aを得た。ハニカム触媒
体R2Aのコート層における白金の分布をEPMAで分
析した結果、コート層の上半層部に0.1g/Lの白金
が検出され、下半層部には0.4/Lの白金が検出され
た。
Comparative Example 2 (1) Formation of Inner Layer A slurry of active Al 2 O 3 obtained by repeating the same operation as in Example 1 was applied to 1.0 L of cordierite-based honeycomb carrier, and a coat layer was formed. Was formed. After immersing the honeycomb carrier having the coated layer formed therein in an aqueous dinitrodiammine platinum solution, the same operation as in Example 1 was repeated to obtain a dried and fired honeycomb catalyst R2. Further, the honeycomb catalyst R2 was immersed in an aqueous barium acetate solution, dried and calcined to obtain 0.065 mol / L barium and 0.5 g / platinum platinum.
An L-containing honeycomb catalyst body R2A was obtained. As a result of analyzing the distribution of platinum in the coat layer of the honeycomb catalyst body R2A by EPMA, 0.1 g / L of platinum was detected in the upper half layer of the coat layer, and 0.4 / L of platinum was detected in the lower half layer. Was detected.

【0059】(2)表層の形成 実施例1と同様の操作を繰り返し、ハニカム触媒体R2
Aに、Cu−MFIゼオライトを塗布、乾燥及び焼成し
て比較例2になる触媒を得た。比較例2の表層における
コート量は、約220g/Lであった。
(2) Formation of Surface Layer The same operation as in Example 1 was repeated to obtain a honeycomb catalyst body R2.
A was coated with Cu-MFI zeolite, dried and calcined to obtain a catalyst of Comparative Example 2. The coating amount in the surface layer of Comparative Example 2 was about 220 g / L.

【0060】実施例1〜9並びに比較例1及び2の触媒
の触媒構成及びその組成を表1に示す。
Table 1 shows the catalyst structures and compositions of the catalysts of Examples 1 to 9 and Comparative Examples 1 and 2.

【0061】(触媒性能試験例)各例の触媒を、4気筒
2.5L直接噴射式ディーゼルエンジンを設置したエン
ジンダイナモ装置の排気系に組み込み、触媒による排気
ガス中のNOxの浄化性能を測定した。
(Catalyst Performance Test Examples) The catalysts of the respective examples were incorporated into the exhaust system of an engine dynamo apparatus equipped with a 4-cylinder 2.5-liter direct injection diesel engine, and the NOx purification performance of the catalysts was measured. .

【0062】本エンジンダイナモ装置の排気系には、燃
料を注入するためのノズルが設けられており、触媒入口
における排気ガス中のHC/NOx比を制御出来るよう
になっている。触媒のNOx浄化率測定にあたり、触媒
入口温度を100〜450℃まで、約100℃/min
で昇温させ、触媒入口温度250℃及び420℃におけ
るNOx浄化率を測定した。触媒入口温度100〜30
0℃までの排気ガス中の平均HC/NOx比は0.8で
あり、300〜450℃までの排気ガス中の平均HC/
NOx比は4.1であった。また、本測定時のガス空間
速度は約40000h-1であった。
The exhaust system of the engine dynamo device is provided with a nozzle for injecting fuel, so that the HC / NOx ratio in the exhaust gas at the catalyst inlet can be controlled. In measuring the NOx purification rate of the catalyst, the temperature at the catalyst inlet was increased from 100 to 450 ° C. to about 100 ° C./min.
And the NOx purification rates at the catalyst inlet temperatures of 250 ° C. and 420 ° C. were measured. Catalyst inlet temperature 100-30
The average HC / NOx ratio in the exhaust gas up to 0 ° C. is 0.8, and the average HC / NOx in the exhaust gas up to 300-450 ° C.
The NOx ratio was 4.1. The gas space velocity at the time of the main measurement was about 40,000 h -1 .

【0063】表1に、各例の触媒の触媒入口温度250
℃及び420℃におけるNOx浄化率をを示す。
Table 1 shows the catalyst inlet temperature 250 of each of the catalysts.
4 shows the NOx purification rates at 4 ° C. and 420 ° C.

【0064】[0064]

【表1】 [Table 1]

【0065】表1から、実施例1〜9の触媒は、いずれ
の温度においても明らかにNOx浄化率が高く、300
℃以下での低温域、特に、150℃以下を含み、かつH
C/NOx比が極めて低い低温域であっても、NOxを
効率良くトラップし、400℃以上の高温域に至って
は、NOxとHCを高効率で反応させており、優れたN
Ox浄化能を示している。
From Table 1, it can be seen that the catalysts of Examples 1 to 9 had a clearly high NOx purification rate at any temperature,
Low temperature range below 150 ° C., especially below 150 ° C. and H
Even in a low temperature range where the C / NOx ratio is extremely low, NOx is trapped efficiently, and up to a high temperature range of 400 ° C. or higher, NOx and HC are reacted with high efficiency, and excellent N
This shows the ability to purify Ox.

【0066】[0066]

【発明の効果】以上説明してきたように、本発明によれ
ば、ハニカム状モノリス担体上に積層した触媒層のう
ち、内層の触媒成分に特定の分布をもたせることなどし
たため、低温で、低HC/NOx比の排気ガスであって
も、高効率で浄化する排気ガス浄化用触媒及びその製造
方法を提供することができる。
As described above, according to the present invention, the catalyst component in the inner layer of the catalyst layer laminated on the honeycomb-shaped monolithic carrier is provided with a specific distribution. It is possible to provide an exhaust gas purifying catalyst for purifying exhaust gas with a high efficiency even with an exhaust gas having a / NOx ratio and a method for producing the same.

【0067】また、本発明の排気ガス浄化用触媒を使用
することにより、環境汚染が少なく、経済性(燃費)に
優れた自動車を提供することができる。
Further, by using the exhaust gas purifying catalyst of the present invention, it is possible to provide an automobile which is less polluted by the environment and excellent in economy (fuel efficiency).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 29/20 B01J 29/76 A 29/72 37/02 301L 29/76 F01N 3/10 A 37/02 301 3/20 D F01N 3/10 3/28 301C 3/20 B01D 53/36 H 3/28 301 102B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 29/20 B01J 29/76 A 29/72 37/02 301L 29/76 F01N 3/10 A 37/02 301 3/20 D F01N 3/10 3/28 301C 3/20 B01D 53/36 H 3/28 301 102B

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ハニカム状モノリス担体上に、触媒層た
る内層及び表層を順次積層して成る排気ガス浄化用触媒
において、 上記内層が、白金及び/又はパラジウムと、バリウムを
含有し、かつ該白金及び/又はパラジウムの濃度が、上
記ハニカム状モノリス担体の壁面に近い程高く、上記表
層に近い程低い分布を成し、 上記表層が、銅、ロジウム及びコバルトから成る群より
選ばれた少なくとも1種の成分を含有することを特徴と
する排気ガス浄化用触媒。
1. An exhaust gas purifying catalyst comprising an inner layer serving as a catalyst layer and a surface layer sequentially stacked on a honeycomb monolithic carrier, wherein the inner layer contains platinum and / or palladium and barium, and And / or the concentration of palladium is higher as it is closer to the wall surface of the honeycomb monolithic carrier and lower as it is closer to the surface layer, and the surface layer is at least one selected from the group consisting of copper, rhodium and cobalt. An exhaust gas purifying catalyst comprising the following components:
【請求項2】 上記内層が、白金及び/又はパラジウム
と、バリウムを、MFIゼオライト、モルデナイト、β
ゼオライト、アルミナ、シリカ、シリカ・アルミナ及び
チタニアから成る群より選ばれた少なくとも1種の耐火
性無機化合物に担持して成ることを特徴とする請求項1
記載の排気ガス浄化用触媒。
2. The method according to claim 1, wherein the inner layer comprises platinum and / or palladium and barium, and comprises MFI zeolite, mordenite, β
2. The method according to claim 1, wherein the carrier is supported on at least one refractory inorganic compound selected from the group consisting of zeolite, alumina, silica, silica-alumina and titania.
The exhaust gas purifying catalyst according to the above.
【請求項3】 上記表層が、銅、ロジウム及びコバルト
から成る群より選ばれた少なくとも1種の成分を、MF
Iゼオライト、モルデナイト、βゼオライト、アルミ
ナ、シリカ、シリカ・アルミナ、チタニア及びジルコニ
アから成る群より選ばれた少なくとも1種の耐火性無機
化合物に担持して成ることを特徴とする請求項1又は2
記載の排気ガス浄化用触媒。
3. The method according to claim 1, wherein the surface layer comprises at least one component selected from the group consisting of copper, rhodium and cobalt,
3. The method as claimed in claim 1, wherein the zeolite is supported on at least one refractory inorganic compound selected from the group consisting of I zeolite, mordenite, β zeolite, alumina, silica, silica-alumina, titania and zirconia.
The exhaust gas purifying catalyst according to the above.
【請求項4】 上記内層における白金及び/又はパラジ
ウムの含有量が、上記ハニカム状モノリス触媒1L当た
り0.1〜1.2gであることを特徴とする請求項1〜
3のいずれか1つの項に記載の排気ガス浄化用触媒。
4. The method according to claim 1, wherein the content of platinum and / or palladium in the inner layer is 0.1 to 1.2 g per 1 L of the honeycomb monolith catalyst.
Item 3. The exhaust gas purifying catalyst according to any one of Items 3.
【請求項5】 上記内層におけるバリウムの含有量が、
上記ハニカム状モノリス触媒1L当たり0.03〜0.
3モルであることを特徴とする請求項1〜4のいずれか
1つの項に記載の排気ガス浄化用触媒。
5. The content of barium in the inner layer is:
0.03 to 0.1 per liter of the honeycomb monolith catalyst.
The exhaust gas purifying catalyst according to any one of claims 1 to 4, wherein the amount of the catalyst is 3 mol.
【請求項6】 上記内層と上記表層との間に、MFIゼ
オライト、モルデナイト、βゼオライト、アルミナ、シ
リカ、シリカ・アルミナ及びチタニアから成る群より選
ばれた少なくとも1種の耐火性無機化合物を含有する中
間層を設けたことを特徴とする請求項1〜5のいずれか
1つの項に記載の排気ガス浄化用触媒。
6. At least one refractory inorganic compound selected from the group consisting of MFI zeolite, mordenite, β zeolite, alumina, silica, silica-alumina and titania is provided between the inner layer and the surface layer. The exhaust gas purifying catalyst according to any one of claims 1 to 5, further comprising an intermediate layer.
【請求項7】 請求項1〜6のいずれか1つの項に記載
の排気ガス浄化用触媒を製造するに当たり、 (1)上記ハニカム状モノリス担体に、上記白金及び/
又はパラジウムを含む水溶液を含浸し、 (2)(1)工程によって得られたハニカム状モノリス
担体に、上記耐火性無機化合物を塗布し、 (3)(2)工程により耐火性無機化合物を塗布したハ
ニカム状モノリス担体を乾燥することにより、上記ハニ
カム状モノリス担体上に内層を積層することを特徴とす
る排気ガス浄化用触媒の製造方法。
7. In producing the exhaust gas purifying catalyst according to any one of claims 1 to 6, (1) the platinum and / or platinum is added to the honeycomb monolithic carrier.
Or (2) applying the refractory inorganic compound to the honeycomb monolithic carrier obtained in the step (1), and (3) applying the refractory inorganic compound in the step (2). A method for producing an exhaust gas purifying catalyst, characterized in that an inner layer is laminated on the honeycomb monolith carrier by drying the honeycomb monolith carrier.
JP10099942A 1998-03-30 1998-03-30 Catalyst for purifying exhaust gas and its production Pending JPH11276907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10099942A JPH11276907A (en) 1998-03-30 1998-03-30 Catalyst for purifying exhaust gas and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10099942A JPH11276907A (en) 1998-03-30 1998-03-30 Catalyst for purifying exhaust gas and its production

Publications (1)

Publication Number Publication Date
JPH11276907A true JPH11276907A (en) 1999-10-12

Family

ID=14260776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10099942A Pending JPH11276907A (en) 1998-03-30 1998-03-30 Catalyst for purifying exhaust gas and its production

Country Status (1)

