JPH05198310A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH05198310A
JPH05198310A JP4031483A JP3148392A JPH05198310A JP H05198310 A JPH05198310 A JP H05198310A JP 4031483 A JP4031483 A JP 4031483A JP 3148392 A JP3148392 A JP 3148392A JP H05198310 A JPH05198310 A JP H05198310A
Authority
JP
Japan
Prior art keywords
inorganic powder
battery
acid battery
holding
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4031483A
Other languages
Japanese (ja)
Inventor
Akiyoshi Kimura
彰良 木村
Masaaki Shiomi
塩見  正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP4031483A priority Critical patent/JPH05198310A/en
Publication of JPH05198310A publication Critical patent/JPH05198310A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • H01M10/10Immobilising of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a sealed lead-acid battery excellent discharging performance at a low with manufacturing cost. CONSTITUTION:A sealed lead-acid battery has a positive plate, a negative plate, an interpole holding member for holding a space between both the positive and the negative poles, and an inorganic powder body such as grain-shape silica for impregnating the electrolyte. The interpole holding member is made of fiber mat-shape or sponge-shape porous body, which has continuous cavities, having a hole diameter larger than 110% of the mean grain diameter of the inorganic powder body, and the inorganic powder body is filled in the blank holes of the interpole holding body and the surrounding of the plate group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、密閉式鉛蓄電池、特に
その極間保持方法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead acid battery, and more particularly to an improvement in a method for holding the gap between electrodes.

【0002】[0002]

【従来の技術とその課題】電池の充電中に、正極から発
生する酸素ガスを負極板で再結合させる密閉式鉛蓄電池
の一つに、顆粒状シリカを電池内に充填し、極板及びセ
パレータおよび顆粒シリカに電解液を含浸保持させた顆
粒式密閉電池があるが、この電池は、エレメントの周囲
の顆粒シリカに電解液を保持できるので、従来の極板と
極板の間に電解液保持材である微細ガラス繊維からなる
セパレータ(以後、ガラスセパレータと呼ぶ)を挿入し
たリテーナ式よりも液量を多く保持でき、その結果、低
率放電容量が多いという長所を持っている。また電解液
保持体である顆粒シリカは、ガラスセパレータに比べ
て、非常に安価であるという長所もある。
2. Description of the Related Art One of the sealed lead-acid batteries in which oxygen gas generated from the positive electrode is recombined at the negative electrode plate during charging of the battery is filled with granular silica into the electrode plate and separator. Also, there is a granular sealed battery in which granular silica is impregnated with an electrolytic solution and held.Since this battery can hold the electrolytic solution in the granular silica around the element, an electrolytic solution holding material is used between the conventional electrode plates. It has a merit that it can retain a larger amount of liquid than a retainer type in which a separator made of a certain fine glass fiber (hereinafter referred to as a glass separator) is inserted, and as a result, it has a large low rate discharge capacity. Further, granular silica, which is an electrolyte solution holder, has an advantage that it is extremely inexpensive as compared with a glass separator.

【0003】一方、電解液をシリカ微粒子によってコロ
イド状にして非流動化するゲル式に比べると顆粒シリカ
中の硫酸の移動速度は、ゲル中よりも大きいため、顆粒
式の高率放電容量は、ゲル式よりも多いという長所を持
っている。更に、この電池は、顆粒がセパレータの機能
を果たすために、原理的には、セパレータを使用する必
要がない。しかし、電池を組み立てる際に、極間距離を
一定に保つために、波形に加工したセパレータや、突起
を付けたセパレータを使用する必要があり、そのため、
コストも高くなるという問題点を持っていた。
On the other hand, as compared with the gel system in which the electrolytic solution is made into a non-fluidized state by colloidal silica fine particles, the migration rate of sulfuric acid in the granular silica is higher than in the gel system, so that the high discharge capacity of the granular system It has the advantage of more than the gel type. Furthermore, this cell does not, in principle, require the use of a separator, since the granules act as a separator. However, when assembling the battery, in order to keep the distance between the electrodes constant, it is necessary to use a corrugated separator or a separator with protrusions.
It had the problem of high costs.

【0004】[0004]

【課題を解決するための手段】本発明は、上述した問題
を解決し、安価で、かつ放電性能や寿命性能の優れた密
閉式鉛蓄電池を提供するもので、その要旨は、正極板と
負極板との間に極間保持体として、充填する顆粒シリカ
等の無機粉体の平均粒子径の110%よりも大きな孔径
を持った繊維マット状あるいは連続気泡を有するスポン
ジ状の多孔体を使用することにある。すなわちこのよう
な多孔体を用いて製作した極板群を電槽に収納した後、
顆粒状のシリカ等の無機粉体を電池内に充填すると、極
間保持体の中にも無機粉体が充填されるため、セパレー
タを使用することなく、性能の優れた密閉式鉛電池を提
供することができる。
The present invention solves the above-mentioned problems and provides an inexpensive sealed lead-acid battery excellent in discharge performance and life performance, the gist of which is a positive electrode plate and a negative electrode. A fiber mat-like or sponge-like porous material having open cells having a pore size larger than 110% of the average particle size of the inorganic powder such as granular silica to be filled is used as an interelectrode holder between the plate and the plate. Especially. That is, after accommodating an electrode plate group manufactured using such a porous body in a battery case,
When a granular inorganic powder such as silica is filled in the battery, the inorganic powder is also filled in the interelectrode holder, providing a sealed lead battery with excellent performance without using a separator. can do.

【0005】[0005]

【実施例】以下、本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described below based on examples.

【0006】Pb−Ca−Sn合金よりなる正極および
負極格子体に、通常の正極および負極ペーストをそれぞ
れ充填したあと、熟成をして、未化成極板を作製した。
この未化成の正、負極板の間に、厚さ約1. 3mmのガ
ラスマットを挿入して、正極板3枚と負極板4枚で構成
される極板群を製作した後、極間距離が、1mmの間隔
に保たれるように極板群を圧迫しながら、これを電槽に
挿入した。
[0006] A positive electrode and a negative electrode grid made of a Pb-Ca-Sn alloy were filled with ordinary positive electrode and negative electrode pastes, respectively, and then aged to prepare an unformed electrode plate.
After a glass mat having a thickness of about 1.3 mm was inserted between the unformed positive and negative plates to make a plate group consisting of three positive plates and four negative plates, the distance between the electrodes was changed to This was inserted into the battery case while pressing the electrode plate group so as to keep the interval of 1 mm.

【0007】ガラスマットとしては、平均孔径が、約2
0μm(電池A),40μm(電池B),60μm(電
池C),80μm(電池D)および100μm(電池
E)のものを使用した。このあと、電池内に50〜60
μmの粒子径の顆粒シリカを振動を加えるなどして、密
に充填した。その後、公知の手順を経て、比重1.30
0の密閉電池とした。なお、比較のために、エンボス状
に加工した、合成樹脂セパレータを用いた顆粒式電池
(電池F)も合わせて製作した。
The glass mat has an average pore size of about 2
Those of 0 μm (battery A), 40 μm (battery B), 60 μm (battery C), 80 μm (battery D) and 100 μm (battery E) were used. After this, in the battery 50-60
Granular silica having a particle size of μm was packed tightly by applying vibration. Then, through a known procedure, a specific gravity of 1.30
The sealed battery was 0. For comparison, a granular battery (battery F) processed into an embossed shape and using a synthetic resin separator was also manufactured.

【0008】図1に極間保持体の平均孔径と放電容量の
関係を示す。放電電流は5. 4A(0. 2CA)であ
る。図から明らかなように、顆粒シリカの平均孔径の約
110%未満の孔径を持ったガラスマットを用いた場合
は、従来のエンボスセパレータを用いて極間を保持させ
た電池に比べて、放電容量が少ない。一方、60μmよ
りも大きな孔径を持ったガラスマットを極間保持体に使
用した電池の放電容量は、従来の電池よりも10%程度
多くなった。
FIG. 1 shows the relationship between the average pore size of the interelectrode holder and the discharge capacity. The discharge current is 5.4 A (0.2 CA). As is clear from the figure, when a glass mat having a pore diameter of less than about 110% of the average pore diameter of the granular silica is used, the discharge capacity is higher than that of a battery in which the gap is maintained by using a conventional embossed separator. Less is. On the other hand, the discharge capacity of the battery using the glass mat having the pore diameter larger than 60 μm as the interelectrode holder was about 10% higher than that of the conventional battery.

【0009】この理由を明らかにするため、容量試験
後、電池を解体して調べたところ、前者のガラスマット
中には、顆粒シリカがほとんど充填されていなかった。
容量が従来の電池に比べて少なかったのは、このためと
思われる。これに対し、後者のガラスマットを極間保持
体に用いた電池は、ガラスマット中に顆粒シリカが密に
充填されていた。更にこの電池では、セパレータを使用
していないので、内部抵抗が小さかった。
In order to clarify the reason for this, after the capacity test, the battery was disassembled and examined. As a result, the former glass mat was hardly filled with granular silica.
This is probably the reason why the capacity was smaller than that of conventional batteries. On the other hand, in the battery using the latter glass mat as the interelectrode holder, the glass mat was densely packed with granular silica. Furthermore, since no separator was used in this battery, the internal resistance was small.

【0010】このように、顆粒シリカの平均粒子径の1
10%よりも大きな孔径のガラスマットを極間保持体に
用いれば、使用する顆粒シリカが、ガラスマット中に密
に充填され、そこに電解液を多く保持できる。更にセパ
レータを使用していないので、電池の内部抵抗を従来の
顆粒式電池よりも小さくできるなどの長所があり、放電
容量や、サイクル寿命性能が従来の顆粒式電池よりも向
上する。
Thus, the average particle size of the granular silica is 1
When a glass mat having a pore size of more than 10% is used for the interelectrode support, the granular silica used is densely packed in the glass mat, and a large amount of electrolyte can be retained therein. Further, since no separator is used, there is an advantage that the internal resistance of the battery can be made smaller than that of the conventional granular battery, and the discharge capacity and the cycle life performance are improved as compared with the conventional granular battery.

【0011】なお、本試験では、顆粒の粒子径が50〜
60μmのものを用いたが、実際に使用する顆粒シリカ
の孔径が、50〜60μmより大きくても、小さくても
使用するガラスマットの孔径との関係は同様であった。
また極間保持体には、材質として、ガラスマットを使用
したが、本発明の目的からも分かるように材質はガラス
に限られるものではなく、耐酸性の樹脂繊維からなる多
孔体を用いても、本発明の効果は変わらない。
In this test, the particle size of the granules is 50 to 50.
Although the one having a particle size of 60 μm was used, the relationship with the hole size of the glass mat used was similar regardless of whether the pore size of the granular silica actually used was larger or smaller than 50 to 60 μm.
Although a glass mat was used as the material for the inter-electrode holder, the material is not limited to glass as can be seen from the object of the present invention, and a porous body made of acid-resistant resin fiber may be used. The effect of the present invention does not change.

【0012】また、上記の実施例では電解液を含浸保持
するための無機粉体として顆粒状シリカを用い、極間保
持体としてガラスマット状の多孔体を用いた例を示した
が、シリカ以外の無機粉体を用い、連続気泡を有するス
ポンジ状の多孔体を用いても、同様の効果が得られる。
Further, in the above-mentioned embodiment, an example is shown in which granular silica is used as the inorganic powder for impregnating and holding the electrolytic solution and a glass mat-like porous body is used as the interelectrode holder. The same effect can be obtained by using the above inorganic powder and using a sponge-like porous body having open cells.

【0013】[0013]

【発明の効果】上述の例から明らかなように、本発明に
よる密閉式鉛蓄電池は、顆粒シリカ等の無機粉体の平均
粒子径よりも大きな孔径を持った極間保持体を極間に挿
入して、極間を一定に保つと同時に、無機粉体が、極間
保持体中に充填される事によって、極板と極板との間に
電解液を充分に保持する事ができる。またこのような極
間保持体を使用するとセパレータが不要になるため、従
来の顆粒式電池の性能を改善できるとともに、製造コス
トも大幅に低減でき、その工業的価値は、非常に大き
い。
As is apparent from the above examples, in the sealed lead acid battery according to the present invention, the interelectrode holder having the pore size larger than the average particle size of the inorganic powder such as granular silica is inserted between the electrodes. Then, the gap between the electrodes is kept constant, and at the same time, the inorganic powder is filled in the interelectrode holder, so that the electrolytic solution can be sufficiently retained between the electrode plates. Further, when such an electrode holder is used, a separator is not required, so that the performance of the conventional granular battery can be improved and the manufacturing cost can be greatly reduced, and its industrial value is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】極間保持体の平均孔径と放電容量の関係を示し
た図
FIG. 1 is a diagram showing the relationship between the average pore size of a gap holder and the discharge capacity.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極板と負極板と、正負両極板間隔を保
持するための極間保持体と、電解液を含浸保持するため
の、顆粒状のシリカ等の無機粉体とからなる密閉式鉛蓄
電池であって、 前記極間保持体は前記無機粉体の平均粒子径の110%
よりも大きな孔径を持った、繊維マット状あるいは連続
気泡を有するスポンジ状の多孔体であり、 前記無機粉体は前記極間保持体の空孔内および極板群周
囲に充填されてなる密閉式鉛蓄電池。
1. A closed type comprising a positive electrode plate, a negative electrode plate, an interelectrode holding member for holding a space between the positive and negative electrode plates, and an inorganic powder such as granular silica for impregnating and holding an electrolytic solution. A lead acid battery, wherein the inter-electrode holder is 110% of the average particle size of the inorganic powder.
It is a sponge-like porous body having a pore size larger than that of the fiber mat or continuous cells, and the inorganic powder is filled in the pores of the inter-electrode holder and around the electrode plate group. Lead acid battery.
JP4031483A 1992-01-21 1992-01-21 Sealed lead-acid battery Pending JPH05198310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4031483A JPH05198310A (en) 1992-01-21 1992-01-21 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4031483A JPH05198310A (en) 1992-01-21 1992-01-21 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH05198310A true JPH05198310A (en) 1993-08-06

Family

ID=12332520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4031483A Pending JPH05198310A (en) 1992-01-21 1992-01-21 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH05198310A (en)

Similar Documents

Publication Publication Date Title
KR101951453B1 (en) Battery, battery plate assembly, and method of assembly
JPH042060A (en) Sealed type lead acid battery
JPH05198310A (en) Sealed lead-acid battery
JPH06260208A (en) Sealed lead-acid battery
JPH06295718A (en) Lead-acid battery separator
JPS6030063A (en) Sealed type lead-acid battery
JP3261417B2 (en) Sealed lead-acid battery
JP2958791B2 (en) Sealed lead-acid battery
JP2855677B2 (en) Sealed lead-acid battery
JPS59169081A (en) High temperature type battery
JPH0693367B2 (en) Sealed lead acid battery
JPS59169075A (en) High temperature type battery
JP3482671B2 (en) Sealed lead-acid battery
JP2794588B2 (en) Sealed lead-acid battery
JP2958790B2 (en) Sealed lead-acid battery
JPS61250968A (en) Sealed lead-acid battery
JP3266918B2 (en) Sealed lead-acid battery
JPH02158062A (en) Sealed lead-storage battery
JPH06150961A (en) Sealed lead-acid battery
JP2002343412A (en) Seal type lead-acid battery
JPH0676854A (en) Sealed lead-acid battery
JPH02158063A (en) Sealed lead-storage battery
JPS62170173A (en) Sealed lead-acid battery
JPH05151988A (en) Sealed type lead acid battery
JPH07122289A (en) Sealed lead-acid battery