JP3334547B2 - Active suspension device - Google Patents

Active suspension device

Info

Publication number
JP3334547B2
JP3334547B2 JP06429497A JP6429497A JP3334547B2 JP 3334547 B2 JP3334547 B2 JP 3334547B2 JP 06429497 A JP06429497 A JP 06429497A JP 6429497 A JP6429497 A JP 6429497A JP 3334547 B2 JP3334547 B2 JP 3334547B2
Authority
JP
Japan
Prior art keywords
pressure
air
vehicle
air spring
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06429497A
Other languages
Japanese (ja)
Other versions
JPH10258628A (en
Inventor
光彦 原良
達也 鎌田
隆夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP06429497A priority Critical patent/JP3334547B2/en
Publication of JPH10258628A publication Critical patent/JPH10258628A/en
Application granted granted Critical
Publication of JP3334547B2 publication Critical patent/JP3334547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/0416Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics regulated by varying the resiliency of hydropneumatic suspensions
    • B60G17/0432Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics regulated by varying the resiliency of hydropneumatic suspensions by varying the number of accumulators connected to the hydraulic cylinder

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、車両の旋回時の
乗心地を向上させたアクティブサスペンション装置、特
に、車両の旋回後の直進走行復帰制御を合理化したアク
ティブサスペンション装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active suspension device having improved ride comfort when turning a vehicle, and more particularly to an active suspension device that streamlines straight-running return control after turning a vehicle.

【0002】[0002]

【従来の技術】車両のサスペンション装置として車高調
整、姿勢制御、乗り心地制御を行うことが出来るアクテ
ィブサスペンション装置が知られている。この装置はば
ね上部材とばね下部材との間に容積可変の流体圧室を配
備し、この流体圧室に制御弁を介し高圧流体源を接続
し、この制御弁により流体圧室に対する高圧流体の給排
を制御し、ばね上部材とばね下部材との間隔やばね特性
を可変制御できるようにしている。
2. Description of the Related Art As a vehicle suspension device, an active suspension device capable of controlling a vehicle height, controlling a posture, and controlling a ride comfort is known. In this device, a variable-pressure fluid pressure chamber is provided between a sprung member and a unsprung member, and a high-pressure fluid source is connected to the fluid pressure chamber via a control valve. The distance between the sprung member and the unsprung member and the spring characteristics can be variably controlled.

【0003】例えば、図12に示したアクティブサスペ
ンション装置は、車体100と各車輪101との間にば
ね102及び油圧アクチュエータ103を備え、各油圧
アクチュエータ103には絞り104及び制御弁105
を介し油圧ポンプ106及びドレーンタンク107を連
通している。このアクティブサスペンション装置は、油
圧アクチュエータ103内の油圧を増減させることうに
より車輪101と車体100側との間隔を積極的に変化
させ、車高調整及び姿勢制御を行うことができる。特
に、車体100の旋回時には、旋回外側の車輪を支持す
る油圧アクチュエータ103の油圧を増加し、旋回内側
の車輪を支持する油圧アクチュエータ103の油圧を減
圧することで、旋回時の車体のロールを防止し、車体1
00を水平に維持することができる。このような油圧式
アクティブサスペンション装置の一例が特開昭63−1
76710号公報に開示される。
For example, the active suspension device shown in FIG. 12 includes a spring 102 and a hydraulic actuator 103 between a vehicle body 100 and each wheel 101, and each hydraulic actuator 103 has a throttle 104 and a control valve 105.
And the hydraulic pump 106 and the drain tank 107 are communicated with each other. This active suspension device can positively change the distance between the wheel 101 and the vehicle body 100 by increasing or decreasing the hydraulic pressure in the hydraulic actuator 103 to perform vehicle height adjustment and attitude control. In particular, when the vehicle body 100 turns, the hydraulic pressure of the hydraulic actuator 103 that supports the wheel on the outside of the turn is increased, and the hydraulic pressure of the hydraulic actuator 103 that supports the wheel on the inside of the turn is reduced, thereby preventing the body from rolling during the turn. And body 1
00 can be kept horizontal. An example of such a hydraulic active suspension device is disclosed in
No. 76710.

【0004】一方、空圧式のアクティブサスペンション
装置の一例が特公平5−18727号公報に開示され
る。この装置は、車体と各車輪との間に空気バネ室を備
え、通常の直進走行時は連通路により左右の空気バネ室
を連通させておき、車両の旋回走行時は、連通路を閉じ
ると共に縮み側空気バネ室に高圧空気を供給し、伸び側
空気バネ室の空気を排出してロール制御を行う。この装
置は車両の旋回後の直進走行復帰制御に入る場合におい
て、左右の空気ばね室を連通路を介し間欠的に連通及び
非連通させて直進走行に復帰させている。
On the other hand, an example of a pneumatic active suspension device is disclosed in Japanese Patent Publication No. Hei 5-18727. This device has an air spring chamber between the vehicle body and each wheel, and the left and right air spring chambers are communicated with each other by a communication path during normal straight running, and when the vehicle is turning, the communication path is closed. The high-pressure air is supplied to the compression-side air spring chamber, and the air in the extension-side air spring chamber is discharged to perform roll control. In this device, when entering a straight running return control after turning of the vehicle, the left and right air spring chambers are intermittently connected and disconnected through a communication path to return to straight running.

【0005】[0005]

【発明が解決しようとする課題】ところで、図12に示
した装置の場合、車高調整及び姿勢制御中は常に油圧ポ
ンプ106より制御弁105を介して油圧アクチュエー
タ103に高圧油を供給し、また油圧アクチュエータ1
03より制御弁105を介してドレーンタンク107に
油圧を排出する。油圧を排出した油圧アクチュエータ1
03には中立位置に復帰するとき再び高圧油を供給する
必要があり、消費エネルギが多く問題と成っている。更
に、特公平5−18727号公報の空圧式のアクティブ
サスペンション装置は、車両が旋回(ロール制御)から
直進復帰制御に戻る場合に、左右の空気ばね室を開閉弁
により間欠的に連通及び非連通させており、この間欠制
御のために、旋回後の直進走行復帰の際の姿勢制御圧力
の変動が連続性に欠け、滑らかさがなく、問題となって
いる。
By the way, in the case of the apparatus shown in FIG. 12, high-pressure oil is always supplied from the hydraulic pump 106 to the hydraulic actuator 103 via the control valve 105 during vehicle height adjustment and attitude control. Hydraulic actuator 1
From 03, the hydraulic pressure is discharged to the drain tank 107 via the control valve 105. Hydraulic actuator 1 that discharges hydraulic pressure
03 needs to be supplied with high-pressure oil again when returning to the neutral position, which causes a problem with a large amount of energy consumption. Further, in the pneumatic active suspension device disclosed in Japanese Patent Publication No. Hei 5-18727, when the vehicle returns from turning (roll control) to straight-line return control, the left and right air spring chambers are intermittently connected and disconnected by on-off valves. Because of this intermittent control, the fluctuation of the attitude control pressure when returning to straight running after turning is lacking in continuity and lacks smoothness, which is a problem.

【0006】この発明の目的は、車両の旋回後の直進走
行復帰時の姿勢制御圧力の変動を滑らかとして、違和感
なく旋回後の直進走行に戻れ、しかも、旋回時のロール
制御を容易化できるアクティブサスペンション装置を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an active device capable of smoothing the fluctuation of attitude control pressure when returning to straight running after turning of a vehicle, returning to straight running after turning without discomfort, and facilitating roll control during turning. An object of the present invention is to provide a suspension device.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
めに、請求項1の発明は、車体と各車輪との間にそれぞ
れ介装され、容積可変の空気バネ室を有したサスペンシ
ョンユニットと、上記各空気バネ室を調圧する圧力制御
弁と、車体左右の各空気バネ室を調圧する左右圧力制御
弁の給気ポートを互いに連通する給気側連通路と、車体
左右の各空気バネ室を調圧する左右圧力制御弁の排気ポ
ートを互いに連通する排気側連通路と、上記給気側連通
路を介し左右の各空気バネ室に高圧空気を供給する給気
手段と、上記排気側連通路を介し左右の各空気バネ室の
空気を排出する排気手段と、上記車両の旋回時は、旋回
外側の空気バネ室に高圧空気を供給し、旋回内側の空気
バネ室から高圧空気を排出して車体のロール量を低減す
べく上記各圧力制御弁を制御する制御手段とを具備する
アクティブサスペンション装置において、上記圧力制御
弁を上記空気バネ室のサスペンション圧が電流値相当圧
となるように自動調圧できる電空比例定圧制御弁で形成
し、上記給気側連通路と上記給気手段の間に給気用開閉
弁を設け、上記排気側連通路と上記排気手段の間に排気
用開閉弁を設け、上記制御手段が上記車両の旋回後の直
進走行復帰時に、上記給気用及び排気用の両開閉弁を共
に閉状態に保持した上で上記旋回外側の空気バネ室を調
圧する電空比例定圧制御弁を最大サスペンション圧相当
の電流値で駆動することを特徴とする。
In order to achieve the above object, a first aspect of the present invention is to provide a suspension unit having a variable volume air spring chamber interposed between a vehicle body and each wheel. A pressure control valve that regulates each of the air spring chambers; an air supply-side communication passage that communicates the air supply ports of the left and right pressure control valves that regulate each of the left and right air spring chambers; An exhaust-side communication passage communicating the exhaust ports of the left and right pressure control valves with each other, an air supply means for supplying high-pressure air to each of the left and right air spring chambers via the air supply-side communication passage, and the exhaust-side communication passage Exhaust means for discharging air in the left and right air spring chambers through the air supply, and when the vehicle turns, supplies high-pressure air to the air spring chamber on the outside of the turn, and discharges high-pressure air from the air spring chamber on the inside of the turn. Each of the above pressure controls to reduce the roll amount of the vehicle An active suspension device comprising a control means for controlling a valve, wherein the pressure control valve is formed by an electro-pneumatic proportional constant pressure control valve capable of automatically adjusting the suspension pressure of the air spring chamber to a current value equivalent pressure, An air supply on-off valve is provided between the air supply-side communication passage and the air supply means, and an exhaust on-off valve is provided between the exhaust side communication passage and the exhaust means. the straight running return, adjust the air spring chamber of the orbiting outer on which both the two on-off valve of the supply for the air and for exhaust held closed
Pressure equivalent to maximum suspension pressure
It is characterized by driving with the current value of

【0008】従って、車両が旋回後の直進走行復帰時
に、給気用開閉弁が電空比例定圧制御弁の給気ポートよ
り給気側連通路側を閉じ、排気用開閉弁が電空比例定圧
制御弁の排気ポートより排気側連通路側を閉じるので、
車体左右の各空気バネ室よりの高圧空気のもれを防止し
た上で、左右空気バネ室を連通させ等圧化でき、しか
も、車両の旋回走行時には電空比例定圧制御弁が各空気
バネ室のサスペンション圧を電流値相当圧となるように
自動調圧できる。
Therefore, when the vehicle returns straight ahead after turning, the air supply on-off valve closes the air supply side communication passage from the air supply port of the electropneumatic proportional constant pressure control valve, and the exhaust air on / off valve closes the electropneumatic proportional constant pressure. Since the exhaust side communication passage side is closed from the exhaust port of the control valve,
After preventing the leakage of high-pressure air from the air spring chambers on the left and right sides of the vehicle body, the left and right air spring chambers can communicate with each other to equalize the pressure. Can be automatically adjusted so that the suspension pressure becomes equivalent to the current value.

【0009】[0009]

【0010】特に、車両の旋回後の直進走行復帰時に
は、旋回外側の空気バネ室を調圧する電空比例定圧制御
弁を最大サスペンション圧相当の電流値で駆動して、流
路抵抗を十分に低減でき、旋回外側の空気バネ室の高圧
空気を給気側連通路を経て旋回内側の空気バネ室にスム
ーズに流入させることができる。
In particular, when returning to straight running after the vehicle turns, the electro-pneumatic proportional constant pressure control valve for regulating the air spring chamber outside the turn is driven with a current value corresponding to the maximum suspension pressure to sufficiently reduce the flow path resistance. Thus, the high-pressure air in the air spring chamber on the outside of the swirl can smoothly flow into the air spring chamber on the inside of the swirl via the air supply side communication passage.

【0011】[0011]

【発明の実施の形態】図1には本発明の適用されたアク
ティブサスペンション装置を示した。ここでのアクティ
ブサスペンション装置は、車両1の各輪、すなわち、左
右前輪5a,5b及び左右後輪5c,5dのそれぞれに
各サスペンションユニット2a,2b,2c,2dを装
着する。これら各サスペンションユニット2a,2b,
2c,2dは空気ばね室4a,4b,4c,4dと、緩
衝器24(図8参照)と、図示しないサスペンションス
プリングとを備え、これらは車体3と車輪5との間にそ
れぞれ介装されている。
FIG. 1 shows an active suspension device to which the present invention is applied. The active suspension device here mounts each suspension unit 2a, 2b, 2c, 2d on each wheel of the vehicle 1, that is, on each of the left and right front wheels 5a, 5b and the left and right rear wheels 5c, 5d. Each of these suspension units 2a, 2b,
2c and 2d include air spring chambers 4a, 4b, 4c and 4d, a shock absorber 24 (see FIG. 8), and a suspension spring (not shown). These are interposed between the vehicle body 3 and the wheels 5, respectively. I have.

【0012】各空気ばね室4a,4b,4c,4dはリ
ザーブタンク6に連結されており、このリザーブタンク
の高圧室7が各空気ばね室4a,4b,4c,4dに高
圧空気を供給でき、リザーブタンクの低圧室8が各空気
ばね室4a,4b,4c,4dから排除される低圧空気
を貯溜できる。リザーブタンク6にはエンジン駆動され
るリターンポンプ9及びドライヤ10を介し車高調整エ
アコンプレッサ26が装着される。ここで、高圧圧力ス
イッチPS1及び低圧スイッチPS2により、常時、高
圧室7,低圧室8の圧力が検出されており、高圧室7と
低圧室8の圧力差に応じてリターンポンプ9は駆動し、
高圧室7を所定圧に保持すべく低圧室8の低圧エアを加
圧して供給する。ドライヤ10には切換弁27を備えた
バイパス路28を介し大気口261が接続される。この
切換弁27の開時において、車高調整エアコンプレッサ
26は空作動し、低圧室8側より過剰となった低圧エア
を排気することも行う。
Each of the air spring chambers 4a, 4b, 4c, 4d is connected to a reserve tank 6. A high pressure chamber 7 of the reserve tank can supply high pressure air to each of the air spring chambers 4a, 4b, 4c, 4d. The low pressure chamber 8 of the reserve tank can store the low pressure air removed from each of the air spring chambers 4a, 4b, 4c, 4d. A vehicle height adjusting air compressor 26 is mounted on the reserve tank 6 via a return pump 9 and a dryer 10 driven by an engine. Here, the pressures in the high pressure chamber 7 and the low pressure chamber 8 are constantly detected by the high pressure switch PS1 and the low pressure switch PS2, and the return pump 9 is driven according to the pressure difference between the high pressure chamber 7 and the low pressure chamber 8,
The low-pressure air in the low-pressure chamber 8 is pressurized and supplied to maintain the high-pressure chamber 7 at a predetermined pressure. An atmosphere port 261 is connected to the dryer 10 via a bypass 28 having a switching valve 27. When the switching valve 27 is opened, the vehicle height adjusting air compressor 26 operates idle, and also exhausts excessive low-pressure air from the low-pressure chamber 8 side.

【0013】ここで左右前輪5a,5bに対設される前
側左右サスペンションユニット2a,2bの左右空気ば
ね室4a,4bは、図7に示すように、それぞれ電空比
例定圧制御弁11a,11bに連通し、これら制御弁に
より給排される高圧エアにより容積を可変させ、これに
より、車体3の前側左右サスペンションユニット2a,
2bの対向部の上下変化を抑制できるようにしている。
なお、前側左右サスペンションユニット2a,2bと同
様に後側左右サスペンションユニット2c,2dも構成
され、後側の左右空気ばね室4c,4dに連通する各電
空比例定圧制御弁11c,11dが車体3の後側左右サ
スペンションユニット2c,2dの対向部の上下変化を
抑制できるようにしている。各電空比例定圧制御弁11
は互いに同様構成を採り、ここでは前左側の電空比例定
圧制御弁11aを主に説明をする。
As shown in FIG. 7, the left and right air spring chambers 4a and 4b of the front left and right suspension units 2a and 2b opposed to the left and right front wheels 5a and 5b are respectively connected to electropneumatic proportional constant pressure control valves 11a and 11b. The volume is varied by high-pressure air supplied and exhausted by these control valves, whereby the front left and right suspension units 2a,
The vertical change of the facing portion 2b can be suppressed.
Note that the rear left and right suspension units 2c and 2d are configured similarly to the front left and right suspension units 2a and 2b, and the electropneumatic proportional constant pressure control valves 11c and 11d communicating with the rear left and right air spring chambers 4c and 4d are connected to the vehicle body 3. The upper and lower rear suspension units 2c and 2d can be prevented from changing vertically. Each electropneumatic proportional constant pressure control valve 11
Have the same configuration as each other, and here, the front left electro-pneumatic proportional constant pressure control valve 11a will be mainly described.

【0014】この電空比例定圧制御弁11aは、図5に
示すように、高圧エアが供給される給気ポートP及び低
圧エアを排出する排気ポートTが形成されたケーシング
111を備える。このケーシング111は、その内部に
長手方向Xに変動可能に第1、第2弁112,113を
配し、第1弁112の背面側には可動鉄芯114を介し
ソレノイド115を対設している。ソレノイド115は
駆動電流相当の押圧力を可動鉄芯114に発生させるこ
とができ、可動鉄芯が第1弁112を介し第2弁113
を開弁変位させるとa部に隙間が生じ、給気ポートPよ
り空気ばね室4aに給気が成され、同時に空気ばね室4
a側の空気圧が第2弁113内を通して第1弁112に
加わる。ここで空気ばね室4a側の空気圧による押圧力
p1が可動鉄芯114からの押圧力p2を上回ると、第
1弁112が開作動し、b部に隙間が生じ、空気ばね室
4a側の空気が排気ポートT側に排除される。このよう
に第1弁112は互いに対向する押圧力p1と押圧力p
2とがバランスする位置に自動的に変位し、これに第2
弁116が連動するので、圧力センサ無しで空気ばね室
4aの空気圧をソレノイド115が発する駆動電流相当
の空気圧に自動的に調圧できる。
As shown in FIG. 5, the electropneumatic proportional constant pressure control valve 11a has a casing 111 having a supply port P to which high-pressure air is supplied and an exhaust port T to discharge low-pressure air. The casing 111 has first and second valves 112 and 113 disposed therein so as to be movable in the longitudinal direction X, and a solenoid 115 is provided on the back side of the first valve 112 via a movable iron core 114 to face the solenoid. I have. The solenoid 115 can generate a pressing force corresponding to the drive current on the movable iron core 114, and the movable iron core is connected to the second valve 113 via the first valve 112.
When the valve is displaced, a gap is generated in the portion a, and air is supplied from the air supply port P to the air spring chamber 4a.
The air pressure on the a side is applied to the first valve 112 through the second valve 113. Here, when the pressing force p1 due to the air pressure on the side of the air spring chamber 4a exceeds the pressing force p2 from the movable iron core 114, the first valve 112 is opened, and a gap is generated in a portion b, and the air on the side of the air spring chamber 4a is opened. Is removed to the exhaust port T side. As described above, the first valve 112 has the pressing force p1 and the pressing force p facing each other.
2 is automatically displaced to a position where
Since the valve 116 is interlocked, the air pressure in the air spring chamber 4a can be automatically adjusted to the air pressure corresponding to the drive current generated by the solenoid 115 without a pressure sensor.

【0015】前側左右サスペンションユニット2a,2
b側の電空比例定圧制御弁11a,11bはそれぞれの
給気ポートPが前給気連通路12を介し互いに連通さ
れ、しかも、この前給気連通路12は給気用開閉弁であ
る前給気弁13を介し給気路14に連通可能であり、給
気路14はリザーブタンクの高圧室7に連通する。前側
左右の電空比例定圧制御弁11a,11bの排気ポート
Tは前排気連通路15を介し互いに連通され、しかも、
この前排気連通路15は排気用開閉弁である前排気弁1
6を介し排気路17に連通可能であり、排気路17はリ
ザーブタンクの低圧室8に連通する。
Front left and right suspension units 2a, 2
The b-side electropneumatic proportional constant pressure control valves 11a and 11b have respective air supply ports P communicated with each other via a front air supply communication passage 12, and the front air supply communication passage 12 is a front air supply opening / closing valve. It can communicate with the air supply passage 14 via the air supply valve 13, and the air supply passage 14 communicates with the high-pressure chamber 7 of the reserve tank. The exhaust ports T of the front left and right electropneumatic proportional constant pressure control valves 11a and 11b communicate with each other through a front exhaust communication passage 15, and
The front exhaust communication path 15 is a front exhaust valve 1 which is an exhaust on-off valve.
The exhaust passage 17 can communicate with the low-pressure chamber 8 of the reserve tank via the air passage 6.

【0016】後側左右サスペンションユニット2c,2
d側の電空比例定圧制御弁11c,11dはそれぞれの
給気ポートPが後給気連通路18を介し互いに連通さ
れ、しかも、この後給気連通路18は給気用開閉弁であ
る後給気弁19を介し給気路14に連通可能である。後
側左右の電空比例定圧制御弁11c,11dの排気ポー
トTは後排気連通路20を介し互いに連通され、しか
も、この後排気連通路20は排気用開閉弁である後排気
弁21を介し排気路17に連通可能である。図1、図8
に示すように、前後左右の各空気ばね室4a,4b,4
c,4dは、それぞれ切換弁23を介しサブエアタンク
22と連通可能に構成される。ここで、切換弁23の閉
作動時には、空気ばね室4aの容量が小さく、同ばね室
の容積変化の応答性やばね定数を高く保持出来、切換弁
23の開作動時には、空気ばね室4aの容量が実質的に
増え、同ばね室の容積変化の応答性やばね定数を低く保
持できる。
Rear left and right suspension units 2c, 2
The d-side electropneumatic proportional constant pressure control valves 11c and 11d have their respective air supply ports P communicated with each other via a rear air supply communication passage 18, and the rear air supply communication passage 18 is a rear air supply opening / closing valve. It can communicate with the air supply passage 14 via the air supply valve 19. The exhaust ports T of the rear left and right electropneumatic proportional constant pressure control valves 11c and 11d communicate with each other via a rear exhaust communication passage 20, and the rear exhaust communication passage 20 is connected via a rear exhaust valve 21 which is an exhaust opening / closing valve. It can communicate with the exhaust path 17. 1 and 8
As shown in the figure, the front, rear, left and right air spring chambers 4a, 4b, 4
Each of c and 4d is configured to be able to communicate with the sub air tank 22 via the switching valve 23. Here, when the switching valve 23 is closed, the capacity of the air spring chamber 4a is small, and the response of the volume change of the spring chamber and the spring constant can be kept high. When the switching valve 23 is opened, the air spring chamber 4a is closed. The capacity is substantially increased, and the responsiveness of the volume change of the spring chamber and the spring constant can be kept low.

【0017】前後左右のサスペンションユニット2a,
2b、2c,2dはそれぞれ空気ばね室4a,4b,4
c,4dと共に緩衝器24を備える。例えば、図7、図
8に示すように、緩衝器24は空気ばね室4aの直下に
配備され、車体3と車輪5aの間隔変化を抑制し、車両
の乗り心地を改善させる。なお、緩衝器24は減衰力調
整アクチュエータ25(図8参照)を備え、この緩衝器
24の減衰力特性線図を図9に示した。ここで減衰力調
整アクチュエータ25が減衰力指令値Sdを正負両域で
増大させるほど、緩衝器24はその減衰力Dfを正(伸
側)、負(圧縮側)両域で連続的に増大させることがで
きる。なお、前後左右の減衰力調整アクチュエータ25
は後述のコントローラ30により、適時に駆動制御され
る。
The front, rear, left and right suspension units 2a,
2b, 2c and 2d are air spring chambers 4a, 4b and 4 respectively.
A buffer 24 is provided together with c and 4d. For example, as shown in FIGS. 7 and 8, the shock absorber 24 is provided immediately below the air spring chamber 4a, suppresses a change in the interval between the vehicle body 3 and the wheels 5a, and improves the riding comfort of the vehicle. Note that the shock absorber 24 includes a damping force adjusting actuator 25 (see FIG. 8), and a damping force characteristic diagram of the shock absorber 24 is shown in FIG. Here, as the damping force adjusting actuator 25 increases the damping force command value Sd in both the positive and negative ranges, the shock absorber 24 continuously increases the damping force Df in both the positive (extension side) and the negative (compression side) ranges. be able to. The front and rear and left and right damping force adjusting actuators 25 are used.
Is timely controlled by a controller 30 described later.

【0018】上述の前後左右のサスペンションユニット
2a,2b、2c,2dの各電空比例定圧制御弁11
a,11b,11c,11dと、前後給気弁13,19
と、前後排気弁16,21と、前後左右の切換弁23
と、前後左右の減衰力調整アクチュエータ25と、切換
弁27は後述のコントローラ30に駆動される。コント
ローラ30は、マイクロコンピュータからなる電子制御
手段であり、ハンドル角センサ31、車速センサ32、
横加速度センサ33、上下加速度センサ34、前後加速
度センサ35、車高センサ38より各検出値を取り込
み、しかも、車高モードスイッチ36及び悪路判定手段
37より各指示信号を取り込み、車高調整制御A1と、
ロール、ピッチング、バウンシング、ノーズダイブ、ノ
ーズアップ等を抑制する姿勢制御A2を行う。
Each of the electropneumatic proportional constant pressure control valves 11 of the above-mentioned front, rear, left and right suspension units 2a, 2b, 2c, 2d
a, 11b, 11c, 11d and front and rear air supply valves 13, 19
, Front and rear exhaust valves 16 and 21, front and rear left and right switching valves 23
The actuator 25 for adjusting the damping force in the front, rear, left and right directions and the switching valve 27 are driven by a controller 30 described later. The controller 30 is electronic control means composed of a microcomputer, and includes a steering wheel angle sensor 31, a vehicle speed sensor 32,
Each of the detected values is fetched from the lateral acceleration sensor 33, the vertical acceleration sensor 34, the longitudinal acceleration sensor 35, and the vehicle height sensor 38, and further, each of the instruction signals is fetched from the vehicle height mode switch 36 and the bad road determination means 37, thereby controlling the vehicle height adjustment. A1 and
Attitude control A2 for suppressing roll, pitching, bouncing, nose dive, nose up, and the like is performed.

【0019】ここで、図1には1輪のみの上下加速度セ
ンサ34を代表して示した。横加速度センサ33は車体
3に作用する実横加速度Gを検出し、上下加速度センサ
34は各車輪の部位での車体3に取付けられ、車体3の
上下加速度G1を検出し、前後加速度センサ35は車体
前部と後部での相対上下方向変化加速度(前後加速度)
G2を検出し、車高センサ38は車両中央の車高Hを検
出し、ハンドル角センサ31は自動車のステアリングハ
ンドル(図示しない)のハンドル角θhを検出し、車速
センサ32は自動車の走行速度、即ち、車速vcを検出
する。ここで、コントローラ30の行う車高調整制御A
1と姿勢制御A2の各機能を図2、図3に沿って説明す
る。
Here, FIG. 1 shows a vertical acceleration sensor 34 having only one wheel as a representative. The lateral acceleration sensor 33 detects the actual lateral acceleration G acting on the vehicle body 3, the vertical acceleration sensor 34 is attached to the vehicle body 3 at the position of each wheel, detects the vertical acceleration G1 of the vehicle body 3, and the longitudinal acceleration sensor 35 Relative vertical change acceleration (front-rear acceleration) at the front and rear of the vehicle
G2, the vehicle height sensor 38 detects the vehicle height H at the center of the vehicle, the steering wheel angle sensor 31 detects the steering wheel angle θh of the steering wheel (not shown) of the vehicle, the vehicle speed sensor 32 determines the running speed of the vehicle, That is, the vehicle speed vc is detected. Here, the vehicle height adjustment control A performed by the controller 30
1 and the functions of the attitude control A2 will be described with reference to FIGS.

【0020】図2の車高調整制御A1は、車高モードス
イッチ(図2中には車高モードSWと記す)36より基
準車高信号(図示せず)が入力されているとコントロー
ラ30が判断することで開始する。ここでは、車速vc
が設定された定常走行速度を上回ると判断すると設定低
車高を、上回らないと設定高車高を目標車高として設定
し、更に、悪路判定手段37より悪路判定信号Rが出力
されていなければ設定低車高を目標車高とし、出力され
ていると設定高車高を全ての速度域で設定する。更に、
車高センサ38の出力Hの外乱成分をローパスフィルタ
で排除して実車高H(実位置h)を求め、これと目標車
高相当の目標位置hoとの差dhを求め、この車高変化
量dhの比例成分である比例要素と積分により得た積分
要素を加算器40で加算し、この加算値に車高−エア圧
変換のための制御係数を乗算し、制御値であるサスペン
ションエア圧力(以後単にサスエア圧力)ps相当の電
流値inを求め、同電流値inで各電空比例定圧制御弁
11a,11b,11c,11dを駆動し、目標車高を
保持する。
In the vehicle height adjustment control A1 shown in FIG. 2, when a reference vehicle height signal (not shown) is input from a vehicle height mode switch (denoted as a vehicle height mode SW) 36 in FIG. Start by judging. Here, the vehicle speed vc
Is determined to be higher than the set steady traveling speed, the set low vehicle height is set as the target vehicle height otherwise, and the rough road determination signal R is output from the rough road determination means 37. If not, the set low vehicle height is set as the target vehicle height, and if output, the set high vehicle height is set in all speed ranges. Furthermore,
The disturbance component of the output H of the vehicle height sensor 38 is eliminated by a low-pass filter to determine the actual vehicle height H (the actual position h), and the difference dh between this and the target position ho corresponding to the target vehicle height is determined. The adder 40 adds a proportional element, which is a proportional component of dh, and an integral element obtained by integration, and multiplies the added value by a control coefficient for vehicle height-air pressure conversion to obtain a suspension air pressure (control value). Thereafter, a current value in equivalent to (suspension air pressure) ps is obtained, and each of the electropneumatic proportional constant pressure control valves 11a, 11b, 11c, 11d is driven with the current value in to maintain the target vehicle height.

【0021】なお、各電空比例定圧制御弁は、図6に示
すように、電流値iとサスエア圧力psが比例し(ヒス
テリシスeを持つ)、この値psを各空気ばね室4a,
4b,4c,4dに保持するように自動的に調圧作動で
き、この際、エア圧センサを必要としない。図3の姿勢
制御A2は車高モードスイッチ36より姿勢制御モード
信号(図示せず)が入力されているとコントローラ30
が判断することで開始する。なお、ここでは「スカイフ
ックダンパ制御」と「アンチダイブ、アンチスクワット
制御」と「ロール制御」の各機能を順次説明する。
As shown in FIG. 6, in each of the electropneumatic proportional constant pressure control valves, the current value i is proportional to the suspension air pressure ps (has a hysteresis e).
The pressure can be automatically adjusted so as to be maintained at 4b, 4c, and 4d without the need for an air pressure sensor. When the attitude control mode signal (not shown) is input from the vehicle height mode switch 36, the attitude control A2 in FIG.
Start by judging. Here, the functions of “Skyhook damper control”, “anti-dive / anti-squat control”, and “roll control” will be sequentially described.

【0022】上下加速度G1を用い上下振動(ピッチン
グ、バウンシング)を抑制する「スカイフックダンパ制
御」では、例えば、1つの車輪5aと組をなす上下加速
度センサ34から得た上下加速度G1を取り込む。ここ
での上下加速度G1値は外乱成分をローパスフィルタで
排除され、修正された上下加速度G1相当の比例要素が
算出され、上下加速度G1を積分して得た上下速度(積
分要素)が算出され、その上で両値の加算値に所定の制
御係数が乗算され、上下振動抑制のための制御値、即
ち、サスエア圧力相当の電流値in1を求める。
In the "sky hook damper control" for suppressing vertical vibration (pitching, bouncing) using the vertical acceleration G1, for example, the vertical acceleration G1 obtained from the vertical acceleration sensor 34 paired with one wheel 5a is taken. In the vertical acceleration G1 value, a disturbance component is removed by a low-pass filter, a proportional element equivalent to the corrected vertical acceleration G1 is calculated, and a vertical velocity (integral element) obtained by integrating the vertical acceleration G1 is calculated. Then, the sum of the two values is multiplied by a predetermined control coefficient to obtain a control value for suppressing vertical vibration, that is, a current value in1 corresponding to the suspension air pressure.

【0023】この電流値in1で各電空比例定圧制御弁
11a,11b,11c,11dを駆動した場合、ばね
上共振周波数近傍の振動低減効果を得ることができる。
なお、この「スカイフックダンパ制御」において、車体
の上下加速度G1に応じて位相進み補正を加え、補正し
た制御量(電流値)に基づき、各空気ばね室4a,4
b,4c,4dへの高圧エアの給排を制御するようにし
ても良く、即ち、「スカイフックダンパ制御」に「マス
インクリース制御」(特開平4ー95517号公報に開
示される)を加え、これによりばね上共振周波数以上の
周波数域での振動をも抑制するようにしても良い。
When each of the electropneumatic proportional constant pressure control valves 11a, 11b, 11c, 11d is driven at the current value in1, a vibration reducing effect near the sprung resonance frequency can be obtained.
In this “sky hook damper control”, a phase advance correction is applied according to the vertical acceleration G1 of the vehicle body, and the air spring chambers 4a, 4a are controlled based on the corrected control amount (current value).
The supply and discharge of high-pressure air to b, 4c, and 4d may be controlled, that is, “mass increase control” (disclosed in JP-A-4-95517) is included in “skyhook damper control”. In addition, this may suppress vibration in a frequency range equal to or higher than the sprung resonance frequency.

【0024】ノーズダイブ、ノーズアップを抑制する
「アンチダイブ、アンチスクワット制御」では、前後加
速度センサ35により車体前部と後部の上下方向の相対
変化加速度(前後加速度)G2を検出し、検出値の外乱
成分をローパスフィルタで排除した上で、修正された前
後加速度G2相当の比例要素が算出され、同値に所定の
制御係数が乗算され、車体前部と後部の上下方向の相対
変化加速度抑制のための制御値、即ち、サスエア圧力p
s相当の電流値in2を求める。この電流値in2で各
電空比例定圧制御弁11a,11b,11c,11dを
駆動した場合、車両の発進時のノーズダイブ及び制動時
のノーズアップを抑制することが出来る。ハンドル角θ
h、車速vc及び実横加速度Gを用いて行う「ロール制
御」を説明する。
In the "anti-dive and anti-squat control" for suppressing nose dive and nose-up, the longitudinal acceleration sensor 35 detects a relative change acceleration (front-rear acceleration) G2 between the front and rear of the vehicle body in the vertical direction. After eliminating the disturbance component with a low-pass filter, the corrected proportional element corresponding to the longitudinal acceleration G2 is calculated, and the same value is multiplied by a predetermined control coefficient to suppress the relative change acceleration in the vertical direction between the front part and the rear part of the vehicle body. , Ie, the suspension air pressure p
A current value in2 corresponding to s is obtained. When each of the electro-pneumatic proportional constant pressure control valves 11a, 11b, 11c, 11d is driven by the current value in2, it is possible to suppress a nose dive when the vehicle starts and a nose-up when braking. Handle angle θ
h, “roll control” performed using the vehicle speed vc and the actual lateral acceleration G will be described.

【0025】ここでは、横加速度センサ33から取り込
んだ実横加速度Gの外乱成分をローパスフィルタで排除
した上で、修正された実横加速度Gを減算器41に入力
する。更に、ハンドル角センサ31から取り込んだハン
ドル角θh及び車速センサ32から取り込んだ車速vc
に相当する計算横加速度G3を図示しない所定の横加速
度マップに基づき算出し、この計算横加速度G3より実
横加速度Gを減算器41において減算し、減算値dGを
求める。次いで、減算値dG相当のロール制御補正値k
rを図示しない変換マップを用いて算出し、そのロール
制御補正値krに所定の制御係数が乗算され、車体のロ
ール抑制のための制御値、即ち、旋回外側の車輪に対設
される空気ばね室(例えば4a)の調圧を行う電空比例
定圧制御弁(例えば11a)にサスエア圧力psを増圧
する電流値in3を、旋回内側の車輪に対設される空気
ばね室(例えば4b)の調圧を行う電空比例定圧制御弁
(例えば11b)にサスエア圧力psを減圧する電流値
in3’を出力することで、旋回時の車体3のロールを
防止し、車体3を水平に維持することができる。
Here, the disturbance component of the actual lateral acceleration G fetched from the lateral acceleration sensor 33 is eliminated by a low-pass filter, and the corrected actual lateral acceleration G is input to the subtractor 41. Further, the steering wheel angle θh captured from the steering wheel angle sensor 31 and the vehicle speed vc captured from the vehicle speed sensor 32
Is calculated based on a predetermined lateral acceleration map (not shown), and the subtractor 41 subtracts the actual lateral acceleration G from the calculated lateral acceleration G3 to obtain a subtraction value dG. Next, the roll control correction value k corresponding to the subtraction value dG
r is calculated using a conversion map (not shown), the roll control correction value kr is multiplied by a predetermined control coefficient, and a control value for suppressing the roll of the vehicle body, that is, an air spring provided for the wheel on the outside of the turn. A current value in3 for increasing the suspension air pressure ps is supplied to an electropneumatic proportional constant pressure control valve (for example, 11a) for regulating the pressure of the chamber (for example, 4a) by adjusting the air spring chamber (for example, 4b) provided to the wheel inside the turn. By outputting a current value in3 'for reducing the suspension air pressure ps to an electropneumatic proportional constant pressure control valve (for example, 11b) for performing pressure, it is possible to prevent the body 3 from rolling at the time of turning and maintain the body 3 horizontally. it can.

【0026】特に、ここで減算値dGが所定の旋回判定
値を上回った後設定時間Tnを経過すると、前後給気弁
13,19及び前後排気弁16,21を閉作動させる。
更に、ここでは、ハンドル角θhの変化値(微分値)d
θhが負に転じた際(時点t2参照)に、車両の旋回後
の直進走行復帰制御域を判定する。しかも、旋回外側輪
に対設される空気ばね室(例えば4a)の調圧を行う電
空比例定圧制御弁(例えば11a)に最大サスエア圧力
psを設定する電流値iMAXを出力する。同時に、旋回
内側輪に対設される空気ばね室(例えば4b)の調圧を
行う電空比例定圧制御弁(例えば11b)には通常のロ
ール復帰制御、即ち、サスエア圧力psを各時点で順次
増加できる電流値in3’を出力する。
In particular, when the set time Tn elapses after the subtraction value dG exceeds the predetermined turning determination value, the front and rear supply valves 13 and 19 and the front and rear exhaust valves 16 and 21 are closed.
Further, here, the change value (differential value) d of the steering wheel angle θh
When θh turns negative (see time point t2), a straight-line traveling return control area after turning of the vehicle is determined. In addition, a current value i MAX for setting the maximum suspension air pressure ps is output to an electropneumatic proportional constant pressure control valve (for example, 11a) for regulating the pressure of an air spring chamber (for example, 4a) provided opposite to the turning outer wheel. At the same time, a normal roll return control, that is, a suspension air pressure ps is sequentially applied at each time to an electro-pneumatic proportional constant pressure control valve (for example, 11b) for regulating the pressure of an air spring chamber (for example, 4b) provided to the turning inner wheel. A current value in3 ′ that can be increased is output.

【0027】このよう、「スカイフックダンパ制御」で
の電流値in1と、「アンチダイブ、アンチスクワット
制御」での電流値in2と、「ロール制御」での電流値
in3(in3’)とが求められ、その後、これらの値
は加算器42で加算され、その加算値in0で各電空比
例定圧制御弁11a,11b,11c,11dを駆動
し、各輪の空気ばね室4a,4b,4c,4dにそれぞ
れ加算値in0相当のサスエア圧力psを供給し、車両
の姿勢制御A2を行うことができる。なお、車両の姿勢
制御に際し、前後給気弁13,19及び前後排気弁1
6,21の判定処理が判定手段43により適時なされ、
各時点で所定の給排切換弁13,19,16,21が駆
動される。
As described above, the current value in1 in the "sky hook damper control", the current value in2 in the "anti-dive and anti-squat control", and the current value in3 (in3 ') in the "roll control" are obtained. Thereafter, these values are added by an adder 42, and the added value in0 drives each of the electropneumatic proportional constant pressure control valves 11a, 11b, 11c, 11d, and the air spring chambers 4a, 4b, 4c, The suspension air pressure ps corresponding to the added value in0 is supplied to each of the motors 4d, and the attitude control A2 of the vehicle can be performed. In controlling the attitude of the vehicle, the front and rear air supply valves 13 and 19 and the front and rear exhaust valves 1
6, 21 are determined by the determination means 43 as appropriate,
At each time point, a predetermined supply / discharge switching valve 13, 19, 16, 21 is driven.

【0028】ここでコントローラ30は、図示しないメ
インルーチンの実行途中で図10のサスペンション制御
を行い、しかも、所定時間dtの時間割込みにより図1
1の横加速度判定制御を実行する。ここで、サスペンシ
ョン制御及び横加速度判定制御を図10及び図11のフ
ローチャートを用いて説明する。
Here, the controller 30 performs the suspension control shown in FIG. 10 during the execution of a main routine (not shown), and furthermore, the controller 30 executes the suspension of FIG.
1 is executed. Here, the suspension control and the lateral acceleration determination control will be described with reference to the flowcharts of FIGS.

【0029】コントローラ30は、図示しないメインル
ーチンの実行途中で図10のサスペンション制御に達す
る。ステップs1ではロール制御域か否かをロール判定
フラグRFLGが「1」か否かで判断し、Yesでステ
ップs3にそうでないとステップs2に進む。なお、ロ
ール判定フラグRFLGは後述のステップa2〜a4
(横加速度判定ルーチン内)で切換えられる。ステップ
s3ではロール制御域のため前後の給排切換弁13,1
9,16,21を開いてステップs4に進み、ここで、
所定時間Tn(図4参照)の経過判定をし、経過前はス
テップs6で通常のロール制御処理を実行する。この場
合、後述の横加速度判定ルーチン(図11)内のステッ
プa10で算出済の最新の電流値in3(旋回外側の電
空比例定圧制御弁),in3’(旋回内側の電空比例定
圧制御弁)を取り込み、これにより各電空比例定圧制御
弁11a〜11dを駆動し、これにより、旋回時の車両
のロールを防止し、車体を水平に維持する。
The controller 30 reaches the suspension control shown in FIG. 10 during the execution of a main routine (not shown). In step s1, it is determined whether or not the roll is in the roll control area based on whether or not the roll determination flag RFLG is "1". If Yes, the flow proceeds to step s3. Note that the roll determination flag RFLG is set in steps a2 to a4 described later.
(In the lateral acceleration determination routine). In step s3, the front and rear supply / discharge switching valves 13, 1 for the roll control area are set.
Open 9, 16, 21 and proceed to step s4, where
The elapse of the predetermined time Tn (see FIG. 4) is determined, and before the elapse, a normal roll control process is executed in step s6. In this case, the latest current values in3 (in-turn outside electropneumatic proportional constant pressure control valve) and in3 '(inside turn electropneumatic proportional constant pressure control valve) calculated in step a10 in a lateral acceleration determination routine (FIG. 11) described later. ), Thereby driving each of the electropneumatic proportional constant pressure control valves 11a to 11d, thereby preventing the vehicle from rolling during turning and keeping the vehicle body horizontal.

【0030】一方、ステップs4で所定時間Tnを経過
したとの判定を時点t1(図4参照)で行い、ステップ
s5に進む。ここでは、実横加速度Gは戻り変化したか
否か判定し、即ち、旋回後の直進走行復帰制御に入った
か判定し、変化の無い間はステップs6で通常のロール
制御処理を継続し、時点t2で変化があると、ステップ
s7に進み、前後の給排切換弁13,19,16,21
を閉じてステップs8に進む。ここでは、旋回外輪の電
空比例定圧制御弁の電流値を最大値iMAX(設定値)に
設定し、旋回内側の電空比例定圧制御弁の電流値を通常
のロール戻し値in3’(ステップa10で算出された
最新値)に設定する。この後ステップs9で、これらの
値は対応する旋回外側の電空比例定圧制御弁に最大値i
MAXが、旋回内側の電空比例定圧制御弁に通常のロール
復帰制御用のサスエア圧力ps即ち、順次増加できる電
流値in3’が出力される。
On the other hand, it is determined at step s4 that the predetermined time Tn has elapsed at time t1 (see FIG. 4), and the process proceeds to step s5. Here, it is determined whether or not the actual lateral acceleration G has returned and changed, that is, it has been determined whether or not the control has returned to the straight running return control after turning. Unless there is no change, the normal roll control process is continued in step s6. If there is a change at t2, the process proceeds to step s7, where the front and rear supply / discharge switching valves 13, 19, 16, 21 are arranged.
Is closed and the process proceeds to step s8. Here, the current value of the electropneumatic proportional constant pressure control valve of the turning outer wheel is set to the maximum value i MAX (set value), and the current value of the electropneumatic proportional constant pressure control valve inside the turning is set to the normal roll return value in3 ′ (step (the latest value calculated in a10). Thereafter, in step s9, these values are set to the maximum value i by the corresponding electropneumatic proportional constant pressure control valve on the outside of the turn.
MAX outputs a normal roll return control suspension air pressure ps, that is, a current value in3 ′ that can be sequentially increased, to the electropneumatic proportional constant pressure control valve inside the turn.

【0031】これにより、旋回後の直進走行復帰制御に
入った時点t2で、旋回外側輪と旋回内側輪に対設され
る左右電空比例定圧制御弁の両給気ポートPが互いに前
後の給気連通路12,18を介し連通されており、旋回
外側の電空比例定圧制御弁が最大値iMAXに保持される
ので、同弁の給気ポートPより旋回内側の電空比例定圧
制御弁の給気ポートPに高圧エアが応答性良く、スムー
ズに移動し、しかもこの旋回内側の電空比例定圧制御弁
が通常のロール戻し値in3’の電流値で駆動されるの
で、旋回走行後より直進走行復帰制御への変化が滑らか
にショック無く行なわれる。特に、旋回外側の電空比例
定圧制御弁より高圧エアを旋回内側の電空比例定圧制御
弁の給気ポートP側に供給でき、高圧エアの無駄を排除
出来る。
As a result, at the time point t2 when the straight running return control after turning is started, the two air supply ports P of the left and right electropneumatic proportional constant pressure control valves provided for the turning outer wheel and the turning inner wheel are respectively connected to the front and rear supply ports. Killen is communicated with through passages 12 and 18, since the electro-pneumatic proportional pressure control valves of the turning outer is held at the maximum value i MAX, the valve air supply of the swirl inside the port P electropneumatic proportional pressure control valve The high-pressure air moves smoothly with good responsiveness to the air supply port P of the air supply port P, and the electro-pneumatic proportional constant pressure control valve inside the turn is driven by the current value of the normal roll return value in3 '. The change to straight running return control is performed smoothly and without shock. In particular, high pressure air can be supplied from the electropneumatic proportional constant pressure control valve on the outside of the turn to the air supply port P side of the electropneumatic proportional constant pressure control valve on the inside of the turn, and waste of the high pressure air can be eliminated.

【0032】一方、ステップs1でロール判定フラグR
FLGが「1」でないとしてステップs2に進むと、こ
こでは、悪路判定を行い、悪路判定手段37より悪路判
定信号Rが出力されているとステップs10にそうでな
いとステップs11に進む。ステップs10では悪路判
定信号Rに応じて、目標車高を設定高車高と設定し、全
車輪の電空比例定圧制御弁11a,11b,11c,1
1dを最大値iMAXで駆動し、メインルーチンに戻る。
On the other hand, at step s1, the roll determination flag R
If the process proceeds to step s2 assuming that FLG is not “1”, a bad road determination is made here, and if the bad road determination signal R is output from the bad road determination means 37, the process proceeds to step s10; otherwise, the process proceeds to step s11. In step s10, the target vehicle height is set to a set high vehicle height in accordance with the rough road determination signal R, and the electropneumatic proportional constant pressure control valves 11a, 11b, 11c, 1
1d was driven at the maximum value i MAX, returns to the main routine.

【0033】悪路ではなくステップs11,s12に達
すると、前後給気弁13,19及び前後排気弁16,2
1を共に開き、その他の「スカイフックダンパ制御」や
「アンチダイブ、アンチスクワット制御」を実行し、メ
インルーチンに戻る。図11の計算横加速度判定ルーチ
ンにdt毎の時間割込みで達すると、先ず、ステップa
1で、現在の横加速度Gn、ハンドル角θh、車速vc
を取り込み、ハンドル角θh、車速vcより計算横加速
度G3を算出する。ステップa2では、車速vcが走行
判定値vαを上回り、ハンドル角θhが旋回判定値θα
を上回るロール制御域か否かの判定をし、ロール制御域
でないとステップa4でロール判定フラグRFLGをオ
フしてステップa7に進み、ロール制御域ではステップ
a3に進む。
When the vehicle reaches the steps s11 and s12 instead of the rough road, the front and rear supply valves 13, 19 and the front and rear exhaust valves 16, 2
1 together, execute other "sky hook damper control" and "anti-dive and anti-squat control", and return to the main routine. When the calculation lateral acceleration determination routine of FIG. 11 is reached by a time interruption every dt, first, step a
1, the current lateral acceleration Gn, steering wheel angle θh, vehicle speed vc
And the calculated lateral acceleration G3 is calculated from the steering wheel angle θh and the vehicle speed vc. In step a2, the vehicle speed vc exceeds the traveling determination value vα, and the steering wheel angle θh becomes the turning determination value θα.
It is determined whether or not the roll control area exceeds the roll control area. If the roll control area is not the roll control area, the roll determination flag RFLG is turned off in step a4, and the process proceeds to step a7. In the roll control area, the process proceeds to step a3.

【0034】ステップa3ではロール判定フラグRFL
Gを「1」とし、ステップa5で現在の計算横加速度G
3がロール判定値Gαを上回るか否か判定し、下回る間
はステップa7に進み、上回るとステップa6に進む。
ロール制御域でないとしてステップa7に達すると、こ
こでは前後左右の各切換弁23を開き、その他の「スカ
イフックダンパ制御」や「アンチダイブ、アンチスクワ
ット制御」に備え、メインルーチンに戻る。
In step a3, the roll determination flag RFL
G is set to “1”, and in step a5, the current calculated lateral acceleration G
It is determined whether or not 3 exceeds the roll determination value Gα, and while it is below the roll determination value Gα, the process proceeds to step a7.
When step a7 is reached as it is not in the roll control area, the front, rear, left and right switching valves 23 are opened, and the process returns to the main routine in preparation for other “sky hook damper control” and “anti-dive / anti-squat control”.

【0035】一方、時点t0(図4参照)でロール制御
域を判定し、ステップa6に達すると、前後左右の各切
換弁23を閉じ、ロール制御の応答性を高める処理をす
る。ステップa8,a9では計算横加速度G3より実横
加速度Gを減算し、減算値dGを求め、次いで、減算値
dG相当のロール制御補正値krを算出する。更に、ス
テップa10では、ロール制御補正値krに制御係数β
1が乗算され、車体のロール抑制のための制御値、即
ち、旋回外側の電空比例定圧制御弁の電流値in3と、
旋回内側の電空比例定圧制御弁の電流値in3’が算出
され、これら値はステップs6等で使用されるべく所定
の記憶エリアにストアされ、図示しないメインルーチン
に戻る。
On the other hand, at time t0 (see FIG. 4), the roll control area is determined. When the flow reaches step a6, the front, rear, left and right switching valves 23 are closed to perform processing for increasing the responsiveness of the roll control. In steps a8 and a9, the actual lateral acceleration G is subtracted from the calculated lateral acceleration G3 to obtain a subtraction value dG, and then a roll control correction value kr corresponding to the subtraction value dG is calculated. Further, in step a10, the control coefficient β is added to the roll control correction value kr.
1 is multiplied by a control value for suppressing the roll of the vehicle body, that is, the current value in3 of the electropneumatic proportional constant pressure control valve on the outside of the turn,
The current value in3 'of the electropneumatic proportional constant pressure control valve inside the turn is calculated, these values are stored in a predetermined storage area to be used in step s6 and the like, and the process returns to the main routine (not shown).

【0036】このような図1のアクティブサスペンショ
ン装置では、前後給気弁13,19及び前後排気弁1
6,21が閉じられた車高保持の運転域では、前後左右
の電空比例定圧制御弁112側の空気ばね室4a,4
b,4c,4dの高圧エアがドレーン側に漏れることを
完全に防止でき、ドレーン側に漏れる高圧エアを補給す
るという補給処理の必要がなく、エネルギ消費が少ない
という利点がある。
In the active suspension system shown in FIG. 1, the front and rear supply valves 13 and 19 and the front and rear exhaust valves 1
In the driving range in which the vehicle height is maintained in a closed state, the air spring chambers 4a, 4a on the side of the electropneumatic proportional constant pressure control valve 112 on the front, rear, left and right sides.
The high-pressure air of b, 4c, and 4d can be completely prevented from leaking to the drain side, and there is no need for a replenishment process of replenishing the high-pressure air leaking to the drain side, and there is an advantage that energy consumption is small.

【0037】更に、旋回後の直進走行復帰制御域を判定
した時点で、前後それぞれにおいて、旋回外側輪と旋回
内側輪に対設される左右電空比例定圧制御弁の両給気ポ
ートPが互いに前後給気連通路12,18を介し連通さ
れ、旋回外側の電空比例定圧制御弁が最大値iMAXに保
持されると、同弁の給気ポートPより旋回内側の電空比
例定圧制御弁の給気ポートPに高圧エアが応答性良くス
ムーズに移動し、しかも旋回内側の電空比例定圧制御弁
が通常のロール戻し値in3’の電流値で駆動されるの
で、高圧空気の移動が滑らかになされ、旋回後の直進走
行復帰制御を違和感やショック無く行える。しかも、旋
回外側の電空比例定圧制御弁より高圧エアを旋回内側の
電空比例定圧制御弁の給気ポートP側に供給でき、高圧
エアの無駄を排除出来る。
Further, at the time when the straight traveling return control area after the turn is determined, both the air supply ports P of the left and right electropneumatic proportional constant pressure control valves provided for the front and rear outer wheels and the inner wheel for the front and rear, respectively, are determined. communicates via a longitudinal feed Killen passages 12 and 18, the electro-pneumatic turning outer proportional the constant pressure control valve is held at the maximum value i MAX, the valve air supply of the swirl inside the port P electropneumatic proportional pressure control valve High-pressure air smoothly moves to the air supply port P with good responsiveness, and the electro-pneumatic proportional constant-pressure control valve inside the turn is driven with the current value of the normal roll return value in3 ', so that the high-pressure air moves smoothly. Thus, the straight running return control after turning can be performed without discomfort or shock. Moreover, high-pressure air can be supplied from the electropneumatic proportional constant pressure control valve on the outside of the turn to the air supply port P side of the electropneumatic proportional constant pressure control valve on the inside of the turn, so that waste of high-pressure air can be eliminated.

【0038】[0038]

【発明の効果】以上のように、請求項1の発明は、車両
が旋回後の直進走行復帰時に、給気用開閉弁が電空比例
定圧制御弁の給気ポートより給気側連通路側を閉じ、排
気用開閉弁が電空比例定圧制御弁の排気ポートより排気
側連通路側を閉じるので、車体左右の各空気バネ室より
高圧空気がもれることを確実に防止した上で、左右空気
バネ室を連通させ等圧化できる。
As described above, according to the first aspect of the present invention, when the vehicle returns straight ahead after turning, the air supply on-off valve is closer to the air supply side communication passage than the air supply port of the electropneumatic proportional constant pressure control valve. And the exhaust on-off valve closes the exhaust-side communication passage from the exhaust port of the electropneumatic proportional constant-pressure control valve, so that high-pressure air is prevented from leaking from the air spring chambers on the left and right sides of the vehicle. The air spring chamber can communicate to make the pressure equal .

【0039】特に、旋回外側の流体圧室を調圧する電空
比例定圧制御弁を最大サスペンション圧相当の電流値で
駆動するので、左右流体圧室間の流路抵抗を十分に低減
でき、旋回外側の空気バネ室の高圧空気が給気側連通路
を経て旋回内側の空気バネ室に応答性よく流入でき、し
かも、車両の旋回走行時には電空比例定圧制御弁が各空
気バネ室のサスペンション圧を電流値相当圧となるよう
に自動調圧でき、ロール制御の容易化を図れる。このた
め、左右空気バネ室を応答性良く等圧化でき、スムーズ
に旋回後の直進走行に戻れる。
In particular, since the electropneumatic proportional constant pressure control valve for regulating the fluid pressure chamber on the outside of the swivel is driven with a current value corresponding to the maximum suspension pressure, the flow path resistance between the left and right fluid pressure chambers can be reduced sufficiently, and The high-pressure air in the air spring chamber can flow responsively into the air spring chamber inside the swirl through the air supply side communication passage ,
When the vehicle turns, the electropneumatic proportional constant pressure control valve
Adjust the suspension pressure of the air spring chamber to the current equivalent pressure.
Pressure can be automatically adjusted to facilitate roll control. For this reason, the left and right air spring chambers can be made equal in pressure with good responsiveness, and the vehicle can return to straight running after turning smoothly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の適用されたアクティブサスペンション
装置の全体構成図である。
FIG. 1 is an overall configuration diagram of an active suspension device to which the present invention is applied.

【図2】図1のアクティブサスペンション装置のコント
ローラが行う車高調整制御の機能ブロック図である。
FIG. 2 is a functional block diagram of vehicle height adjustment control performed by a controller of the active suspension device of FIG. 1;

【図3】図1のアクティブサスペンション装置のコント
ローラが行う姿勢制御の機能ブロック図である。
FIG. 3 is a functional block diagram of attitude control performed by a controller of the active suspension device of FIG. 1;

【図4】図1のアクティブサスペンション装置のコント
ローラが行うロール制御のタイミングチャートである。
FIG. 4 is a timing chart of roll control performed by a controller of the active suspension device of FIG. 1;

【図5】図1のアクティブサスペンション装置が用い
る、電空比例定圧制御弁の拡大断面図である。
FIG. 5 is an enlarged sectional view of an electropneumatic proportional constant pressure control valve used by the active suspension device of FIG. 1;

【図6】図5の電空比例定圧制御弁の電流値ー圧力値特
性線図である。
FIG. 6 is a current-pressure characteristic diagram of the electropneumatic proportional constant pressure control valve of FIG. 5;

【図7】図1のアクティブサスペンション装置が装着さ
れた車両の前部の概略図である。
FIG. 7 is a schematic view of a front portion of a vehicle equipped with the active suspension device of FIG. 1;

【図8】図1のアクティブサスペンション装置が用いる
サスペンションユニットの用部拡大断面図である。
FIG. 8 is an enlarged sectional view of a portion of a suspension unit used in the active suspension device of FIG. 1;

【図9】図8のサスペンションユニットの減衰力特性線
図である。
FIG. 9 is a damping force characteristic diagram of the suspension unit of FIG. 8;

【図10】図1のアクティブサスペンション装置のコン
トローラが行うサスペンション制御ルーチンのフローチ
ャートである。
FIG. 10 is a flowchart of a suspension control routine performed by a controller of the active suspension device of FIG. 1;

【図11】図1のアクティブサスペンション装置のコン
トローラが行う計算横加速度判定ルーチンのフローチャ
ートである。
FIG. 11 is a flowchart of a calculated lateral acceleration determination routine performed by a controller of the active suspension device of FIG. 1;

【図12】従来のアクティブサスペンション装置の機能
説明図である。
FIG. 12 is a functional explanatory view of a conventional active suspension device.

【符号の説明】[Explanation of symbols]

2a 前側左サスペンションユニット 2b 前側右サスペンションユニット 2c 後側左サスペンションユニット 2d 後側右サスペンションユニット 6 リザーブタンク 7 給気手段 8 排気手段 11a 電空比例定圧制御弁 11b 電空比例定圧制御弁 11c 電空比例定圧制御弁 11d 電空比例定圧制御弁 12 前給気連通路 13 前給気弁 14 給気路 15 前排気連通路 16 前排気弁 17 排気路 18 後給気連通路 19 後給気弁 20 後排気連通路 21 後排気弁 30 コントローラ G3 計算横加速度 G 実横加速度 P 給気ポート T 排気ポート 2a Front left suspension unit 2b Front right suspension unit 2c Rear left suspension unit 2d Rear right suspension unit 6 Reserve tank 7 Air supply means 8 Exhaust means 11a Electropneumatic proportional constant pressure control valve 11b Electropneumatic proportional constant pressure control valve 11c Electropneumatic proportional Constant pressure control valve 11d Electro-pneumatic proportional constant pressure control valve 12 Front air supply passage 13 Front air supply valve 14 Air supply passage 15 Front exhaust communication passage 16 Front exhaust valve 17 Exhaust passage 18 Rear air supply communication passage 19 Rear air supply valve 20 Rear Exhaust communication passage 21 Rear exhaust valve 30 Controller G3 Calculated lateral acceleration G Actual lateral acceleration P Supply port T Exhaust port

フロントページの続き (56)参考文献 特開 昭62−83211(JP,A) 実開 昭61−62604(JP,U) (58)調査した分野(Int.Cl.7,DB名) B60G 17/015 B60G 17/056 B60G 17/052 Continuation of the front page (56) References JP-A-62-28311 (JP, A) JP-A-61-6264 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B60G 17 / 015 B60G 17/056 B60G 17/052

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】車体と各車輪との間にそれぞれ介装され、
容積可変の空気バネ室を有したサスペンションユニット
と、上記各空気バネ室を調圧する圧力制御弁と、車体左
右の各空気バネ室を調圧する左右圧力制御弁の給気ポー
トを互いに連通する給気側連通路と、車体左右の各空気
バネ室を調圧する左右圧力制御弁の排気ポートを互いに
連通する排気側連通路と、上記給気側連通路を介し左右
の各空気バネ室に高圧空気を供給する給気手段と、上記
排気側連通路を介し左右の各空気バネ室の空気を排出す
る排気手段と、上記車両の旋回時は、旋回外側の空気バ
ネ室に高圧空気を供給し、旋回内側の空気バネ室から高
圧空気を排出して車体のロール量を低減すべく上記各圧
力制御弁を制御する制御手段とを具備するアクティブサ
スペンション装置において、 上記圧力制御弁を上記空気バネ室のサスペンション圧が
電流値相当圧となるように自動調圧できる電空比例定圧
制御弁で形成し、 上記給気側連通路と上記給気手段の間に給気用開閉弁を
設け、上記排気側連通路と上記排気手段の間に排気用開
閉弁を設け、 上記制御手段が上記車両の旋回後の直進走行復帰時に上
記給気用及び排気用の両開閉弁を共に閉状態に保持した
上で上記旋回外側の空気バネ室を調圧する電空比例定圧
制御弁を最大サスペンション圧相当の電流値で駆動する
ことを特徴とするアクティブサスペンション装置。
Claims: 1. A vehicle is provided between a vehicle body and each wheel.
A suspension unit having a variable volume air spring chamber, a pressure control valve for adjusting the pressure of each of the air spring chambers, and an air supply communicating the air supply ports of the left and right pressure control valves for adjusting the respective air spring chambers on the left and right sides of the vehicle. High-pressure air to the left and right air spring chambers through the side communication path, the exhaust side communication path communicating the exhaust ports of the left and right pressure control valves for regulating the left and right air spring chambers of the vehicle body with each other, and the air supply side communication path. Air supply means for supplying, exhaust means for discharging air in each of the left and right air spring chambers via the exhaust side communication passage, and when the vehicle turns, high-pressure air is supplied to the air spring chamber on the outside of the turn to turn the vehicle. Control means for controlling each of the pressure control valves so as to reduce the roll amount of the vehicle body by discharging high-pressure air from an inner air spring chamber, wherein the pressure control valve is suspended from the air spring chamber. Formed by an electropneumatic proportional constant pressure control valve that can automatically regulate the pressure so that the pressure becomes a current value equivalent pressure, an air supply opening / closing valve is provided between the air supply side communication passage and the air supply means, and the exhaust side An exhaust on-off valve is provided between the communication passage and the exhaust means, and the control means holds both the air supply and exhaust on-off valves in a closed state when the vehicle returns to straight running after turning .
Electro-pneumatic proportional constant pressure that regulates the air spring chamber outside the above turning
Drive the control valve with a current value equivalent to the maximum suspension pressure
Active suspension device, characterized in that.
JP06429497A 1997-03-18 1997-03-18 Active suspension device Expired - Fee Related JP3334547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06429497A JP3334547B2 (en) 1997-03-18 1997-03-18 Active suspension device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06429497A JP3334547B2 (en) 1997-03-18 1997-03-18 Active suspension device

Publications (2)

Publication Number Publication Date
JPH10258628A JPH10258628A (en) 1998-09-29
JP3334547B2 true JP3334547B2 (en) 2002-10-15

Family

ID=13254086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06429497A Expired - Fee Related JP3334547B2 (en) 1997-03-18 1997-03-18 Active suspension device

Country Status (1)

Country Link
JP (1) JP3334547B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211443A (en) * 2014-06-09 2014-11-13 三菱重工業株式会社 Separator for high frequency component and low frequency component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178227A (en) * 2010-02-26 2011-09-15 Equos Research Co Ltd Control device for vehicle
JP6338995B2 (en) * 2014-09-30 2018-06-06 日立オートモティブシステムズ株式会社 Air suspension device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211443A (en) * 2014-06-09 2014-11-13 三菱重工業株式会社 Separator for high frequency component and low frequency component

Also Published As

Publication number Publication date
JPH10258628A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
JP2528955B2 (en) Vehicle power drift control device
JPH0365413A (en) Suspension controller
JP3196494B2 (en) Suspension control device
JP3124629B2 (en) Vehicle suspension device
JP3334547B2 (en) Active suspension device
JPH04108018A (en) Electronically controlled fluid pressure suspension
JP3061841B2 (en) Vehicle attitude control device
JPH05278429A (en) Lateral acceleration detecting method for vehicle and active suspension device using such method
JP2699639B2 (en) Active suspension
JP2874425B2 (en) Active suspension system for vehicles
JP2941838B2 (en) Suspension pressure control device
JP2619047B2 (en) Suspension pressure control device
JP2758424B2 (en) Suspension pressure control device
JPH07186663A (en) Active type suspension
JP2509326B2 (en) Active suspension
JP2529378B2 (en) Suspension pressure controller
JP2846012B2 (en) Vehicle suspension device
JP2846011B2 (en) Vehicle suspension device
JPH08142627A (en) Suspension control device
JPH04108017A (en) Electronically controlled fluid pressure suspension
JP2903365B2 (en) Control device for electronically controlled air suspension vehicle
JPH0123846Y2 (en)
JP2941839B2 (en) Suspension pressure control device
JPH02151513A (en) Active suspension for vehicle
JPH0699711A (en) Actuation control method for fluid active suspension

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020702

LAPS Cancellation because of no payment of annual fees