JPH04108017A - Electronically controlled fluid pressure suspension - Google Patents

Electronically controlled fluid pressure suspension

Info

Publication number
JPH04108017A
JPH04108017A JP22710090A JP22710090A JPH04108017A JP H04108017 A JPH04108017 A JP H04108017A JP 22710090 A JP22710090 A JP 22710090A JP 22710090 A JP22710090 A JP 22710090A JP H04108017 A JPH04108017 A JP H04108017A
Authority
JP
Japan
Prior art keywords
vehicle
vehicle height
fluid pressure
load
height adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22710090A
Other languages
Japanese (ja)
Other versions
JP2888950B2 (en
Inventor
Satoru Kawasaki
哲 川崎
Tomio Nakajima
富男 中島
Yasuo Mori
森 保生
Koji Takase
孝次 高瀬
Akira Kani
旭 可児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd, Nissan Motor Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP22710090A priority Critical patent/JP2888950B2/en
Publication of JPH04108017A publication Critical patent/JPH04108017A/en
Application granted granted Critical
Publication of JP2888950B2 publication Critical patent/JP2888950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To minimize increase in deviation among loads exerted to four wheels so as to prevent the steering stability from deteriorating by providing communication means for changing the condition fluid pressure cylinders on the right and left of a vehicle between a communicated condition and an uncommunicated condition, individually in the front and rear sections of the vehicle, and by controlling the communication means so that the later fall in the communicated condition in accordance with a vehicle speed. CONSTITUTION:A vehicle height adjusting means 103 controls control valves 102 for opening and closing fluid charge and discharge passages between fluid pressure cylinders 100 which are disposed each between a vehicle body and wheels so as to support the load of the vehicle, and a fluid pressure source 101, and accordingly, the charge and discharge of the working fluid is controlled. In this case, there is provided communication means 104 for changing the condition of the fluid pressure cylinders 100 on the left and right sides of the vehicle body between a communicated condition and an uncommunicated condition. Further, when a means 107 for determining the time of initiation of adjustment of the vehicle height determines the time of initiation of adjustment of the vehicle height, if a value detected by a vehicle speed detecting means 105 is lower than a reference value, one of the communica tion means 104 which is on the side where the load is lighter, is communicated based on the value detected by a longitudinal load detecting means 106. Meanwhile, if the value detected by the vehicle speed detecting means 105 is higher than the reference value, the communication means 104 on the rear section of the vehicle body is communicated with a communication control means 108.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、車体及び各車輪間に流体圧シリンダを個別
に介装し、この流体圧シリンダ内の作動流体を給排する
ことにより車高調整可能な電子制御流体圧サスペンショ
ンの改善に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention provides a fluid pressure cylinder individually interposed between the vehicle body and each wheel, and increases the vehicle height by supplying and discharging working fluid in the fluid pressure cylinder. Relating to improvements in adjustable electronically controlled hydraulic suspensions.

〔従来の技術〕[Conventional technology]

従来、この種の車高調整機能を備えた電子制御流体圧サ
スペンションとしては、例えば本出願人が擾案している
特開昭63−154413号記載のもの([発明の名称
は「車高調整装置」)が知られている。
Conventionally, as an electronically controlled fluid pressure suspension equipped with this type of vehicle height adjustment function, for example, the one described in Japanese Patent Application Laid-open No. 154413/1983 proposed by the applicant ([the title of the invention is "Vehicle Height Adjustment"] ``device'') is known.

この従来装置は、各軸位置に設けられ空気室等の流体室
を含むサスペンション装置と、前輪側及び後輪側の内、
一方の側(通常、後輪側)の左右流体室を連通、遮断状
態に切換可能な連通手段とを備え、この連通手段により
連通状態とされた一方の側の左右流体室及び左右独立の
ままの他方の側の流体室との間で見かけ上の力調整点で
ある3軸の車高調整点(第7図(a)(b)中のa、b
、c点)により三角形状の安定領域(同図中の斜線内)
を形成し、各流体室に対する作動流体の給排を制御して
車体を目標車高範囲に調整しようとするものである。
This conventional device includes a suspension device that is provided at each axis position and includes a fluid chamber such as an air chamber, and a suspension device that includes a fluid chamber such as an air chamber, and
The left and right fluid chambers on one side (usually the rear wheel side) are equipped with a communication means that can be switched between communicating and blocking the left and right fluid chambers on one side (usually the rear wheel side), and the left and right fluid chambers on one side that are brought into communication by this communication means and the left and right fluid chambers remain independent. The three axle vehicle height adjustment points (a and b in Figure 7 (a) and (b)) are the apparent force adjustment points between the fluid chamber on the other side of the
, point c) creates a triangular stable region (within the diagonal line in the figure)
The system is designed to adjust the vehicle body to a target vehicle height range by controlling the supply and discharge of working fluid to and from each fluid chamber.

これにより、4輪独立して車高調整する場合の4輪の力
の釣り合いに対する不静定を防止できるが、左右のシリ
ンダを連通させると(連通配管の抵抗は小さいとする)
、連通させた側の左右のハネ定数が小さくなってロール
剛性は非常に小さくなる。そこで、走行中に車高調整を
行う場合、フロント側のロール剛性を高く保って走行安
定性を確保するため、通常、リヤ側を連通させ、第7図
(b)の状態としている。
This can prevent instability in the force balance of the four wheels when the vehicle height is adjusted independently, but if the left and right cylinders are communicated (assuming the resistance of the communication piping is small)
, the left and right spring constants on the communicating side become small, and the roll rigidity becomes very small. Therefore, when the vehicle height is adjusted while the vehicle is running, the rear side is normally communicated with the vehicle in order to maintain high roll rigidity on the front side and ensure running stability, resulting in the state shown in FIG. 7(b).

〔発明が解決しようとする課題〕 しかしながら、上述した、走行中においてはリヤ側を連
通させるという構成の従来装置を、セカンドシーロ サ
ードシートを有するワンボックスカーの如く、リヤ側の
荷重変動が大きく、しかも左右輪で荷重差が発生し易い
商用車に適用した場合、リヤ側の荷重が大きいと、低速
で走行しており走行安定性がさほど問題にならない状態
での車高調整において、リヤ側のロール剛性低下に因り
、却って、操安性の低下が顕著になるという状況が見受
けられた。
[Problems to be Solved by the Invention] However, the above-mentioned conventional device configured to connect the rear side while driving is difficult to use when the load on the rear side is greatly fluctuated, such as in a one-box car with a second seat and a third seat. Moreover, when applied to a commercial vehicle where a load difference easily occurs between the left and right wheels, if the load on the rear side is large, the rear side will need to be Due to the decrease in roll rigidity, a situation was observed in which the decrease in maneuverability became more pronounced.

本願発明は、このような従来技術が有する未解決の問題
に鑑みてなされたもので、その解決しようとする課題は
、走行中に車高調整を3軸で行う場合であっても、操安
性の低下を防止するとともに、高速走行時には安定性確
保を優先させるようにすることである。
The present invention was made in view of the unresolved problems of the prior art, and the problem to be solved is that even when vehicle height adjustment is performed on three axes while driving, it is difficult to maintain stable steering. In addition to preventing a decline in performance, priority should be given to ensuring stability during high-speed driving.

〔課題を解決するための手段] 上記課題を解決するため、本願発明は第1図に示すよう
に、車体及び各車輪間に個別に介装され車体荷重を支持
する流体圧シリンダ100と、この各流体圧シリンダ1
00のシリンダ室と流体圧源101との間の流体給排通
路を開閉可能な制御弁102と、この制御弁102によ
る作動流体の給排を制御する車高調整手段103とを備
えた電子制御流体圧サスペンションにおいて、車両前後
に個別に設けられ且つ車両左右の前記流体圧シリンダ1
00のシリンダ室を連通状態及び非連通状態に切換可能
な連通手段104を備えるとともに、車速を検出する車
速検出手段105と、車両前後における荷重を個々に検
出する前後荷重検出手段106と、前記車高調整手段1
03による車高調整開始時か否かを判断する車両調整開
始時判断手段107と、この車高調整開始時判断手段1
07が車高調整開始時を判断した場合、前記車速検出手
段105の検出値が基準値よりも低いときは、前記前後
荷重検出手段106の検出値に基づき車両前後で荷重の
軽い方の前記連通手段104を連通状態にさせ、前記車
速検出手段105の検出値が基準値以上のときは車両後
側の前記連通手段工04を連通状態にさせる連通制御手
段108を設けている。
[Means for Solving the Problems] In order to solve the above problems, the present invention, as shown in FIG. Each fluid pressure cylinder 1
An electronic control system equipped with a control valve 102 that can open and close a fluid supply and discharge passage between the cylinder chamber of 00 and a fluid pressure source 101, and a vehicle height adjustment means 103 that controls the supply and discharge of working fluid by this control valve 102. In a fluid pressure suspension, the fluid pressure cylinders 1 are provided individually at the front and rear of the vehicle, and are provided on the left and right sides of the vehicle.
A communication means 104 capable of switching the cylinder chambers of 00 into a communicating state and a non-communicating state, a vehicle speed detecting means 105 for detecting vehicle speed, a longitudinal load detecting means 106 for individually detecting loads at the front and rear of the vehicle; High adjustment means 1
Vehicle height adjustment start time determination means 107 for determining whether it is time to start vehicle height adjustment according to 03; and this vehicle height adjustment start time determination means 1.
07 determines when to start adjusting the vehicle height, if the detected value of the vehicle speed detection means 105 is lower than the reference value, the connection is made between the front and rear of the vehicle with the lighter load based on the detected value of the longitudinal load detection means 106. A communication control means 108 is provided for bringing the means 104 into communication and, when the detected value of the vehicle speed detection means 105 is equal to or higher than a reference value, bringing the communication means 04 on the rear side of the vehicle into communication.