Country Link
JP (1) JPH11276907A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2799665A1 (en) * 1999-10-15 2001-04-20 Toyota Motor Co Ltd Catalyst, for exhaust gas purification, includes inorganic oxide layer containing noble and transition metals to protect nitrogen oxide absorber from poisoning by sulfur oxides
US6806225B1 (en) 1998-06-30 2004-10-19 Toyota Jidosha Kabushiki Kaisha Catalyst for exhaust gas purification, process for producing the same, and method of purifying exhaust gas
JP2008513733A (en) * 2004-08-12 2008-05-01 サウスウエスト リサーチ インスティテュート Component evaluation using non-engine-based test systems (component evaluation using non-engineered tests system)
JP2010516445A (en) * 2007-01-17 2010-05-20 ナノステラー インコーポレイテッド Engine exhaust gas catalyst containing palladium-gold
US7763560B2 (en) 2003-05-06 2010-07-27 Ict Co., Ltd Catalyst for purifying diesel engine exhaust gas and method for production thereof
JP2012515085A (en) * 2009-01-16 2012-07-05 ビー・エイ・エス・エフ、コーポレーション Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion
JP2012517343A (en) * 2009-02-25 2012-08-02 エルジー・ハウシス・リミテッド Catalyst body and method for removing formaldehyde using the same
US8258070B2 (en) 2006-11-27 2012-09-04 WGCH Technology Limited Engine exhaust catalysts containing palladium-gold
JP2017070901A (en) * 2015-10-07 2017-04-13 本田技研工業株式会社 Exhaust gas purification catalyst and production method therefor
EP2579983B1 (en) 2010-06-10 2018-03-07 Basf Se Nox storage catalyst with reduced rh loading
US10376867B2 (en) 2011-10-06 2019-08-13 Johnson Matthey Public Limited Company Oxidation catalyst for internal combustion engine exhaust gas treatment
JP2020517456A (en) * 2017-04-24 2020-06-18 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Passive NOx adsorber
WO2023182270A1 (en) * 2022-03-22 2023-09-28 三井金属鉱業株式会社 Exhaust gas purification catalyst

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806225B1 (en) 1998-06-30 2004-10-19 Toyota Jidosha Kabushiki Kaisha Catalyst for exhaust gas purification, process for producing the same, and method of purifying exhaust gas
FR2799665A1 (en) * 1999-10-15 2001-04-20 Toyota Motor Co Ltd Catalyst, for exhaust gas purification, includes inorganic oxide layer containing noble and transition metals to protect nitrogen oxide absorber from poisoning by sulfur oxides
US7763560B2 (en) 2003-05-06 2010-07-27 Ict Co., Ltd Catalyst for purifying diesel engine exhaust gas and method for production thereof
JP2008513733A (en) * 2004-08-12 2008-05-01 サウスウエスト リサーチ インスティテュート Component evaluation using non-engine-based test systems (component evaluation using non-engineered tests system)
US8258070B2 (en) 2006-11-27 2012-09-04 WGCH Technology Limited Engine exhaust catalysts containing palladium-gold
JP2010516445A (en) * 2007-01-17 2010-05-20 ナノステラー インコーポレイテッド Engine exhaust gas catalyst containing palladium-gold
JP2012515085A (en) * 2009-01-16 2012-07-05 ビー・エイ・エス・エフ、コーポレーション Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion
JP2012517343A (en) * 2009-02-25 2012-08-02 エルジー・ハウシス・リミテッド Catalyst body and method for removing formaldehyde using the same
EP2579983B1 (en) 2010-06-10 2018-03-07 Basf Se Nox storage catalyst with reduced rh loading
US10376867B2 (en) 2011-10-06 2019-08-13 Johnson Matthey Public Limited Company Oxidation catalyst for internal combustion engine exhaust gas treatment
JP2017070901A (en) * 2015-10-07 2017-04-13 本田技研工業株式会社 Exhaust gas purification catalyst and production method therefor
JP2020517456A (en) * 2017-04-24 2020-06-18 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Passive NOx adsorber
WO2023182270A1 (en) * 2022-03-22 2023-09-28 三井金属鉱業株式会社 Exhaust gas purification catalyst

Similar Documents

Publication Publication Date Title
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
EP0832688B1 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
JPH0910594A (en) Catalyst for purifying exhaust gas
JP5607131B2 (en) Exhaust gas purification catalyst
JP2002001124A (en) Catalyst for purification of exhaust gas and method for purification of exhaust gas
JPH11300211A (en) Catalyst for and method of cleaning exhaust gas
JP2002361083A (en) Exhaust gas cleaning catalyst for internal combustion engine, method of producing the same and claening apparatus
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JP2007196146A (en) Catalyst for cleaning exhaust gas
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH11221466A (en) Catalyst for purifying exhaust gas and purification of exhaust gas
JPH08281110A (en) Catalyst for purifying exhaust gas and its production
JPH11226414A (en) Exhaust gas purification catalyst
JP2000042415A (en) Catalyst for exhaust gas purification using hydrocarbon reforming material
JP2000015104A (en) Catalyst for purification of exhaust gas and purification of exhaust gas
JPH10156183A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JP2849585B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH0957066A (en) Catalyst for purification of exhaust gas
JP4106762B2 (en) Exhaust gas purification catalyst device and purification method
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2000070722A (en) Exhaust gas purification catalyst
JP2001058131A (en) Catalyst for exhaust gas treatment
JPH11226415A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JP5641585B2 (en) Exhaust gas purification catalyst
JPH11226402A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas