JPH0195465A - Closed type lead battery - Google Patents

Closed type lead battery

Info

Publication number
JPH0195465A
JPH0195465A JP62251818A JP25181887A JPH0195465A JP H0195465 A JPH0195465 A JP H0195465A JP 62251818 A JP62251818 A JP 62251818A JP 25181887 A JP25181887 A JP 25181887A JP H0195465 A JPH0195465 A JP H0195465A
Authority
JP
Japan
Prior art keywords
glass fiber
fiber mat
less
electrolyte
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62251818A
Other languages
Japanese (ja)
Inventor
Eiji Okamoto
英治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP62251818A priority Critical patent/JPH0195465A/en
Publication of JPH0195465A publication Critical patent/JPH0195465A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve discharge performance at high efficiency of a gel type battery by contacting a glass fiber mat, whose average fiber is less than 10mu in length and which is excellent in solution absorbing ability, with a positive electrode plate. CONSTITUTION:A separator 5, which united a micro-porous substance 3 consisting of synthetic resin and a glass fiber met 4 whose average fiber is less than 10mu, is put between a positive and a negative electrode plates 1, 2. In case that the glass fiber mat 4 whose average fiber is less than 10mu and which is excellent in solution absorbing ability is contacted with the positive electrode 1 like this, the glass fiber mat 4 immediately absorbs and solidify free electrolyte which is generated by gel broken by the physical impetus of oxygen gas. Hereby, SiO2 addition amount can be decreased without generating fluid which may cause leakage solution, and it becomes possible to sharply improve high efficiency discharge capacity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式t!Xi蓄電池の改良、特に低率および
高率放電性能のすぐれた密閉式鉛蓄電池に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a closed type T! This invention relates to improvements in Xi storage batteries, particularly sealed lead-acid batteries with superior low rate and high rate discharge performance.

従来の技術とその問題°点 密閉式鉛Tt′rc池では無漏液化のために、電解液を
非流動化している。現在、電解液を非流動化する方式と
して、電解液に無水ケイ酸などを添加してゲル化する方
式(ゲル式電池)と吸液性にすぐれたガラス繊維マット
を隔離体に用いて正・負極板および隔離体に電解液を保
持させる方式(リテーナ式電池)とが用いられている。
Conventional techniques and their problems In closed type lead Tt'rc ponds, the electrolyte is made non-fluidized in order to prevent leakage. Currently, there are two methods to make the electrolyte non-fluid: one is to add silicic acid anhydride to the electrolyte and turn it into a gel (gel type battery), and the other is to use a glass fiber mat with excellent liquid absorption as a separator. A method (retainer type battery) is used in which the electrolyte is held in the negative electrode plate and the separator (retainer type battery).

リテーナ式電池は、電解液量を正・負極板および隔離体
への吸収、保持限fi ffi以下とする必要があるの
で電解液量によって制限される低率放電容量が小さいこ
とと、隔離体として用いるガラス繊維マットが高価であ
るという欠点があった。
Retainer type batteries have a small low rate discharge capacity limited by the amount of electrolyte because the amount of electrolyte needs to be below the absorption and retention limit fi ffi in the positive and negative electrode plates and separator. The disadvantage is that the glass fiber mat used is expensive.

一方、ゲル式電池では電解液自身がゲル化によって非流
動化されているために、正・負極板および隔離体への吸
収、保持限度量以上の電解′a吊とすることができるの
で低率放電容ffiはすぐれているが、電解液がゲル化
されているため電解液中の1iiII酸イオンの拡散i
!瓜が遅く、硫酸イオンの拡散速度によってvj限され
る?′!i字放電容吊が劣っている。
On the other hand, in gel-type batteries, the electrolyte itself is non-fluid due to gelation, so it can be absorbed into the positive and negative electrode plates and the separator, and the electrolysis rate can be increased to more than the retention limit. The discharge capacity ffi is excellent, but because the electrolyte is gelled, the diffusion of 1iiiIII acid ions in the electrolyte is
! Melon is slow and vj is limited by the diffusion rate of sulfate ions? ′! I-shaped discharge capacity is poor.

このゲル式電池で高率放電容量を改善するには無水ケイ
酸などのゲル化剤の添加旦を少なくして電解液中の硫酸
イオンが拡散しやすくすればよいが、ゲル化剤の添加伍
を少なくすると、過充電中に正極板より発生する酸素ガ
スの物理的刺激によってゲルがこわれて電解液が′1r
LIIIltシ、この遊離した電解液が流動液となって
漏液の原因となるので、ゲル化剤の添加岱を少なくする
ことは困難であった。
In order to improve the high rate discharge capacity of this gel type battery, it is possible to reduce the amount of time gelling agents such as silicic anhydride are added to make it easier for sulfate ions in the electrolyte to diffuse. If the amount is decreased, the gel will be broken due to the physical stimulation of oxygen gas generated from the positive electrode plate during overcharging, and the electrolyte will be
However, since this liberated electrolyte becomes a flowing liquid and causes leakage, it has been difficult to reduce the amount of gelling agent added.

問題点を解決するための手段 本発明はこのような欠点を除去するもので、電解液を無
水ケイ酸などでゲル化させた密閉式鉛蓄電池において、
平均4HN径10μ以下の吸液性にすぐれたガラス繊維
マットを正極板に当接させ、別の多孔体を負極板に当接
させることによって、ゲル式電池の高率放電性能を改善
し、低率および高率放電性能のすぐれた密閉式鉛蓄電池
の製造を可能とするものである。
Means for Solving the Problems The present invention aims to eliminate these drawbacks, and provides a sealed lead-acid battery in which the electrolyte is gelled with anhydrous silicic acid or the like.
By bringing a highly absorbent glass fiber mat with an average 4HN diameter of 10μ or less into contact with the positive electrode plate and another porous material into contact with the negative electrode plate, the high rate discharge performance of the gel type battery can be improved and the low This makes it possible to manufacture sealed lead-acid batteries with excellent rate and high rate discharge performance.

実施例 以下、本発明密閉式鉛蓄電池を実施例により詳細に説明
する。
EXAMPLES Hereinafter, the sealed lead-acid battery of the present invention will be explained in detail with reference to examples.

第1図は本発明電池に用いる極板群の各構成要素を配列
順に示す斜視図であり、1は正極板、2は負極板である
。正・負極板1,2間には合成樹脂よりなる微孔性多孔
体3と平均繊維径5μのガラス繊維マット4とを重ね合
わせた隔離体5が挿入されている。
FIG. 1 is a perspective view showing the constituent elements of the electrode plate group used in the battery of the present invention in the order in which they are arranged; 1 is a positive electrode plate, and 2 is a negative electrode plate. A separator 5 is inserted between the positive and negative electrode plates 1 and 2, in which a microporous body 3 made of synthetic resin and a glass fiber mat 4 having an average fiber diameter of 5 μm are superimposed.

負極板に合成樹脂またはセルロースよりなる微孔性多孔
体を、正極板に平均繊維径がそれぞれ20μ、10μ、
5μのガラス繊維マットを当接させて極板群を組み立て
、種々の5I02′a度で電解液をゲル化させた密閉式
鉛蓄電池を試作し、低率(20hR)および高率(1h
R)放電試験と過充電試験(0,05Cx10h )と
を行い、その放電容量と過充電後のセル当りの流動液量
を求めた。その結果を第1表に示す。なお、セル当りの
全電解液間は60 m兄とした。
The negative electrode plate is made of a microporous material made of synthetic resin or cellulose, and the positive electrode plate is made of a microporous material with an average fiber diameter of 20μ and 10μ, respectively.
Prototype sealed lead-acid batteries were fabricated by assembling electrode plates by bringing 5μ glass fiber mats into contact with each other and gelling the electrolyte at various 5I02'a degrees.
R) A discharge test and an overcharge test (0.05C x 10h) were conducted, and the discharge capacity and the amount of flowing liquid per cell after overcharge were determined. The results are shown in Table 1. Note that the total distance between the electrolytes per cell was 60 m.

第1表から明らかなように、ゲル式電池で5I02添加
口を少なくすると低率放電容量、高率放電容量のいずれ
も改善されるが、特に高率放電容量が大きく改善される
ことがわかる。
As is clear from Table 1, reducing the number of 5I02 addition ports in a gel type battery improves both the low rate discharge capacity and the high rate discharge capacity, but it can be seen that the high rate discharge capacity in particular is greatly improved.

しかし、S+02添加吊を少なくすると過充電時に正極
板より発生する酸素ガスの物理的刺激によってゲルがこ
われて遊M電解液が生じ、従来品(No、1〜3)のよ
うに吸液性の乏しいガラス繊維マット(平均U&維径2
0μ)を使用している場合にはこのy71離電解液が流
動液としてセル内に残り、漏液の原因となるので510
2添加量を少なくすることができない。ところが、本発
明品(No。
However, if the amount of S+02 added is reduced, the gel will be broken due to the physical stimulation of oxygen gas generated from the positive electrode plate during overcharging, and a free M electrolyte will be generated, resulting in a liquid-absorbing property like that of conventional products (Nos. 1 to 3). Poor glass fiber mat (average U & fiber diameter 2
0μ), this y71 electrolyte remains in the cell as a flowing liquid and causes leakage, so 510
2. It is not possible to reduce the amount added. However, the product of the present invention (No.

5〜7)のように平均繊1g1oμ以下の吸)12性の
すぐれたガラス繊維マットを正極板に当接させた場合に
は酸素ガスの物理的刺激によってゲルがこわれて生じた
Mf&電解液をガラス繊維マットがただちに吸収して非
流動化するために、漏液の原因となる流動液を生じさせ
ることなしにsl 02添加量を少なくでき、高率放電
容量を大幅に改善づることが可能となる。
When a glass fiber mat with excellent adhesion properties of less than 1g1oμ as in 5-7) is brought into contact with the positive electrode plate, the gel is broken by the physical stimulation of oxygen gas and the resulting Mf & electrolyte are released. Since the glass fiber mat immediately absorbs and becomes non-fluid, the amount of SL02 added can be reduced without creating a flowing liquid that causes leakage, making it possible to significantly improve high rate discharge capacity. Become.

なお、密閉式鉛蓄電池の場合、通常の使用状態では負極
板から水素ガスが全く発生しないか、発生してもごく微
量であるので、水素ガスの物理的刺激によってゲルがこ
われてyr11!It電解液を生じることはほとんどな
い。したがって負1少1反1こ1九1IIIな吸液性に
すぐれたガラス繊維マットを当接させる必要はなく、安
価な合成81脂をセルロースよりなる微孔性多孔体を当
接させれば充分である。
In the case of a sealed lead-acid battery, under normal usage conditions, no hydrogen gas is generated from the negative electrode plate, or even if it is generated, it is only a very small amount, so the physical stimulation of the hydrogen gas can cause the gel to break down and cause yr11! It rarely produces an It electrolyte. Therefore, there is no need to contact a glass fiber mat with excellent liquid absorption properties, and it is sufficient to contact a microporous material made of cellulose with inexpensive synthetic 81 fat. It is.

上述したように、電解液を無水ケイ酸などでゲル化させ
、平均、俄N径10μ以下のガラス繊維マットと主とし
て合成樹脂あるいはセルロースよりなる微孔性7孔体と
を重ね合わせた隔離体を用いた本発明品は、無水ケイ酸
などのゲル化剤の添加量を少なくした時に、正極板より
発生する酸素ガスの物理的刺激によってゲルがこわれて
生じる′t11!1液を正極板に当接されたガラス繊維
マットがただちに吸収・保持して非流動化することによ
り、漏液の原因となる流動液を生じさせることなくゲル
化剤の添加量を少なくすることができ、その結果、低率
および高率放電合間共にすぐれた密閉式鉛蓄電池の製)
青が可能となった。
As mentioned above, the electrolyte is gelled with anhydrous silicic acid, etc., and a separator is formed by laminating a glass fiber mat with an average N diameter of 10μ or less and a microporous 7-pore body mainly made of synthetic resin or cellulose. In the product of the present invention used, when the amount of gelling agent such as silicic anhydride is reduced, the gel is broken by the physical stimulation of oxygen gas generated from the positive electrode plate, and the 't11!1 liquid is applied to the positive electrode plate. The glass fiber mat that comes in contact with it immediately absorbs and retains it and becomes non-fluid, making it possible to reduce the amount of gelling agent added without creating a flowing liquid that can cause leakage. (Made of sealed lead-acid battery with excellent rate and high rate discharge interval)
Blue is now available.

発明の効果 本発明は、低率および高率放電容最共にすぐれた無漏液
の密閉式鉛蓄電池の製造に6効であり、その■末的II
!Ii値が非常に大である。
Effects of the Invention The present invention has six effects on manufacturing a leak-free sealed lead-acid battery with the best low-rate and high-rate discharge capacity, and its final point II.
! The Ii value is very large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池に用いる極板群の各構成要素を配列
順に示す斜視図である。 1・・・正極板、2・・・負極板、3・・・微孔性多孔
体、4・・・ガラス繊維マット、5・・・隔離体第1図
FIG. 1 is a perspective view showing the respective constituent elements of the electrode plate group used in the battery of the present invention in the order in which they are arranged. DESCRIPTION OF SYMBOLS 1... Positive electrode plate, 2... Negative electrode plate, 3... Microporous porous body, 4... Glass fiber mat, 5... Separator Figure 1

Claims (1)

【特許請求の範囲】 1、電解液を無水ケイ酸などでゲル化させた密閉式鉛蓄
電池において、平均繊維径10μ以下のガラス繊維マッ
トと多孔体とを重ね合わせた隔離体を用いることを特徴
とする密閉式鉛蓄電池。 2、多孔体が主として合成樹脂よりなる微孔性多孔体で
ある特許請求の範囲第1項記載の密閉式鉛蓄電池。 3、多孔体が主としてセルロースよりなる微孔性多孔体
である特許請求の範囲第1項記載の密閉式鉛蓄電池。
[Claims] 1. A sealed lead-acid battery in which the electrolyte is gelled with anhydrous silicic acid, etc., characterized in that a separator is used in which a glass fiber mat with an average fiber diameter of 10 μm or less and a porous body are superimposed. A sealed lead-acid battery. 2. The sealed lead-acid battery according to claim 1, wherein the porous body is a microporous body mainly made of synthetic resin. 3. The sealed lead-acid battery according to claim 1, wherein the porous body is a microporous body mainly composed of cellulose.
JP62251818A 1987-10-06 1987-10-06 Closed type lead battery Pending JPH0195465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62251818A JPH0195465A (en) 1987-10-06 1987-10-06 Closed type lead battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251818A JPH0195465A (en) 1987-10-06 1987-10-06 Closed type lead battery

Publications (1)

Publication Number Publication Date
JPH0195465A true JPH0195465A (en) 1989-04-13

Family

ID=17228374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251818A Pending JPH0195465A (en) 1987-10-06 1987-10-06 Closed type lead battery

Country Status (1)

Country Link
JP (1) JPH0195465A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175175A (en) * 1987-12-28 1989-07-11 Shin Kobe Electric Mach Co Ltd Sealed type lead-acid battery
US5300991A (en) * 1992-04-14 1994-04-05 Konica Corporation Image forming apparatus with toner replenisher
US7682738B2 (en) 2002-02-07 2010-03-23 Kvg Technologies, Inc. Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators and method for producing it
JP2017168239A (en) * 2016-03-15 2017-09-21 株式会社Gsユアサ Control valve type lead storage battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266929A (en) * 1975-12-01 1977-06-02 Yuasa Battery Co Ltd Method of producing lead battery separator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266929A (en) * 1975-12-01 1977-06-02 Yuasa Battery Co Ltd Method of producing lead battery separator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175175A (en) * 1987-12-28 1989-07-11 Shin Kobe Electric Mach Co Ltd Sealed type lead-acid battery
US5300991A (en) * 1992-04-14 1994-04-05 Konica Corporation Image forming apparatus with toner replenisher
US7682738B2 (en) 2002-02-07 2010-03-23 Kvg Technologies, Inc. Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators and method for producing it
JP2017168239A (en) * 2016-03-15 2017-09-21 株式会社Gsユアサ Control valve type lead storage battery

Similar Documents

Publication Publication Date Title
JPH0195465A (en) Closed type lead battery
JPS61267274A (en) Enclosed lead storage battery
JP2571063B2 (en) Manufacturing method of sealed lead-acid battery
JPS5826778B2 (en) lead acid battery
JPS5630270A (en) Sealed type lead storage battery
JPH02236963A (en) Sealed lead-acid battery
JPH07320771A (en) Sealed lead-acid battery
JPS5882472A (en) Lead storage battery and manufacture thereof
JPS6445070A (en) Sealed lead-acid battery
JPH0750602B2 (en) Lead acid battery
JPS62262366A (en) Lead storage battery
JPH02165570A (en) Closed lead battery
JPS61179061A (en) Enclosed type lead storage battery
JP2552353B2 (en) Sealed secondary battery
JPS5986165A (en) Manufacture of enclosed lead storage battery
JPS5927451A (en) Enclosed lead storage battery
JPS58201270A (en) Lead-acid battery
JP2855677B2 (en) Sealed lead-acid battery
JPH04118853A (en) Separator for lead storage battery
JPS63146350A (en) Separator for enclosed lead storage battery
JPH04118854A (en) Gel type lead storage battery
JPH0432158A (en) Closed lead acid battery
JPS62115659A (en) Sealed lead-acid battery
JPS59184457A (en) Formation of sealed lead storage battery
JPS6231953A (en) Lead-acid battery