[作用] 車高調整が必要な状態になると、車高調整手段103が
各制御弁102に指令を与えて各輪の流体圧シリンダ1
00の作動流体を給排させ、これにより実車高値を目標
車高範囲内に収めるが、この車高調整が開始される時期
は車高調整開始時判断手段107により監視されている
[Operation] When the vehicle height adjustment becomes necessary, the vehicle height adjustment means 103 gives a command to each control valve 102 to adjust the fluid pressure cylinder 1 of each wheel.
00 working fluid is supplied and discharged, thereby keeping the actual vehicle height value within the target vehicle height range, but the timing at which this vehicle height adjustment is started is monitored by vehicle height adjustment start time determining means 107.

このため、車高調整開始時判断手段107が車高調整の
開始時を判断した場合、車速検出手段105の検出値が
基準値よりも低いときは、前後荷重検出手段106の検
出値に基づき車両前後で荷重の軽い方の連通手段104
を連通状態にさせる。
Therefore, when the vehicle height adjustment start time determining means 107 determines the time to start the vehicle height adjustment, if the detected value of the vehicle speed detecting means 105 is lower than the reference value, the vehicle Communication means 104 with lighter load in front and back
to communicate.

これにより、前述した車高調整は車両前後で連通した側
と独立した左右側番こ係る力の3軸制御となり、圧力平
衡に起因してロール剛性が低下することに因る4輪の荷
重偏差の拡大が防止される。したがって、商用車などの
後輪側の荷重変動が大きく、しかも左右輪で荷重差が発
生し易い車両でも、低速走行中における操安性低下が防
止される。これに対し、車速検出値が基準値以上のとき
は、車雨後側の連通手段104を常時連通状態にさせる
As a result, the above-mentioned vehicle height adjustment becomes a 3-axis control of the forces on the side that communicates with the front and rear of the vehicle and the independent left and right sides, and the load deviation of the four wheels due to the decrease in roll rigidity due to pressure balance. The expansion of is prevented. Therefore, even in a vehicle such as a commercial vehicle in which the load on the rear wheel side has a large variation and a load difference is likely to occur between the left and right wheels, a decrease in steering stability during low-speed driving can be prevented. On the other hand, when the detected vehicle speed value is equal to or higher than the reference value, the communication means 104 on the rear side of the vehicle is kept in a constant communication state.

これにより、前述した車高調整は後輪側と独立した前輪
左右ggに係る力の3軸制御となり、後輪側のロール剛
性が低下し、ステア特性がアンダーステア化され、高速
走行中の車高調整状態における走行安定性が優先される
As a result, the above-mentioned vehicle height adjustment becomes a three-axis control of the force related to the left and right front wheels GG independent of the rear wheel side, which reduces the roll rigidity of the rear wheels, changes the steering characteristics to understeer, and increases the vehicle height during high-speed driving. Priority is given to driving stability in the adjusted state.

〔実施例〕〔Example〕

以下、本願発明の一実施例を第2図乃至第6図に基づい
て説明する。本実施例は金属スプリング等の補助バネを
持たず、車体重量を流体圧シリンダの発生する力で受け
るフル・ハイドロニューマチックサスペンションについ
て実施している。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 2 to 6. This embodiment is a full hydropneumatic suspension that does not have an auxiliary spring such as a metal spring and receives the weight of the vehicle by the force generated by a fluid pressure cylinder.

第2図において、2FL〜2RRは前方〜後右車輪を、
4は車輪側部材を、6は車体側部材を夫々示し、8は電
子制御油圧サスペンション(電子制御流体圧サスペンシ
ョン)を示ス。
In Fig. 2, 2FL to 2RR are the front to rear right wheels,
4 indicates a wheel side member, 6 indicates a vehicle body side member, and 8 indicates an electronically controlled hydraulic suspension (electronically controlled fluid pressure suspension).

電子制御油圧サスペンション8は、流体圧源としての油
圧源を成す油圧ポンプ10及びオイルタンク12と、こ
の油圧源の負荷側に配設されたアキュムレータ14.チ
ェンク弁16.油圧源側油路開閉部18及び前輪側、後
輪側油路開閉部20F、2ORと、各輪2FL〜2RR
毎に設置されたサスベンジタン特性可変m構22FL〜
22FIRと、流体圧シリンダとしての油圧シリンダ2
4FL〜24RRと、車高センサ26FL〜26RR,
圧力センサ2フFL〜2フRR,加速度センサ28.及
び車速センサ29を含むセンサ群と、コントローラ30
とを備えている。
The electronically controlled hydraulic suspension 8 includes a hydraulic pump 10 and an oil tank 12, which serve as a hydraulic source as a fluid pressure source, and an accumulator 14 disposed on the load side of the hydraulic source. Change valve 16. Hydraulic source side oil passage opening/closing part 18, front wheel side, rear wheel side oil passage opening/closing parts 20F, 2OR, and each wheel 2FL to 2RR.
Suspension tank characteristic variable m structure installed in each 22FL~
22FIR and hydraulic cylinder 2 as a fluid pressure cylinder
4FL~24RR, vehicle height sensor 26FL~26RR,
Pressure sensor 2F FL to 2F RR, acceleration sensor 28. and a sensor group including a vehicle speed sensor 29, and a controller 30.
It is equipped with

この内、油圧ポンプIOは車両エンジンを駆動源として
回転し、パワーステアリング装置及び油圧サスペンショ
ン8に油圧を吐出するタンデム型ポンプにより構成され
る。この油圧ポンプlOの吸い込み側は配管31により
オイルタンク12に接続され、その吐出側は配管32に
接続されている。この配管32の負荷側は、脈動吸収用
のアキュムレータ14に連通されるとともに、チエツク
弁16を介して油圧源側油路開閉部18に接続される。
Among these, the hydraulic pump IO is constituted by a tandem type pump that rotates using the vehicle engine as a driving source and discharges hydraulic pressure to the power steering device and the hydraulic suspension 8. The suction side of this hydraulic pump IO is connected to the oil tank 12 by a pipe 31, and the discharge side thereof is connected to a pipe 32. The load side of this piping 32 is communicated with an accumulator 14 for absorbing pulsation, and is also connected via a check valve 16 to an oil passage opening/closing section 18 on the oil pressure source side.

この油路開閉部18は、電磁操作型2ポートの切換弁3
4と、所定リリーフ圧のリリーフ弁36と、油路を前後
輪に分配するデバイダ38とから成り、配管32は切換
弁34.リリーフ弁36及び分流器38の油圧源側各ポ
ートに連通している。
This oil passage opening/closing part 18 is an electromagnetically operated two-port switching valve 3.
4, a relief valve 36 with a predetermined relief pressure, and a divider 38 that distributes the oil passage between the front and rear wheels. It communicates with the relief valve 36 and the hydraulic source side ports of the flow divider 38.

切換弁34は、その電磁ソレノイドに供給される制御信
号$1がオフのときに連通位置をとり、制御信号S1が
オンのときに遮断位置をとる、常時開の構造を有する。
The switching valve 34 has a normally open structure in which it assumes a communicating position when the control signal $1 supplied to the electromagnetic solenoid is off, and assumes a blocking position when the control signal S1 is on.

この切換弁34及びリリーフ弁36のタンク側ポートは
配管40によってオイルタンク12に接続されている。
Tank-side ports of the switching valve 34 and the relief valve 36 are connected to the oil tank 12 by a pipe 40.

配管40の途中には濾過層のフィルタ42が介挿されて
いる。分流器38の負荷側の2つのポートには配管32
F。
A filter 42 of a filtration layer is inserted in the middle of the pipe 40. Piping 32 is connected to the two ports on the load side of the flow divider 38.
F.

32Rが各々接続され、この配管32F、32Rが前輪
側、後輪側油路開閉部20F、2ORに各々接続されて
いる。
32R are connected to each other, and these pipes 32F and 32R are connected to the front wheel side and rear wheel side oil passage opening/closing parts 20F and 2OR, respectively.

前輪側油路開閉部20Fは、その油圧源側の位置におい
て入力ポートが配管32Fに接続された分流器42Fを
備え、この分流器42Fの負荷側に流量制限形チエツク
弁44FL、  44FR,電磁操作形2ポート切換弁
46FL、  46FR,48F、及びリリーフ弁50
FL、  50FRを備えている。これを詳述すると、
分流器42Fの2つの負荷側ポートは前人、前右輪側に
対応する配管32FL、32PRの一端に各々接続され
ている。この内、前左輪側の配管32FLの他端は、逆
止弁44FL、切換弁46FLを介して別の切換弁48
Fの一方のポート。
The front wheel side oil passage opening/closing section 20F is equipped with a flow divider 42F whose input port is connected to the piping 32F at a position on the oil pressure source side, and flow restriction type check valves 44FL, 44FR, and electromagnetically operated check valves 44FL and 44FR are installed on the load side of the flow divider 42F. Type 2 port switching valve 46FL, 46FR, 48F, and relief valve 50
It is equipped with FL and 50FR. To elaborate on this,
The two load-side ports of the flow divider 42F are connected to one end of piping 32FL and 32PR corresponding to the front right wheel, respectively. Among these, the other end of the front left wheel side piping 32FL is connected to another switching valve 48 via a check valve 44FL and a switching valve 46FL.
One port of F.

及びリリーフ弁50FLの高圧側ポートに連通ずるとと
もに、前左輪側のサスペンション特性可変機構22FL
に至る。前右輪側の配管32FRの他端も同様に、逆止
弁44FR,切換弁46FRを介して別の切換弁48F
の他方のポート及びリリーフ弁50FRの高圧側ポート
に連通ずるとともに、前左輪側のサスペンション特性可
変機構22FRに至る。
and the high pressure side port of the relief valve 50FL, and the suspension characteristic variable mechanism 22FL on the front left wheel side.
leading to. Similarly, the other end of the front right wheel side piping 32FR is connected to another switching valve 48F via a check valve 44FR and a switching valve 46FR.
and the high-pressure side port of the relief valve 50FR, as well as the suspension characteristic variable mechanism 22FR on the front left wheel side.

配管32FL、  32FRの各々に直列に介挿された
切換弁46FL、  46FRは、その電磁ソレノイド
に供給される制御信号S2がオフのときに内蔵するチエ
ツク弁に拠る遮断位置をとり、制御信号S2がオンのと
きに連通位置をとる、常時閉の構造を有する。また、配
管32FL、  32FR間に介挿される切換弁48F
も、その電磁ソレノイドに供給される制御信号S、がオ
フのときに内蔵するチェ7り弁に拠る遮断位置をとり、
制御信号S、がオンのときに連通位置をとる、常時閉の
構造を有する。
The switching valves 46FL and 46FR inserted in series in each of the piping 32FL and 32FR assume a cutoff position based on a built-in check valve when the control signal S2 supplied to the electromagnetic solenoid is off, and when the control signal S2 is It has a normally closed structure that assumes a communicating position when it is on. In addition, a switching valve 48F is inserted between the pipes 32FL and 32FR.
When the control signal S supplied to the electromagnetic solenoid is off, the solenoid assumes a shutoff position based on the built-in check valve,
It has a normally closed structure that assumes a communicating position when the control signal S is on.

さらに、後輪側油路開閉部2ORも、後左、後右輪側に
作動油を分流させる分流器42R3流量制限形チエツク
弁44RL、  44RR,電磁操作形2ボート切換弁
46RL、  46RR,48R1及びリリーフ弁50
RL、50RRを備え、配管32RL、32RRを介し
て前輪側と同一に接続されている。ここで、上記各リリ
ーフ弁50FL〜50RRは、負荷側の異常な圧力上昇
を防止するもので、通常採り得る圧力範囲よりも高い所
定リリーフ圧に設定され、その低圧側ボートは配管52
によってタンク12に接続されている。
Furthermore, the rear wheel side oil passage opening/closing part 2OR also includes a flow divider 42R3 that divides the hydraulic oil to the rear left and rear right wheels, flow restriction type check valves 44RL, 44RR, electromagnetically operated two-boat switching valves 46RL, 46RR, 48R1, and relief valve 50
RL and 50RR, and are connected identically to the front wheel side via pipes 32RL and 32RR. Here, each of the relief valves 50FL to 50RR prevents an abnormal pressure rise on the load side, and is set to a predetermined relief pressure higher than the normally available pressure range, and the low pressure side boat is connected to the piping 52.
It is connected to the tank 12 by.

サスペンション特性可変機構22FL〜22RRのの各
々は、ガスばねとしてのフリーピストン形の第1.第2
のアキュムレータ54.56と、バネ定数可変用の2ボ
ート切換弁58と、減衰力を発生させる可変絞り60と
を備えている。そして、配管32FLに、第1のアキュ
ムレータ54か直接接続され、第2のアキュムレータ5
6が切換弁58を介して接続されるとともに、配管32
FLに直列に可変絞り60FLを介挿させている。切換
弁58はモータ58Aをアクチュエータとしてその開。
Each of the suspension characteristic variable mechanisms 22FL to 22RR has a free piston type first . Second
accumulators 54 and 56, a two-boat switching valve 58 for variable spring constant, and a variable throttle 60 for generating damping force. The first accumulator 54 is directly connected to the pipe 32FL, and the second accumulator 5
6 is connected via the switching valve 58, and the piping 32
A variable aperture 60FL is inserted in series with FL. The switching valve 58 is opened using the motor 58A as an actuator.

閉位置が切り換えられ、モータ58Aは駆動信号S4に
よって回転するようになっている。また可変絞り60も
モータ60Aの回転に付勢されてその流路の広、狭が調
整され、モータ60Aには駆動信号S、が供給されるよ
うになっている。
The closed position is switched, and the motor 58A is rotated by the drive signal S4. The variable throttle 60 is also energized by the rotation of the motor 60A to adjust the width or narrowness of its flow path, and a drive signal S is supplied to the motor 60A.

さらに、油圧シリンダ24PL〜24RRの各々は第2
図に示すように、シリンダチューブ24aを有し、この
シリンダチューブ24aにはピストン24bにより隔設
された圧力室りが形成されている。この圧力室りに配管
32FL(〜32RR)が接続されている。そして、前
輪側油圧シリンダ24FL、24PRでは、そのシリン
ダチューブ24aが車輪側部材4に取り付けられ、ピス
トンロッド24cの端部が車体側部材6に取り付けられ
、反対に、後輪側油圧シリンダ24RL、  24RR
では、そのシリンダチューブ24aが車体側部材6に取
り付けられ、ピストンロッド24cの端部が車輪側部材
4に取り付けられている。
Furthermore, each of the hydraulic cylinders 24PL to 24RR has a second
As shown in the figure, the cylinder tube 24a has a pressure chamber separated by a piston 24b. A pipe 32FL (~32RR) is connected to this pressure chamber. In the front wheel side hydraulic cylinders 24FL, 24PR, the cylinder tube 24a is attached to the wheel side member 4, the end of the piston rod 24c is attached to the vehicle body side member 6, and on the contrary, the rear wheel side hydraulic cylinders 24RL, 24RR.
Here, the cylinder tube 24a is attached to the vehicle body side member 6, and the end of the piston rod 24c is attached to the wheel side member 4.

上述した油圧シリンダ24FL〜24RRの取り付は状
態を詳述すると、前輪2FL、  2FR側の油圧シリ
ンダ24FL、24PRはストラット形であって車輪側
部材4に立設される一方で、後輪2RL、  2RFl
側の油圧シリンダ24RL、  24RRは第3図に示
す如く車体フロア−にほぼ水平の横置き形に配置されて
いる。この第3圀の構成(同図では後左輪側の油圧シリ
ンダ24RRのみを示すが、後右輪側でも同様である)
において、油圧シリンダ24RL。
To explain in detail the mounting state of the above-mentioned hydraulic cylinders 24FL to 24RR, the hydraulic cylinders 24FL and 24PR on the front wheels 2FL and 2FR sides are strut-type and are installed upright on the wheel side member 4, while the rear wheels 2RL and 24RR are installed in a strut type. 2RFl
The side hydraulic cylinders 24RL and 24RR are arranged horizontally on the vehicle body floor, as shown in FIG. The configuration of this third area (the figure only shows the hydraulic cylinder 24RR on the rear left wheel side, but the same applies to the rear right wheel side)
In, hydraulic cylinder 24RL.

第1.第2のアキュムレータ54,56. 可変絞り6
0を含むアクチュエータ部Aが、車体側部材としてのサ
スベンンヨンメンハ−6のブラケット6Aとアッパーア
ーム4Uとの間で、車体前方向に窄む斜めのジオメトリ
−で横置きされている。
1st. Second accumulator 54, 56 . variable aperture 6
An actuator section A including 0 is placed horizontally between a bracket 6A of a suspension retainer 6 as a vehicle body side member and an upper arm 4U in a diagonal geometry narrowing toward the front of the vehicle body.

アッパーアーム4Uは車体上下方向及び車幅方向からみ
て略A字状を成し、且つ、車体前方からみて略り字状を
成すもので、その両角部がサスペンションメンバー6に
回動可能に取り付けられ、その縦壁の頂点部に油圧シリ
ンダ24RLのピストン口、ド24Cがブツシュを介し
て連結されている。
The upper arm 4U has an approximately A-shape when viewed from the vehicle vertical direction and from the vehicle width direction, and an abbreviated character shape when viewed from the front of the vehicle, and both corner portions thereof are rotatably attached to the suspension member 6. A piston port of a hydraulic cylinder 24RL, 24C, is connected to the top of the vertical wall via a bushing.

なお、図中、4Aは、アッパーアーム4Uとともに車輪
側部材を形成するアクスルハウジングであり、4Lは、
サスペンションメンバー6及びアクスルハウジング4A
間に揺動可能に取り付けられたロアアーム、4Rは、ラ
テラル口、ドである。
In addition, in the figure, 4A is an axle housing that forms a wheel side member together with the upper arm 4U, and 4L is an axle housing.
Suspension member 6 and axle housing 4A
The lower arm 4R, which is swingably attached therebetween, is the lateral opening.

このため、油圧シリンダ24RLがその車体フロア−に
ほぼ水平な軸方向に伸長すると、アンバーアーム4Uが
両角部を基点に図中a方向に回転し、車体及び車輪間の
相対離間量が増えて車高値が上がる。反対に、油圧シリ
ンダ241?Lが縮小すると、アッパーアーム4Uが図
中す方向に回転し、車高値が下がる。
Therefore, when the hydraulic cylinder 24RL extends in an axial direction that is substantially horizontal to the vehicle floor, the amber arm 4U rotates in the direction a in the figure with both corners as base points, increasing the relative distance between the vehicle body and the wheels. The high price goes up. On the other hand, hydraulic cylinder 241? When L is reduced, the upper arm 4U rotates in the direction shown in the figure, and the vehicle height decreases.

一方、第2図に戻って、車高センサ26FL〜26RR
はポテンショメータ等で構成され、前輪側のセンサ26
FL、  26FRは車輪側部材4及び車体側部材6間
に取り付けられ、その相対離間量に応した電圧値の車高
信号HFLI  HFilをコントローラ30に出力す
るとともに、後輪側のセンサ26RL。
On the other hand, returning to FIG. 2, vehicle height sensors 26FL to 26RR
is composed of a potentiometer, etc., and the sensor 26 on the front wheel side
FL, 26FR is attached between the wheel side member 4 and the vehicle body side member 6, and outputs a vehicle height signal HFLI HFil having a voltage value corresponding to the relative separation amount to the controller 30, and also serves as a sensor 26RL on the rear wheel side.

26RRはロアアーム4Lとサスペンションメンハ−6
間に取り付けられ、ロアアーム4Lの傾きに応じた電圧
値の車高信号HjlL+  FIRをコントローラ30
に出力する。圧力センサ27FL〜27RRは、前輪側
、後輪側油路開閉部20F、2ORにおいて配管32F
L〜32RRの負荷側位置に各々接続され、該接続位置
の圧力を油圧シリンダ24FL〜24RRの内部圧とし
て検出するもので、その圧力に応じた電圧値の圧力信号
PFL−P口をコントローラ30に出力するようになっ
ている。
26RR has lower arm 4L and suspension menha-6
The controller 30 is attached between
Output to. The pressure sensors 27FL to 27RR are connected to the piping 32F at the front wheel side and rear wheel side oil passage opening/closing parts 20F and 2OR.
It is connected to the load side positions of L to 32RR, and detects the pressure at the connection position as the internal pressure of the hydraulic cylinders 24FL to 24RR. A pressure signal PFL-P with a voltage value corresponding to the pressure is sent to the controller 30. It is designed to be output.

また、加速度センサ28は車体の所定位置に装備され、
車体に作用する横(車幅)方向及び前後方向の加速度に
応じた信号Gをコントローラ30に出力する。車速セン
サ29は例えば変速機の出力軸の回転数を検知すること
等によって、車速に応じた信号■をコントローラ30に
出力するようになっている。
Further, the acceleration sensor 28 is installed at a predetermined position on the vehicle body,
A signal G corresponding to the acceleration in the lateral (vehicle width) direction and longitudinal direction acting on the vehicle body is output to the controller 30. The vehicle speed sensor 29 detects, for example, the rotational speed of the output shaft of the transmission, and outputs a signal (2) corresponding to the vehicle speed to the controller 30.

コントローラ30は第4図に示すように、入力する車高
検出信号HFL”H1ll+、圧力検出信号PFL〜p
Hml及び加速度検出信号Gをゲイン倍するゲイン調整
器70と、このゲイン調整器70の出力をディジタル化
するA/D変換器72と、入力する車速検出信号Vを入
力するインターフェイス回路74と、A/D変換器72
及びインターフェイス回路74の出力信号を取り込んで
所定の処理を行うマイクロコンピュータ(CPU)76
と、このコンピュータ76が出力した制御信号に応して
各ソレノイド及びモータを駆動する駆動回路78とを備
えている。また、コントローラ30はイグニッションス
イッチのオフ後も、所定時間電源オンを維持する機構を
備えている。
As shown in FIG. 4, the controller 30 receives input vehicle height detection signal HFL"H1ll+ and pressure detection signal PFL~p.
A gain adjuster 70 that multiplies Hml and the acceleration detection signal G by a gain, an A/D converter 72 that digitizes the output of the gain adjuster 70, an interface circuit 74 that inputs the input vehicle speed detection signal V, /D converter 72
and a microcomputer (CPU) 76 that takes in the output signal of the interface circuit 74 and performs predetermined processing.
and a drive circuit 78 that drives each solenoid and motor in response to control signals output from the computer 76. Further, the controller 30 includes a mechanism for keeping the power on for a predetermined period of time even after the ignition switch is turned off.

マイクロコンピュータ76は、所定のプログラムに基づ
いて、加速度信号Gを人力し、切換弁58のモータ58
A及び可変絞り60のモータ60Aの回転を制御して、
ばね定数及び減衰力を走行状態に応じて制御する一方、
後述する第5図に基づく車高制御を行うようになってい
る。
The microcomputer 76 manually inputs the acceleration signal G based on a predetermined program and controls the motor 58 of the switching valve 58.
A and the rotation of the motor 60A of the variable diaphragm 60,
While controlling the spring constant and damping force according to the driving condition,
Vehicle height control is performed based on FIG. 5, which will be described later.

次に、本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

最初に、コントローラ30で実施される第5図のフロー
チャートを説明する。コントローラ30は電源オンで起
動し、第5図の処理を開始する。
First, the flowchart of FIG. 5 executed by the controller 30 will be described. The controller 30 starts when the power is turned on and starts the process shown in FIG. 5.

マイクロコンピュータ76は、そのステップ■で所定の
初期化を実施した後、ステップ■に移行し、車高検出信
号HFL(〜H,11)をゲイン調整器70A/D変換
器72を介して入力し、その値を車高値として一時記憶
する。次いでステップ■に移行して、4輪について車高
値読み込み終了か否かを判断し、rYESJの場合はス
テップ■に移行する。ステップ■では、各輪の車高4f
i HFL−HIINに対する平均値を演算し、この後
ステップ■に移行する。
After the microcomputer 76 performs a predetermined initialization in step (2), the microcomputer 76 moves to step (2) and inputs the vehicle height detection signal HFL (~H, 11) via the gain adjuster 70 and A/D converter 72. , the value is temporarily stored as the vehicle height value. Next, the process moves to step (2), and it is determined whether or not reading of vehicle height values for the four wheels has been completed.If rYESJ, the process moves to step (2). In step ■, the vehicle height of each wheel is 4f.
i Calculate the average value for HFL-HIIN, and then proceed to step (2).

ステップ■において、マイクロコンピュータ76は、ス
テップ■で演算した車高平均値を予め記憶している目標
車高域とを比較し、実車高値が目標車高域から外れてい
るか否かにより車高調整が必要かどうか判断する。この
判断でrNOJの場合は再びステップ■に戻り、上述し
た処理を繰り返すが、rYES、の場合は車高調整が必
要であるとしてステップ■に移行する。
In step (2), the microcomputer 76 compares the vehicle height average value calculated in step (2) with a pre-stored target vehicle height range, and adjusts the vehicle height depending on whether the actual vehicle height value is outside the target vehicle height range. determine whether it is necessary. If this determination is rNOJ, the process returns to step (2) and repeats the above-mentioned process, but if rYES, it is determined that vehicle height adjustment is necessary and the process proceeds to step (2).

ステップ■では車高調整禁止か否かの判断を行う。この
判断は、後述する車高調整の低下制御中に、例えばシリ
ンダ圧が下限設定値以下に至った状態を示す情報に基づ
き行われる。
In step (2), it is determined whether or not vehicle height adjustment is prohibited. This determination is made based on information indicating, for example, a state in which the cylinder pressure has reached a lower limit setting value or less during vehicle height adjustment lowering control to be described later.

このステップ■の判断でrYEsJ 、車高調整禁止の
場合はステップ■に戻り、一方、「NO」即ち車高調整
禁止状態でない場合はステップ■に移行する。このステ
ップ■においてマイクロコンピュータ76は圧力センサ
27FL(〜27RR)の検出信号PFL(〜P+u+
)をゲイン調整570及びA/D変換器72を介して読
み込み、その値を圧力値として記憶する。次いで、ステ
ップ■に移行し、ノイズの影響を回避するために、ステ
ップ■の入力値を各輪毎に平均化する。
If the judgment in step (2) is that the vehicle height adjustment is prohibited, the process returns to step (2), whereas if "NO", that is, the vehicle height adjustment is not prohibited, the process proceeds to step (2). In this step (2), the microcomputer 76 outputs the detection signal PFL (~P+u+) of the pressure sensor 27FL (~27RR).
) is read in via gain adjustment 570 and A/D converter 72, and the value is stored as a pressure value. Next, the process moves to step (2), in which the input values in step (2) are averaged for each wheel in order to avoid the influence of noise.

この後、ステップ■に移行し、以上の処理が4個の圧力
値について終了したか否か判断し、「NOJの場合はス
テップ■〜■を繰り返し、rYES」の場合はステップ
0.0に移る。
After this, the process moves to step ■, and it is determined whether or not the above processing has been completed for the four pressure values, and if "NOJ, repeat steps ■~■, rYES", move to step 0.0. .

ステ・ンプ[相]では、ステップ■における演算値PF
LI  PFIIを用いてフロント側の左右圧平均値P
Fが、Pr = (PFll PFll) /2の弐で
演算され、ステップ■では、ステップ■における演算値
PI L +pHlを用いてリヤ側の左右圧平均値Pつ
が、PR−(PtL+P□)/2の式で演算される。
In step [phase], the calculated value PF in step ■
Average value of left and right pressure P on the front side using LI PFII
F is calculated by Pr = (PFll PFll) /2, and in step 2, the calculated value PI L + pHl in step 2 is used to calculate the rear side left and right pressure average value P as PR-(PtL+P□)/2. It is calculated using the formula.

この後、マイクロコンピュータ76はステップ@にて車
高センサ29の検出信号Vをインターフェイス回路74
を介して読み込み、その値を車速値として記憶する。次
いで、ハンチング防止を考慮したステップ■〜■の判断
に移行する。
After that, the microcomputer 76 sends the detection signal V of the vehicle height sensor 29 to the interface circuit 74 in step @.
and store that value as the vehicle speed value. Next, the process moves to judgments in steps (1) to (2) that take hunting prevention into consideration.

ステップ■では読み込んだ車高値Vが基準値■1に対し
て、V>V、か否かが判断され、rYES」の場合はス
テップ■に移行してモードフラグFを立て、一方、「N
O」の場合はステップ[相]の判断を行う。モードフラ
グFはフロント側、リヤ側の何れを連通させるかを設定
するもので、モードフラグF=1は車高調整時にリヤ側
を常時連通させておく「モーMAJ  (第6図参照)
に対応し、モードフラグF=0は車高調整時に車重の軽
い方のフロント側、リヤ例の何れかを連通させる[モー
l”BJ(第6図参照)に対応している。
In step ■, it is determined whether or not the read vehicle height value V is greater than V with respect to the reference value ■1, and if ``rYES'', the process moves to step ■ and a mode flag F is set;
In the case of "O", the step [phase] is determined. The mode flag F is used to set whether the front side or the rear side is communicated, and the mode flag F = 1 is set to ``Mo MAJ'' (see Figure 6), which constantly communicates the rear side when adjusting the vehicle height.
Corresponding to this, the mode flag F=0 corresponds to the mode flag "BJ" (see FIG. 6) which connects either the front side or the rear side, which are lighter in vehicle weight, during vehicle height adjustment.

ステップ[相]では基準値■。(<V+)に対して、V
<Voか否かが判断され、rYESJのときはステップ
@に移行してモードフラグF−0に設定し、rNOJの
ときはステップ@の判断に移行する。このステップ@で
、マイクロコンピュータ76は前回の処理時に「モード
A」であったか否かを、モードフラグF=1か否かによ
り判断し、rYEsJのときはステップ■に、rNo、
のときはステップ■に処理を進める。
In step [phase], reference value ■. (<V+), V
It is determined whether <Vo or not. If rYESJ, the process moves to step @ and sets the mode flag F-0; if rNOJ, the process moves to step @. In this step @, the microcomputer 76 determines whether or not it was in "mode A" during the previous processing, based on whether the mode flag F = 1 or not, and if rYEsJ, it proceeds to step
If so, proceed to step ■.

以上のステップ■〜■の判断からステップ[相]に移行
する状態は以下の場合である。つまり、第6図のヒステ
リシス特性で示すように、車速■が基準[V、を越えて
増加し、「モードB」から「モードA」に新たに切り換
えられたか、又は、前回「モードA」での車高調整が行
われ、その後低速走行となったが、車速■が未だ基準値
■。(<Vl)以下となっていない場合である。これに
対し、ステップ@に移行する状態は、第6図のヒステリ
シス特性で示すように、車速■が基準値■。を越えて低
下し、「モードA」から「モードB]に新たに切り換え
られたか、又は、前回「モードB」での車高調整が行わ
れ、その後高速走行となったが、車速■が未だ基準値V
3以上となっていない場合である。
The state in which the judgments in steps ① to ① above proceed to step [phase] is as follows. In other words, as shown by the hysteresis characteristics in Fig. 6, the vehicle speed ■ has increased beyond the reference [V, and the mode has been newly switched from "mode B" to "mode A," or the previous mode has been changed to "mode A." The vehicle height was adjusted and the vehicle was driven at a lower speed after that, but the vehicle speed ■ was still at the standard value ■. (<Vl) or less. On the other hand, in the state of transitioning to step @, the vehicle speed ■ is the reference value ■, as shown by the hysteresis characteristics in FIG. The vehicle speed has decreased by more than Reference value V
This is a case where the number is not 3 or more.

そこで、ステップ■においてはモードフラグF−1が維
持又は設定され、ステップ■においてはF=Oが維持又
は設定される。
Therefore, in step (2), the mode flag F-1 is maintained or set, and in step (2), F=O is maintained or set.

さらに、ステップ■の処理を終えると、ステップ■、■
の処理が実施される。この内、ステップ■で、マイクロ
コンピュータ76は駆動回路78を介してフロント側の
NM1切換弁48Fへの制御信号S3をオフに維持した
また、リヤ側の電磁切換弁48Rに供給する制御信号S
3をそれまでのオフからオンに切り換える。これにより
、1ffff切換弁48Rのみが連通状態になり、それ
までの4輪独立のシリンダ圧状態から、リヤ例の油圧シ
リンダ241’lL、  24RRが連通により同圧と
なり、車体に作用する力の点では見かけ上3軸の状態(
第7図(ト))参照)になる。
Furthermore, when the processing of step ■ is completed, steps ■, ■
processing is carried out. Among these, in step (2), the microcomputer 76 maintains the control signal S3 to the front side NM1 switching valve 48F off through the drive circuit 78, and also supplies the control signal S3 to the rear side electromagnetic switching valve 48R.
3 from off to on. As a result, only the 1ffff switching valve 48R becomes in communication, and from the previous four-wheel independent cylinder pressure state, the rear hydraulic cylinders 241'lL and 24RR become the same pressure due to communication, and the point of force acting on the vehicle body changes. Now, the apparent three-axis state (
(See Figure 7 (g))).

このように3軸制御の準備が完了すると、ステップ[相
]に移行し、車高調整を実施する。この車高調整は例え
ば特開昭63−154413号記載のように周知の手法
に基づき実施されるとともに、その車高低下調整中に、
圧力値P FL”””PIIRが下限基準値よりも低下
する等の車高調整禁止状態の成立も併せてチェンクされ
る。
When the preparation for three-axis control is completed in this way, the process moves to step [phase] and vehicle height adjustment is performed. This vehicle height adjustment is carried out based on a well-known method as described in JP-A No. 63-154413, and during the vehicle height lowering adjustment,
The vehicle height adjustment is also changed if the vehicle height adjustment is prohibited, such as when the pressure value PFL"""PIIR falls below the lower limit reference value.

この3軸制御が済むと、マイクロコンピュータ76はそ
の処理をステップ[相]に進め、ステップ[相]で指令
したリヤ側切換弁48Rへの制御信号S。
When this three-axis control is completed, the microcomputer 76 advances the process to step [phase] and sends the control signal S to the rear side switching valve 48R commanded in step [phase].

をオンからオフへ切り換える。これにより、再びフロン
ト側、リヤ側の電磁切換弁48F、48Rが非連通とな
り、4輪独立のシリンダ圧状態に戻る。このステップ[
相]の後は、ステップ■に戻って電源オフとなるまで上
述した処理が繰り返される。
Switch from on to off. As a result, the front and rear electromagnetic switching valves 48F and 48R become disconnected again, returning to the four-wheel independent cylinder pressure state. This step [
After [phase], the process returns to step (2) and the above-described process is repeated until the power is turned off.

一方、ステップ■の処理を終えると、ステップ0〜[相
]の処理が実施される。この内、ステップ■ではステッ
プ[相]、■で演算したフロント側、リヤ側の左右圧平
均値PF、PRに対して、PF>P8か否かを判断する
。この判断は、圧力値P。
On the other hand, when the processing of step (2) is completed, the processing of steps 0 to [phase] is executed. Among these, in step (2), it is determined whether or not PF>P8 with respect to the front side and rear side pressure average values PF and PR calculated in steps [phase] and (2). This judgment is based on the pressure value P.

pHがフロント側、リヤ側に個別に掛かっている車重に
比例しているので、圧力値P、、P、の比較によって荷
重の比較を行おうとするものである。
Since the pH is proportional to the vehicle weight applied to the front and rear sides individually, the loads are compared by comparing the pressure values P, , P,.

そこで、ステップ■にてrYES、の場合は、リヤ側の
荷重の方が軽いとしてリヤ側を連通させるべく、前述し
たステップ■に移行し、その後、ステップ[株]、@の
処理を行う。しかし、ステップ0にて「NO」の場合は
フロント側の荷重の方が軽いとしてフロント側のみ連通
させるべくステップ0に移行する。
Therefore, in the case of rYES in step (2), the load on the rear side is lighter and the process moves to the above-mentioned step (2) in order to connect the rear side, and then the processing in steps [share] and @ is performed. However, if "NO" in step 0, it is assumed that the load on the front side is lighter, and the process moves to step 0 to connect only the front side.

このステップ@では、前述したステップ[相]と反対に
、リヤ側の電磁切換弁48Rへの制御信号S、をオフに
維持したまま、フロント側の電磁切換弁48Fに供給す
る制御信号S3をそれまでのオフからオンに切り換える
。これにより、フロント側の電磁切換弁48Fのみが連
通状態になり、それまでの4輪独立のシリンダ圧状態か
ら、フロント側の油圧シリンダ24FL、24PRが連
通により同圧となり、車体に作用する力の点では見かけ
上3軸の状!!i(第7図(a)参照)になる。
In this step @, contrary to the step [phase] described above, the control signal S3 to be supplied to the front side electromagnetic switching valve 48F is kept OFF while the control signal S to the rear side electromagnetic switching valve 48R is kept OFF. Switch from off to on. As a result, only the front side electromagnetic switching valve 48F is brought into communication, and the front side hydraulic cylinders 24FL and 24PR are brought into communication and have the same pressure, from the previous four-wheel independent cylinder pressure state, to reduce the force acting on the vehicle body. The points appear to have three axes! ! i (see FIG. 7(a)).

このように3軸制御の準備が完了すると、ステップ@に
移行し、ステップ[相]と同様に車高調整が実施される
When the preparation for the three-axis control is completed in this way, the process moves to step @, and vehicle height adjustment is performed in the same manner as in step [phase].

この3軸制御が済むとステップ[相]にて、ステップ@
で指令したフロント側切換弁48Fへの制御信号S、を
オンからオフへ切り換える。これにより、再びフロント
側、リヤ側の電磁切換弁48F。
After this 3-axis control is completed, step @
The control signal S to the front side switching valve 48F commanded by is switched from on to off. As a result, the front side and rear side electromagnetic switching valves 48F are activated again.

48Rが非連通となり、4輪独立のシリンダ圧状態に戻
る。このステップ[相]の後はステップ■に戻って電源
オフとなるまで上述した処理が繰り返される。
48R becomes disconnected and returns to the four-wheel independent cylinder pressure state. After this step [phase], the process returns to step (2) and the above-described process is repeated until the power is turned off.

本実施例では、油圧源側の電磁切換弁34及び各軸負荷
側の1M1切換弁46FL〜46RRが本願発明の各制
御弁に相当し、電磁切換弁48F及び配管32FL、 
 32FR並びにt値切換弁48R及び配管32RL、
  32RRが各連通手段に相当し、車高センサ26F
L〜26RR及び第5図ステップ■〜■。
In this embodiment, the electromagnetic switching valve 34 on the hydraulic power source side and the 1M1 switching valves 46FL to 46RR on the load side of each shaft correspond to the control valves of the present invention, and the electromagnetic switching valve 48F, the piping 32FL,
32FR and t value switching valve 48R and piping 32RL,
32RR corresponds to each communication means, vehicle height sensor 26F
L~26RR and steps ■~■ in Figure 5.

[相]、0の処理が車高調整手段を構成し、車速センサ
29及び同図ステップ@の処理が車速検出手段を構成し
、さらに圧力センサ27PL〜27RR及び同図ステッ
プ■〜■の処理が前後荷重検出手段を構成している。ま
た、同図ステップ■の処理が車高調整開始時判断を構成
し、同図ステップ0〜@)。
[Phase], the processing of 0 constitutes the vehicle height adjustment means, the vehicle speed sensor 29 and the processing of step @ in the figure constitute the vehicle speed detection means, and the pressure sensors 27PL to 27RR and the processing of steps It constitutes a longitudinal load detection means. Further, the processing in step (2) in the same figure constitutes the determination of when to start adjusting the vehicle height, and steps 0 to (@) in the same figure constitute the process.

@l−@、[相]の処理が連通制御手段を構成している
The processing of @l-@ and [phase] constitutes the communication control means.

次に、本実施例の全体動作を説明する。Next, the overall operation of this embodiment will be explained.

いまイグニンションスインチがオン状態にあるとすると
、コントローラ3oは、加速度センサ28の検出信号G
に基づき、所定のロール条件や加速、減速条件が成立し
たときには、ガスばね定数大、減衰力大の方向に電磁切
換弁58及び可変絞り60を制御して走行中の車体姿勢
の変化を抑制するとともに、それらの条件が成立しない
ときには、ガスばね定数型、減衰力型の方向に制御して
路面から車体に伝達される振動を小さくし、乗心地を良
好にする。
Assuming that the ignition switch is now in the on state, the controller 3o receives the detection signal G of the acceleration sensor 28.
Based on this, when predetermined roll conditions, acceleration, and deceleration conditions are established, the electromagnetic switching valve 58 and the variable throttle 60 are controlled in the direction of a large gas spring constant and a large damping force to suppress changes in the vehicle body posture while driving. At the same time, when these conditions are not met, control is performed in the direction of gas spring constant type or damping force type to reduce vibrations transmitted from the road surface to the vehicle body and improve riding comfort.

また、イグニンションスイノチがオン状態になると、前
述した第5図の処理が並行して実施され、車高調整の必
要がある場合(第5図ステップ■参照)は、車高調整禁
止の状態を除いて車高制御の準備に入る。この準備は、
フロント側、リヤ側の荷重をシリンダ圧を介してチエツ
クすること、及び、車速値Vをチエツクすることによっ
て行われる(第5図ステップ■〜■、■参照)。
Also, when the ignition switch is turned on, the process shown in Figure 5 described above is carried out in parallel, and if vehicle height adjustment is necessary (see step ■ in Figure 5), the vehicle height adjustment is prohibited. Begin preparations for vehicle height control. This preparation is
This is done by checking the loads on the front side and rear side via the cylinder pressure, and by checking the vehicle speed value V (see steps ① to ② and ② in Fig. 5).

つまり、停車時を含めて、車速Vが基準値V0よりも低
い低迷の場合には、前後の荷重を前後平均圧から推定し
、モードBの連通制御、即ち荷重の軽い方の切換弁48
F又は48Rを開状態にしてシリンダ圧を同一にする制
御がなされる。これにより、前輪側を共通又は後輪側を
共通とする車高制御の力の3軸が前述した第7図(a)
、 (b)のように設定され、この3軸制御により車高
制御が実施されるから、各輪のシリンダ圧が独立してい
る4軸制御のような各輪の力の不静定が排除された状態
で実車高値が目標車高値に設定される(第5ステツプ[
相]、0参照)。車高調整が終了すると、再び元の4輪
独立の圧力状態に戻される。
In other words, when the vehicle speed V is sluggish, lower than the reference value V0, including when the vehicle is stopped, the front and rear loads are estimated from the front and rear average pressure, and communication control in mode B is performed, that is, the switching valve 48 with the lighter load
Control is performed to keep the cylinder pressures the same by opening F or 48R. As a result, the three axes of force for vehicle height control with the front wheels in common or the rear wheels in common can be adjusted as shown in Fig. 7 (a).
, (b), and vehicle height control is performed by this 3-axis control, eliminating the unsteady force of each wheel as in 4-axis control where the cylinder pressure of each wheel is independent. In this state, the actual vehicle height value is set as the target vehicle height value (fifth step [
phase], see 0). When the vehicle height adjustment is completed, the pressure is returned to the original state where the four wheels are independent.

このように、上述した車高制御中は、荷重の重い方は左
右独立のシリンダ圧になっているので、荷重の重い側の
ロール剛性が3軸制御のために低下してしまうというこ
とが無く、4輪の荷重偏差が小さい値に維持される。例
えば、積載等に因って後輪荷重の方が大きい商用車の場
合には、その低速走行中の車高調整は、フロント側のシ
リンダ圧を連通させた3軸制御となるから、左右後輪間
で荷重差が発生した場合でも、後輪側の高いロール剛性
によって4輪の荷重偏差が小さくなる。これにより、走
行中はその車速の如何に関わらず、常にリヤ側のシリン
ダ圧を連通させる構成ものに比べて、良好な操縦安定性
が維持される。
In this way, during the vehicle height control described above, the left and right cylinder pressures are independent on the side with the heavier load, so the roll rigidity on the side with the heavier load does not decrease due to 3-axis control. , the load deviation of the four wheels is maintained at a small value. For example, in the case of a commercial vehicle where the load on the rear wheels is greater due to loading, etc., vehicle height adjustment during low-speed driving involves three-axis control that communicates the front cylinder pressure. Even if a load difference occurs between the wheels, the high roll rigidity of the rear wheels reduces the load deviation between the four wheels. As a result, better steering stability can be maintained compared to a structure in which the rear cylinder pressure is always communicated while the vehicle is running, regardless of the vehicle speed.

なお、加速させた場合でも、車速値■が基準値71未満
の場合には、上述したモードBの連通状態に係る車高制
御が実施される。
Note that even when the vehicle is accelerated, if the vehicle speed value ■ is less than the reference value 71, the vehicle height control related to the communication state of mode B described above is implemented.

しかし、車速値■が高速側の基準値■1以上になった状
態で、車高値を下げるべく、予め設定されているプログ
ラム化に拠って目標車高値が下がったこと等に起因して
車高調整の要求があったとする。この場合には、前述し
たように前後の荷重を考慮することなく、常に千−ドA
、即ちリヤ側を連通させた3軸(第7図ら)の状態参照
)が設定され、この3軸にて車高制御が静定性良〈実施
される(第5図ステップ■、■、■参照)。このため、
後輪側のロール剛性が下げられ、ロール剛性の前後分担
では前輪側の分担比率が高められることから、ステア特
性全体がアンダーステア化されて、高速走行時の安定性
確保が優先される。
However, when the vehicle speed value ■ exceeds the high-speed reference value ■1, the vehicle height may be lowered due to the target vehicle height value being lowered according to the preset programming in order to lower the vehicle height value. Assume that there is a request for adjustment. In this case, as mentioned above, without considering the front and rear loads, the
In other words, three axes (see the state of the three axes (see Fig. 7, etc.) with the rear side communicating) are set, and the vehicle height control is carried out with good static stability (see steps ). For this reason,
The roll stiffness of the rear wheels is lowered, and the share of roll stiffness between the front and rear wheels is increased, so the overall steering characteristics become understeer, giving priority to ensuring stability at high speeds.

また、高速走行状態から減速させた場合でも、車速値■
が低速側基準値■。を越えて低下するまでの間は、車高
調整の要求に関わらず、上述したモードAに拠る3軸の
車高調整が実施される。このように、本実施例ではモー
ドA、B間の切換に対する闇値を■。、■102段階と
し、ヒステリシス特性を持たせているので、モードA、
B間の切換に関するハンチング現象を防止でき、切換の
安定性を図ることができる。
In addition, even when decelerating from a high-speed driving state, the vehicle speed value
is the low speed reference value■. Until the vehicle height decreases beyond this point, the three-axis vehicle height adjustment according to the above-mentioned mode A is performed regardless of the request for vehicle height adjustment. In this way, in this embodiment, the darkness value for switching between modes A and B is . , ■102 steps and has hysteresis characteristics, so mode A,
The hunting phenomenon associated with switching between B and B can be prevented, and the stability of switching can be improved.

なお、上記実施例は後輪側の油圧シリンダを横置き形式
とした場合を説明したが、本願発明は必ずしもこれに限
定されることなく、流体圧シリンダをハネ上、バネ下関
に立設する構成としてもよいことは勿論である。
Although the above embodiment describes a case where the hydraulic cylinder on the rear wheel side is placed horizontally, the present invention is not necessarily limited to this, but has a configuration in which the hydraulic cylinder is placed upright on the upper part of the spring or under the lower part of the spring. Of course, it is also possible to do so.

また、本願発明における前後荷重検出手段は、前述した
実施例のように必ずしも圧力センサを用いた構成のもの
に限定されることなく、荷重センサを流体圧シリンダと
車体との間に設けで、荷重を直接電気信号に変換して求
める構成であってもよい。
Further, the longitudinal load detecting means in the present invention is not necessarily limited to a structure using a pressure sensor as in the above-described embodiment, but a load sensor may be provided between the fluid pressure cylinder and the vehicle body to detect the load. The configuration may be such that the signal is obtained by directly converting it into an electrical signal.

さらに、本願発明での作動流体は必ずしも前述したよう
に作動油に限定されることなく、圧縮率の少ない気体を
使用することもできる。
Furthermore, the working fluid in the present invention is not necessarily limited to the working oil as described above, and a gas with low compressibility may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本願発明では、車両左右の流体圧シ
リンダのシリンダ室を連通状態及び非連通状態に切換可
能な連通手段を車両前後に個別も設け、車速か基準値よ
りも低いときは、車両前後で荷重の軽い方の連通手段を
連通状態にし、車速か基準値以上のときは車両後側の連
通手段を常時連通状態にするとしたため、車両が所定の
低速走行状態では、3軸の車高調整が実施され、その3
軸設定は荷重の重い方のシリンダ圧を独立に保持してな
されるので、その荷重の重い方のロール剛性が低下する
という状態が排除され、これにより4輪の荷重偏差の拡
大が最小限に抑えられて、操安性の悪化が防止される。
As explained above, in the present invention, communication means capable of switching the cylinder chambers of the left and right fluid pressure cylinders of the vehicle into a communicating state and a non-communicating state are separately provided at the front and rear of the vehicle, and when the vehicle speed is lower than a reference value, The front and rear communication means with lighter loads are kept in communication, and when the vehicle speed is above the standard value, the communication means on the rear side of the vehicle is always in communication, so when the vehicle is running at a specified low speed, the vehicle height of the three axles is Adjustments have been made, part 3
Since the axis setting is done by independently maintaining the cylinder pressure of the heavier loaded side, it is possible to eliminate the situation where the roll rigidity of the heavier loaded side decreases, thereby minimizing the expansion of the load deviation of the four wheels. This prevents deterioration of steering stability.

このため、商用車のように後輪の荷重変動が大きく且つ
左右輪で荷重差が発生し易い車両であっても、後輪側の
積載荷重が大きい場合にはフロント側を連通させた状態
となり、リヤ側の大幅なロール剛性低下に起因した操縦
安定性の悪化が防止される。これに対し、車両が所定の
高速走行状態では、車高調整は、常にリヤ側の連通に拠
る3軸設定の状態でなされるから、アンダーステア化に
よって走行安定性が確保されるという効果がある。
For this reason, even in vehicles such as commercial vehicles where the rear wheel load fluctuates widely and load differences tend to occur between the left and right wheels, if the rear wheel side carries a large load, the front side will be in a state of communication. , deterioration of steering stability caused by a significant decrease in roll rigidity on the rear side is prevented. On the other hand, when the vehicle is running at a predetermined high speed, the vehicle height is always adjusted in a three-axle setting state based on communication on the rear side, so that the understeer has the effect of ensuring running stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はクレーム対応図、第2図乃至第6図は本願発明
の一実施例を示す図であって、第2図は全体構成を示す
プロ、り図、第3図は後左輪側のアクチュエータ部の配
置を示す部分斜視図、第4図はコントローラのプロンク
図、第5図はコントローラの車高調整に関する処理手順
の一例を示す概略フローチャート、第6図は連通切換を
示す特性図である。第7図(a)はフロント側を連通さ
せたときの3軸の説明図、第7図℃)はリヤ側を連通さ
せたときの3軸の説明図である。 図中、100・・・流体圧シリンダ、101・・・流体
圧源、102・・・制御弁、103・・・車高調整手段
、104・・・連通手段、105・・・車速検出手段、
106・・・前後荷重検出手段、107・・・車高調整
開始時判断手段、108・・・連通制御手段、4・・・
車輪側部材、6・・・車体側部材、8・・・電子制御油
圧サスペンション、10・・・油圧ポンプ、12・・・
リザーバータンク、24FL〜24RR・・・油圧シリ
ンダ、26FL〜26RR・・・車高センサ、27FL
〜27RR・・・圧力センサ、29・・・車速センサ、
30・・・コントローラ、34・・・電磁切換弁、46
FL〜46RR・・・電磁切換弁、である。
Figure 1 is a diagram corresponding to the claims, Figures 2 to 6 are diagrams showing one embodiment of the present invention, Figure 2 is a professional diagram showing the overall configuration, and Figure 3 is a diagram showing the rear left wheel side. FIG. 4 is a partial perspective view showing the arrangement of the actuator section, FIG. 4 is a proximal diagram of the controller, FIG. 5 is a schematic flowchart showing an example of a processing procedure regarding vehicle height adjustment of the controller, and FIG. 6 is a characteristic diagram showing communication switching. . FIG. 7(a) is an explanatory diagram of the three axes when the front side is communicated, and FIG. 7(a) is an explanatory diagram of the three axes when the rear side is communicated. In the figure, 100...Fluid pressure cylinder, 101...Fluid pressure source, 102...Control valve, 103...Vehicle height adjustment means, 104...Communication means, 105...Vehicle speed detection means,
106... Longitudinal load detection means, 107... Vehicle height adjustment start time judgment means, 108... Communication control means, 4...
Wheel side member, 6... Vehicle body side member, 8... Electronically controlled hydraulic suspension, 10... Hydraulic pump, 12...
Reservoir tank, 24FL~24RR...Hydraulic cylinder, 26FL~26RR...Vehicle height sensor, 27FL
~27RR...pressure sensor, 29...vehicle speed sensor,
30... Controller, 34... Solenoid switching valve, 46
FL~46RR...Solenoid switching valve.

Claims (1)

【特許請求の範囲】[Claims] (1)車体及び各車輪間に個別に介装され車体荷重を支
持する流体圧シリンダと、この各流体圧シリンダのシリ
ンダ室と流体圧源との間の流体給排通路を開閉可能な制
御弁と、この制御弁による作動流体の給排を制御する車
高調整手段とを備えた電子制御流体圧サスペンションに
おいて、 車両前後に個別に設けられ且つ車両左右の前記流体圧シ
リンダのシリンダ室を連通状態及び非連通状態に切換可
能な連通手段を備えるとともに、車速を検出する車速検
出手段と、車両前後における荷重を個々に検出する前後
荷重検出手段と、前記車高調整手段による車高調整開始
時か否かを判断する車両調整開始時判断手段と、この車
高調整開始時判断手段が車高調整開始時を判断した場合
、前記車速検出手段の検出値が基準値よりも低いときは
、前記前後荷重検出手段の検出値に基づき車両前後で荷
重の軽い方の前記連通手段を連通状態にさせ、前記車速
検出手段の検出値が基準値以上のときは車両後側の前記
連通手段を連通状態にさせる連通制御手段を設けたこと
を特徴とする電子制御流体圧サスペンション。
(1) Fluid pressure cylinders that are individually interposed between the vehicle body and each wheel to support the vehicle load, and control valves that can open and close fluid supply and discharge passages between the cylinder chambers of each fluid pressure cylinder and the fluid pressure source. and a vehicle height adjusting means for controlling the supply and discharge of working fluid by the control valve, wherein the cylinder chambers of the fluid pressure cylinders provided individually at the front and rear of the vehicle and on the left and right sides of the vehicle are in communication with each other. and communication means that can be switched to a non-communication state, vehicle speed detection means for detecting vehicle speed, longitudinal load detection means for individually detecting loads at the front and rear of the vehicle, and when the vehicle height adjustment by the vehicle height adjustment means starts. When the vehicle height adjustment start time determination means determines whether the vehicle height adjustment is started or not, if the detected value of the vehicle speed detection means is lower than the reference value, the vehicle height adjustment start time determination means determines whether the vehicle height adjustment Based on the detected value of the load detecting means, the communicating means at the front and rear of the vehicle with a lighter load is placed in a communicating state, and when the detected value of the vehicle speed detecting means is equal to or higher than a reference value, the communicating means on the rear side of the vehicle is brought into a communicating state. An electronically controlled fluid pressure suspension characterized by being provided with communication control means for controlling the
JP22710090A 1990-08-29 1990-08-29 Electronically controlled hydraulic suspension Expired - Fee Related JP2888950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22710090A JP2888950B2 (en) 1990-08-29 1990-08-29 Electronically controlled hydraulic suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22710090A JP2888950B2 (en) 1990-08-29 1990-08-29 Electronically controlled hydraulic suspension

Publications (2)

Publication Number Publication Date
JPH04108017A true JPH04108017A (en) 1992-04-09
JP2888950B2 JP2888950B2 (en) 1999-05-10

Family

ID=16855489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22710090A Expired - Fee Related JP2888950B2 (en) 1990-08-29 1990-08-29 Electronically controlled hydraulic suspension

Country Status (1)

Country Link
JP (1) JP2888950B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0791492A1 (en) * 1996-02-23 1997-08-27 Toyota Jidosha Kabushiki Kaisha Suspension control apparatus and method of controlling suspension

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0791492A1 (en) * 1996-02-23 1997-08-27 Toyota Jidosha Kabushiki Kaisha Suspension control apparatus and method of controlling suspension

Also Published As

Publication number Publication date
JP2888950B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
JPH03511A (en) Car height control method for vehicle with car height adjuster
JP3015514B2 (en) Vehicle suspension device
JP2559769B2 (en) Active suspension
JPH04108018A (en) Electronically controlled fluid pressure suspension
JPH04108017A (en) Electronically controlled fluid pressure suspension
JPS6296126A (en) Ground clearance adjuster for automobile
JPH04108023A (en) Electronically controlled fluid pressure suspension
JPH0248207A (en) Suspension control device for vehicle
JPH0516633A (en) Active suspension for vehicle
JPH05185820A (en) Active suspension system for vehicle
JP3058281B2 (en) Electronically controlled hydraulic suspension
JP3059199B2 (en) Electronically controlled hydraulic suspension
JP3334547B2 (en) Active suspension device
JP2889280B2 (en) Vehicle suspension device
JP3042628B2 (en) Electronically controlled hydraulic suspension
JPH04100712A (en) Fluid pressure suspension
JPH04108020A (en) Electronically controlled fluid pressure suspension
JP2798282B2 (en) Height adjustment device
JP2941838B2 (en) Suspension pressure control device
JP2699639B2 (en) Active suspension
JPH0592713A (en) Vehicle suspension
JP3068870B2 (en) Controlled suspension for vehicles
JPH02151515A (en) Active suspension for vehicle
JPH04266512A (en) Control type suspension
JPH0485126A (en) Active suspension device for vehicle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees