JPH0413470B2 - - Google Patents

Info

Publication number
JPH0413470B2
JPH0413470B2 JP32746488A JP32746488A JPH0413470B2 JP H0413470 B2 JPH0413470 B2 JP H0413470B2 JP 32746488 A JP32746488 A JP 32746488A JP 32746488 A JP32746488 A JP 32746488A JP H0413470 B2 JPH0413470 B2 JP H0413470B2
Authority
JP
Japan
Prior art keywords
treatment
enzyme
pineapple
weight
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32746488A
Other languages
Japanese (ja)
Other versions
JPH02175975A (en
Inventor
Toshiichi Nunoo
Hiroshi Ono
Hikari Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP32746488A priority Critical patent/JPH02175975A/en
Publication of JPH02175975A publication Critical patent/JPH02175975A/en
Publication of JPH0413470B2 publication Critical patent/JPH0413470B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はパイナツプル繊維構造物の改質方法即
ち、着用中及び洗濯後の毛羽立ちが少く、洗濯収
縮性も少ない、パイナツプル繊維構造物の加工方
法に関するものである。 (従来の技術) パイナツプル繊維構造物については、従来手工
芸的に紡糸,織製を行なつた後、水晒,天日晒を
行つて生産され特にフイリツピンではピーニヤと
言う名前で高級衣料として知られていた。 近年、セルロース系繊維として同種の綿と同様
の加工方法にてパイナツプル繊維を糊抜・精練・
晒・シルケツト加工を行つた後、染色、仕上を行
い加工されたことはあるが、実用に供される生産
はほとんど無かつた。 (発明が解決しようとする課題) しかし、この様な従来の方法には種々の欠点が
ある。例えば毛工芸的な方法では、伝統工芸品と
しては価置のあるものが出来るが、晒の白度が不
充分であり、風合も硬く、毛羽の発生が多く、色
相が限定され又用途にも限りがあり、生産性も極
めて低いという欠点がある。 又、通常の綿と同様の処理工程にて、加工を実
施すると、生産性は向上するが、パイナツプル繊
維がフイブリル化し易いため、製品の毛羽が多
く、着用中及び洗濯中での毛羽の発生が多く、外
観及び着用感が劣る。 更に綿と同様のアルカリによるシルケツト加工
を実施すると、シルケツト加工時のテンシヨンが
かかつていない時間が長過ぎるために、緯方向の
収縮が大きくなり、それを設計の巾に出して仕上
を行うと、洗濯収縮率が大きく、製品としては大
きな欠点を有する。又、シルケツト加工を行なわ
ないと、洗濯収縮率は改良されるが、染色性が劣
り、毛羽の発生も更に多くなる。 本発明の加工方法は前記問題点を解決するもの
であつて従来行なわれているパイナツプル繊維の
加工方法に比べ、製品の毛羽及び洗濯収縮率が少
なくしかもパイナツプル繊維のソフトな風合、吸
水性・発散性による良好な着用感を有した繊維構
造物を生産性良く加工する方法を提供することに
ある。 (課題を解決するための手段) 本発明は、パイナツプル繊維を少なくとも10重
量%含有する繊維構造物に対し、アルカリ水溶液
を付与した後直ちにこれを緊張下に置き緊張下で
洗浄を行うアルカリ処理及び、酵素処理の両処理
を行うことを特徴とするパイナツプル繊維含有繊
維構造物の防縮毛羽防止加工方法である。 本発明で云うパイナツプル繊維構造物とは、パ
イナツプルの葉を原料とするパイナツプル繊維を
20〜80mm程度の繊維長に短繊維化したものを10重
量%以上好ましくは20重量%以上用い、綿,麻,
レーヨン,絹,羊毛,ポリアミド,ポリエステ
ル,アクリルアセテート等と混紡,交撚,交織,
交編して得られた織物,編物である。 本発明で言うアルカリとは、水酸化ナトリウ
ム,水酸化リチウム,水酸化カリウム等のアルカ
リ金属であり、特に好ましいのは、水酸化ナトリ
ウムである。本発明ではかかるアルカリを100〜
300g/好ましくは150〜250g/程度含む水
溶液にして例えばピツクアツプ率40〜130%好ま
しくは、60〜100%にて、温度−5〜60℃好まし
くは、10〜40℃でパツデイングすること等により
付与する。 更に、本発明ではかかるアルカリ水溶液の付与
の後、アルカリ水溶液による収縮作用を抑制する
ため、直ちに繊維構造物を緊張下に置く、このた
めには通常のパツデイング機やオープンソーパの
後にテンター乾燥機を接続しただけでは不充分で
繊維構造物の走行経路を省略するなどして、アル
カリ水溶液付与後、15秒以内好ましくは10秒以内
に繊維構造物を緊張状態に置くのである。緊張状
態はクリツプテンターやピンテンターを用いるこ
と等により緯方向に0.5〜3.0Kg/cm程度の張力を
付与すればよい。かかる緊張状態は、5〜60秒好
ましくは5〜20秒程度維持する。次に、付与され
たアルカリ水溶液は、温湯等により除去するので
あるが、例えば30〜95℃、好ましくは70〜90℃の
温湯により洗浄を行う。又、この間も前記緊張状
態は持続する。 次に、本発明の酵素処理とは、セルラーゼ酵素
又はこれとペクチン酵素を併用したものによる処
理を云い、セルラーゼ酵素としては、セルラーゼ
A−3(天野製薬(株)製、菌体アスベルギルス属)、
セルラーゼT−AP4(天野製薬(株)製、菌体トリコ
デルマ属)メイセラーゼ(明治製菓(株)製、菌体ト
リコデルマ属)セルラーゼXP−425(長瀬化成(株)
製、菌体トリコデルマ属)、セルクラスト(ノボ
インダストリー(株)製、菌体トリコデルマ属)、又、
アルカリセルラーゼとしてセルラーゼC(天野製
薬(株)製、菌体バチルス属)セルラーゼSP−359
(ノボインダストリー(株)製)等がある。又、ペク
チン酵素としては、植物の繊維を結合しているペ
クチン質を分解する酵素のペクチナーゼ及びペク
チンエステラーゼであり、例としてペクチナーゼ
製剤(東洋譲造(株)製、)ペクチナーゼG(天野製薬
(株)製、菌体アルペルギルス、プルベルレンタス
属)ペクチナーゼA(天野製薬(株)製、菌体アスペ
ルギルスニゲル属)、ウルトラザイム(ノボイン
ダストリー(株)製、菌体アスペルギルスニゲル)等
がある。 この様な酵素は通常0.1〜5.0%の水溶液とし、
酢酸,酢酸塩等を用いてPHを3〜6に調整、但
し、アルカリセルラーゼの場合はPHを6〜9に調
整して酵素処理液とする。 酵素を用いて繊維を処理する方法は種々ある
が、第1にあらかじめ活性温度に保温された酵素
溶液に繊維構造物を浸漬し保持する方法、第2に
は酵素溶液を用いて繊維構造物に含浸処理した
後、これを絞り、温度調節されたゾーンを通過さ
せる方法、第3にはロール状に巻き上げて水分蒸
散を防止しながら保温し、酵素反応させることに
より行なう方法等がある。 酵素処理における処理時間は、処理温度、被処
理繊維の種類により左右されるが通常は30分〜24
時間程度である。 又、処理温度は通常20〜60℃の範囲で選定さ
れ、処理温度が高過ぎると酵素力の低下を早め
る。酵素処理液にて処理された繊維構造物は水洗
後脱水し、後処理を行う。 後処理は、例えば、水酸化ナトリウム0.1〜0.3
%及びチオ硫酸ソーダ0.3〜0.7%を含む水溶液に
て40〜60℃で、5〜30分浸漬処理し、水洗後乾燥
する。 酵素処理は、セルラーゼ酵素単独処理にても充
分な効果はあるが、洗濯後の毛羽の発生及び着用
時の毛羽の発生を押えるためには、ペクチン酵素
を併用した方が特に効果的である。 本発明において、酵素処理とアルカリ処理の順
序は、前後どちらでも効果はあるが、特にアルカ
リ処理した後、酵素処理を行うと、アルカリ処理
により、表面の毛羽が収縮した後、酵素処理にて
収縮された毛羽が除去され易く、特に効果が大き
くなる。 (作用) 本発明ではアルカリ処理によりパイナツプル繊
維表面の毛羽を収縮させ更に、緊張下の処理によ
つて、セツト性を付与する。更に、酵素処理によ
り、パイナツプル繊維表面のフイブリル化した或
いはフイブリル化し易い繊維を減量除去するので
ある。 よつて両作用により、着用又は洗濯中に発生す
る毛羽を事前に除去することができる。 (実施例) 次に本発明を実施例によつて詳細に説明する。
実施例中の数値の基本となる試験方法は次の通り
である。 (1) 表面の毛羽 (a) ピリング試験方法 JIS L−1076 A法 (b) 洗濯試験方法 JIS L−0217 103法 (2) 洗濯収縮率 JIS L−1042 F−2法 (3) K/S濃度 マクベス型分光光度計にて最大
吸収波長の反射率より算出 K/S=(1−R)2/2R R:反射率 (4) 減量率 下記にて算出 (処理前の重量−処理後の重量)/処理前の重量×10
0(%) (5) 引裂強力 JIS L−1096 D法 (6) 風合曲げ硬さ KES−FB風合測定システムのKES−FB2 純曲げ試験機にて測定。 実施例 1 経綿100%、緯パイナツプル繊維100%(経糸20
番単糸密度56本/インチ、緯糸20番単糸密度41
本/インチ)の交織の平織物(パイナツプル繊維
混用率40重量%)の生地を通常公知の綿繊維構造
物を処理する方法にて糊抜、精練、晒を行つた。 該平織物を水酸化ナトリウム200g/を含む、
水溶液にてピツクアツプ率80%温度30℃にてパツ
ドした後、2秒後に緯方向にテンシヨンのかかる
クリツプテンターにて15秒間処理を行いその後更
にクリツプテンター上で温度85℃の湯にてソーピ
ングを7秒間行い、更にオープンソーパーにて温
度70〜80℃にてソーピングを行い、アルカリを濃
度0.3重量%の硫酸水溶液を温度25℃にし中和し
た後、更に70〜80℃の湯にてソーピングを行い、
アルカリを除去した後120〜150℃にて30秒間シリ
ンダー乾燥を行つた。その後、該平織物を下記に
示す酵素溶液を1/10Mの酢酸緩衝液を使用し、PH
4.3に調整した液に浸漬し、浴比1:20にて2時
間液流型染色機にて、温度55℃にて処理を行つ
た。 その後湯洗、水洗、中和を行つた後、乾燥を行
つた。 セルラーゼA−3 (天野製薬(株)製セルラーゼ酵素) 0.2重量% セルラーゼA−3 (天野製薬(株)製セルラーゼ酵素) 0.1重量% ウルトラザイム (ノボインダストリー(株)製ペクチン酵素)
0.1重量% 比較例 1 実施例1と同様の生地を使用し、アルカリ処理
のアルカリパツド後、クリツプテンターに入る時
間を20秒にする以外は実施例1と同様の処理を行
つた。 比較例 2 実施例1と同様の生地を使用し、実施例1と同
様のアルカリ処理のみ実施した。 比較例 3 実施例1と同様の生地を使用し、比較例1と同
様のアルカリ処理のみ実施した。 比較例 4 実施例1と同様の生地を使用し、実施例1と同
様の酵素処理のみ実施した。 得られた平織物8点を連続染色機を使用し、染
色を行つた後、仕上げ剤を付与、乾燥仕上を行つ
た。 得られた平織物の物性を第1表に示す。 実施例 2 経綿100%、緯綿/パイナツプル繊維=50/50
混紡糸(経糸40番単糸密度83本/インチ、緯糸20
番単糸密度57本/インチ)の交織の平織物パイナ
ツプル繊維混用率25重量%の生地を通常公知の綿
繊維構造物を処理する方法にて糊抜精練、、晒を
行つた。 該平織物を水酸化ナトリウム180g/を含む
水溶液にてピツクアツプ率80%、温度30℃にてパ
ツドした後、5秒後に緯方向にテンシヨンのかか
るクリツプテンターにて10秒間処理を行いその後
更にクリツプテンター上で、温度85℃の湯にてソ
ーピングを12秒間行い、更にオープンソーパーに
て温度70〜80℃にてソーピングを行い、次いでア
ルカリ成分を、濃度0.3重量%の硫酸水溶液にて
温度25℃で中和した後、120〜150℃にて30秒間シ
リンダー乾燥を行つた。その後、該平織物を下記
に示す酵素溶液を1/10Mの酢酸緩衝液にてPHを
4.5に調整した液にパツド後、ピツクアツプ率85
%にて絞り、ステンレスの円筒に巻きつけ、非透
湿性フイルムにて、水分の蒸散を防ぎ温度30℃に
て24時間回転させながら処理を行つた。 その後、湯洗、水洗、中和処理を行つた。 得られた平織物3点の物性を第2表に示す。 セルラーゼXP・425 (長瀬化成(株)製) 1.0重量% セルクラスト (ノボインダストリー(株)製) 1.0重量% セルラーゼXP・425 (長瀬化成(株)製) 1.5重量% ペクチナーゼG (天野製薬(株)製) 0.5重量% セルクラスト (ノボインダストリー(株)製) 1.5重量% ペクチナーゼG (天野製薬(株)製) 0.5重量%
(Industrial Application Field) The present invention relates to a method for modifying a pineapple fiber structure, that is, a method for processing a pineapple fiber structure, which has less fluff during wearing and after washing, and has less shrinkage after washing. (Prior art) Pineapple fiber structures have traditionally been produced by handcrafting spinning and weaving, followed by water bleaching and sun bleaching, and are known as high-class clothing, especially in the Philippines, under the name pineiya. It was getting worse. In recent years, pineapple fiber has been desized, refined, and processed as a cellulose fiber using the same processing methods as the same type of cotton.
Although it has been dyed and finished after bleaching and mercerizing, it has almost never been produced for practical use. (Problems to be Solved by the Invention) However, such conventional methods have various drawbacks. For example, the wool craft method produces products that are valued as traditional crafts, but the whiteness of the bleaching is insufficient, the texture is hard, there is a lot of fuzz, the hue is limited, and the use is limited. The drawback is that there are limited resources and productivity is extremely low. In addition, if processing is carried out in the same way as regular cotton, productivity will improve, but since pineapple fibers tend to fibrillate, the product will have a lot of fuzz, and fuzz will occur during wear and washing. In many cases, the appearance and feeling of wear are poor. Furthermore, when mercerizing with alkali, which is the same as for cotton, the tension during mercerizing is too long, resulting in large shrinkage in the weft direction. It has a large washing shrinkage rate, which is a major drawback as a product. Furthermore, if mercerization is not performed, the washing shrinkage rate is improved, but the dyeability is poor and the occurrence of fuzz increases. The processing method of the present invention solves the above-mentioned problems, and compared to the conventional processing method of pineapple fiber, the product has less fluff and shrinkage after washing, and the soft texture of pineapple fiber, water absorption and It is an object of the present invention to provide a method for processing a fiber structure with good productivity that has good wearing comfort due to its wicking properties. (Means for Solving the Problems) The present invention provides an alkali treatment and washing method in which a fiber structure containing at least 10% by weight of pineapple fibers is subjected to an alkaline aqueous solution and then immediately placed under tension and washed under tension. This is a shrink-proofing and fuzz-preventing processing method for a pineapple fiber-containing fiber structure, which is characterized by carrying out both enzyme treatment. The pineapple fiber structure referred to in the present invention refers to pineapple fibers made from pineapple leaves.
Use 10% by weight or more, preferably 20% by weight or more of short fibers with a fiber length of about 20 to 80 mm, and use cotton, linen,
Blended with rayon, silk, wool, polyamide, polyester, acrylic acetate, etc., twisted and woven,
This is a woven or knitted fabric obtained by alternating knitting. The alkali referred to in the present invention refers to alkali metals such as sodium hydroxide, lithium hydroxide, potassium hydroxide, etc., and sodium hydroxide is particularly preferred. In the present invention, such an alkali is
300g/preferably 150-250g/approximately, for example, in an aqueous solution containing about 40-130%, preferably 60-100%, at a temperature of -5-60°C, preferably 10-40°C. do. Furthermore, in the present invention, after applying such an aqueous alkaline solution, the fiber structure is immediately placed under tension in order to suppress the shrinkage effect caused by the aqueous alkaline solution. It is not enough to simply connect the fiber structure, so the fiber structure is placed under tension within 15 seconds, preferably within 10 seconds, after applying the alkaline aqueous solution, by omitting the travel path of the fiber structure. The tension state may be achieved by applying a tension of about 0.5 to 3.0 kg/cm in the weft direction by using a clip tenter or pin tenter. This tension state is maintained for about 5 to 60 seconds, preferably about 5 to 20 seconds. Next, the applied alkaline aqueous solution is removed with warm water or the like, and washing is performed with warm water of, for example, 30 to 95°C, preferably 70 to 90°C. Also, the tense state continues during this time. Next, the enzyme treatment of the present invention refers to treatment with a cellulase enzyme or a combination thereof with a pectin enzyme, and the cellulase enzyme is Cellulase A-3 (manufactured by Amano Pharmaceutical Co., Ltd., bacterial cell Asbergillus sp.). ,
Cellulase T-AP4 (manufactured by Amano Pharmaceutical Co., Ltd., bacterial cell Trichoderma sp.) Meicelase (manufactured by Meiji Seika Co., Ltd., bacterial cell Trichoderma sp.) Cellulase XP-425 (manufactured by Nagase Kasei Co., Ltd.)
manufactured by Novo Industries Co., Ltd., bacterial cell Trichoderma genus), Celluclast (manufactured by Novo Industries Co., Ltd., bacterial cell Trichoderma genus),
As alkaline cellulase, Cellulase C (manufactured by Amano Pharmaceutical Co., Ltd., Bacillus sp.) Cellulase SP-359
(manufactured by Novo Industries Co., Ltd.), etc. Examples of pectin enzymes include pectinase and pectin esterase, which are enzymes that decompose pectin that binds plant fibers.
Examples include pectinase A (manufactured by Amano Pharmaceutical Co., Ltd., bacterial cell Aspergillus niger), Ultrazyme (manufactured by Novo Industries Co., Ltd., bacterial cell Aspergillus niger), and the like. Such enzymes are usually made into an aqueous solution of 0.1 to 5.0%,
Adjust the pH to 3 to 6 using acetic acid, acetate, etc. However, in the case of alkaline cellulase, adjust the pH to 6 to 9 to obtain an enzyme treatment solution. There are various methods for treating fibers with enzymes.The first method is to immerse and hold the fiber structure in an enzyme solution that has been kept at an active temperature in advance, and the second method is to treat the fiber structure using an enzyme solution. After impregnation, there is a method in which the material is squeezed and passed through a temperature-controlled zone, and a third method is in which it is rolled up into a roll, kept warm while preventing water evaporation, and subjected to an enzyme reaction. The treatment time for enzyme treatment depends on the treatment temperature and the type of fiber to be treated, but it is usually 30 minutes to 24 minutes.
It takes about an hour. Further, the treatment temperature is usually selected within the range of 20 to 60°C; if the treatment temperature is too high, the enzyme activity will decrease more quickly. The fibrous structure treated with the enzyme treatment solution is washed with water, dehydrated, and subjected to post-treatment. Post-treatment is, for example, sodium hydroxide 0.1-0.3
% and sodium thiosulfate 0.3 to 0.7% at 40 to 60°C for 5 to 30 minutes, washed with water, and then dried. Enzyme treatment with cellulase enzyme alone is sufficiently effective, but in order to suppress the occurrence of fuzz after washing and during wear, it is particularly effective to use pectin enzyme in combination. In the present invention, the order of enzyme treatment and alkali treatment is effective either before or after, but in particular, if enzyme treatment is performed after alkaline treatment, the fluff on the surface shrinks due to alkali treatment, and then shrinks due to enzyme treatment. The fluff that has been removed is easily removed, and the effect is especially great. (Function) In the present invention, the fuzz on the surface of the pineapple fibers is shrunk by alkali treatment, and further, setting properties are imparted by treatment under tension. Furthermore, by enzymatic treatment, fibrillated or easily fibrillated fibers on the surface of the pineapple fibers are reduced and removed. Therefore, by both effects, it is possible to remove fuzz generated during wearing or washing in advance. (Example) Next, the present invention will be explained in detail by referring to an example.
The test method that is the basis for the numerical values in the examples is as follows. (1) Surface fuzz (a) Pilling test method JIS L-1076 method A (b) Washing test method JIS L-0217 103 method (2) Washing shrinkage rate JIS L-1042 F-2 method (3) K/S Concentration Calculated from the reflectance at the maximum absorption wavelength using a Macbeth spectrophotometer K/S = (1-R) 2 /2R R: Reflectance (4) Weight loss rate Calculated as follows (Weight before treatment - After treatment weight)/weight before treatment x 10
0 (%) (5) Tear strength JIS L-1096 D method (6) Texture bending hardness Measured using the KES-FB2 pure bending tester of the KES-FB texture measurement system. Example 1 100% warp cotton, 100% weft pineapple fiber (warp 20
Number single yarn density: 56/inch, weft number 20 single yarn density: 41
A mixed-weave plain weave fabric (40% by weight of pineapple fibers) was desizing, scouring, and bleaching using a commonly known method for treating cotton fiber structures. The plain fabric contains 200 g of sodium hydroxide.
After padding with an aqueous solution at a pick-up rate of 80% and a temperature of 30°C, after 2 seconds it was treated with a clip tenter with tension in the weft direction for 15 seconds, and then further soaped with hot water at a temperature of 85°C on the clip tenter for 7 seconds. 2 seconds, then soaping with an open soaper at a temperature of 70 to 80°C, neutralize the alkali with a sulfuric acid aqueous solution with a concentration of 0.3% by weight at a temperature of 25°C, and then soaping with hot water at a temperature of 70 to 80°C. ,
After removing the alkali, cylinder drying was performed at 120 to 150°C for 30 seconds. Thereafter, the plain weave was coated with the enzyme solution shown below using 1/10M acetate buffer, and the PH
It was immersed in a solution adjusted to 4.3 and treated at a bath ratio of 1:20 for 2 hours using a jet dyeing machine at a temperature of 55°C. After that, it was washed with hot water, washed with water, neutralized, and then dried. Cellulase A-3 (Cellulase enzyme manufactured by Amano Pharmaceutical Co., Ltd.) 0.2% by weight Cellulase A-3 (Cellulase enzyme manufactured by Amano Pharmaceutical Co., Ltd.) 0.1% by weight Ultrazyme (Pectin enzyme manufactured by Novo Industries Co., Ltd.)
0.1% by weight Comparative Example 1 The same fabric as in Example 1 was used, and the same treatment as in Example 1 was carried out except that after the alkali treatment, the time for entering the clip tenter was 20 seconds. Comparative Example 2 The same fabric as in Example 1 was used, and only the same alkali treatment as in Example 1 was performed. Comparative Example 3 The same fabric as in Example 1 was used, and only the same alkali treatment as in Comparative Example 1 was performed. Comparative Example 4 The same fabric as in Example 1 was used, and only the same enzyme treatment as in Example 1 was performed. After dyeing the obtained 8 plain woven fabrics using a continuous dyeing machine, a finishing agent was applied and a dry finish was performed. Table 1 shows the physical properties of the plain woven fabric obtained. Example 2 100% warp cotton, weft cotton/pineapple fiber = 50/50
Blended yarn (warp #40 single yarn density 83/inch, weft 20
A mixed plain weave fabric with a pineapple fiber mixture ratio of 25% by weight and a yarn density of 57 yarns/inch was desized and bleached using a commonly known method for treating cotton fiber structures. The plain woven fabric was padded with an aqueous solution containing 180 g of sodium hydroxide at a pick-up rate of 80% and a temperature of 30°C, and after 5 seconds, it was treated with a clip tenter with tension in the weft direction for 10 seconds, and then further processed with a clip tenter. Soap the above with hot water at a temperature of 85℃ for 12 seconds, then soap with an open soaper at a temperature of 70 to 80℃, and then remove the alkaline component with an aqueous sulfuric acid solution with a concentration of 0.3% by weight at a temperature of 25℃. After neutralization, cylinder drying was performed at 120 to 150°C for 30 seconds. After that, the plain fabric was treated with the enzyme solution shown below and the pH was adjusted with 1/10M acetate buffer.
Pickup rate 85 after padding with liquid adjusted to 4.5
%, wrapped around a stainless steel cylinder, covered with a moisture-impermeable film to prevent moisture evaporation, and processed while rotating at a temperature of 30°C for 24 hours. After that, hot water washing, water washing, and neutralization treatment were performed. Table 2 shows the physical properties of the three plain woven fabrics obtained. Cellulase XP・425 (manufactured by Nagase Kasei Co., Ltd.) 1.0% by weight Cellulase (manufactured by Novo Industries Co., Ltd.) 1.0% by weight Cellulase XP・425 (manufactured by Nagase Kasei Co., Ltd.) 1.5% by weight Pectinase G (Amano Pharmaceutical Co., Ltd.) ) 0.5% by weight Celluclast (manufactured by Novo Industries Co., Ltd.) 1.5% by weight Pectinase G (manufactured by Amano Pharmaceutical Co., Ltd.) 0.5% by weight

【表】 * 表中○印は実施した方法を示す。
[Table] * The ○ mark in the table indicates the method used.

【表】 * 表中○印は実施した方法を示す。
(発明の効果) 本発明によれば、パイナツプル繊維のもつ吸水
性・発散性を生かしたままソフトな風合と、着用
時及び洗濯後のフイブリル化・毛羽発生のない繊
維構造物を得ることができる。 更に、アルカリ処理時の緊張処理によつて、洗
濯収縮率を抑えると共に、染色性、光沢を向上せ
しめることができ、パイナツプル繊維の工業的使
用にとつて極めて有用なものである。
[Table] * The circle in the table indicates the method that was implemented.
(Effects of the Invention) According to the present invention, it is possible to obtain a fiber structure that has a soft texture while taking advantage of the water absorption and dispersion properties of pineapple fibers, and that does not generate fibrillation or fuzz when worn or after washing. can. Furthermore, by applying tension during alkali treatment, washing shrinkage can be suppressed and dyeability and gloss can be improved, making the pineapple fiber extremely useful for industrial use.

Claims (1)

【特許請求の範囲】[Claims] 1 パイナツプル繊維を少なくとも10重量%含有
する繊維構造物に対し、アルカリ水溶液を付与し
た後直ちにこれを緊張下に置き緊張下で洗浄を行
うアルカリ処理及び、酵素処理の両処理を行うこ
とを特徴とするパイナツプル繊維含有繊維構造物
の防縮毛羽防止加工方法。
1. A fiber structure containing at least 10% by weight of pineapple fibers is subjected to both an alkaline treatment, which involves applying an aqueous alkaline solution, immediately placing it under tension, and washing it under tension, and an enzyme treatment. A method for preventing shrinkage and fluffing of a fiber structure containing pineapple fiber.
JP32746488A 1988-12-23 1988-12-23 Shrink and fluff proofing method for pineapple fiber-containing fibrous structure Granted JPH02175975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32746488A JPH02175975A (en) 1988-12-23 1988-12-23 Shrink and fluff proofing method for pineapple fiber-containing fibrous structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32746488A JPH02175975A (en) 1988-12-23 1988-12-23 Shrink and fluff proofing method for pineapple fiber-containing fibrous structure

Publications (2)

Publication Number Publication Date
JPH02175975A JPH02175975A (en) 1990-07-09
JPH0413470B2 true JPH0413470B2 (en) 1992-03-09

Family

ID=18199457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32746488A Granted JPH02175975A (en) 1988-12-23 1988-12-23 Shrink and fluff proofing method for pineapple fiber-containing fibrous structure

Country Status (1)

Country Link
JP (1) JPH02175975A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138365A (en) * 2000-10-30 2002-05-14 Kakui Kk Method for refining cotton material and method for manufacturing absorbent cotton
PT2576881T (en) * 2010-05-25 2018-10-26 Ananas Anam Uk Ltd Natural nonwoven materials
CN104060379B (en) * 2014-06-25 2016-03-02 江苏东源纺织科技实业有限公司 The production technology of natural health antibiosis knitting face fabric
CN113914091B (en) * 2021-11-17 2023-06-20 罗莱生活科技股份有限公司 Viscose fiber treatment process and viscose fiber obtained by same

Also Published As

Publication number Publication date
JPH02175975A (en) 1990-07-09

Similar Documents

Publication Publication Date Title
US6051414A (en) Process for defuzzing and depilling cellulosic fabrics
JP2749203B2 (en) Method for treating cellulose fabric using cellulase
CN112410988B (en) Production method of flax knitted garment fabric
JPH0413470B2 (en)
JP5778400B2 (en) Water-absorbing quick-drying fabric
JP3081782B2 (en) Method for producing modified cellulose acetate fiber
JP2501545B2 (en) Method for improving texture of cellulose fiber fabric
JPH02216282A (en) Method for weight reduction processing of cellulosic fiber structure
EP1250484B1 (en) Textile treatment
JPH05247852A (en) Lightly napped finishing of woven fabric of cellulosic fiber
JPH0219235B2 (en)
JPH09137387A (en) Solvent-spun cellulose fiber excellent in pill resistance and peach-skin processability, its fiber structure and its production
JPH09137386A (en) Solvent-spun cellulose fiber excellent in pill resistance and peach-skin processability, its fiber structure and its production
JP3163288B2 (en) Modified acetate fiber fabric
JP2802358B2 (en) Method for modifying acetate fiber cloth
JPH08325942A (en) Production of cellulosic fiber structure excellent in durability of surface gloss
JPH08325955A (en) Solvent-spun cellulosic fiber having antipilling property, its fiber structure and its production
JPH1046477A (en) Production of structure of fiber, spun by using solvent, having peach skin-like touch
JPH03241077A (en) Method for coloring protein fiber-containing cellulosic fiber structure
JPH09137384A (en) Solvent-spun cellulose fiber excellent in pill resistance and peach-skin processability, its fiber structure and its production
JP2001234464A (en) Method for modifying cellulosic fiber
JPH073633A (en) Production of composite fiber woven or knitted fabric
JPH07150466A (en) Production of processed polyester fiber fabric
JPH07157968A (en) Production of special cellulosic fiber cloth
JPH05209371A (en) Thin raising-tone finishing of cellulose-based fiber fabric