JPH0334211A - Metal paste and manufacture thereof - Google Patents

Metal paste and manufacture thereof

Info

Publication number
JPH0334211A
JPH0334211A JP16346089A JP16346089A JPH0334211A JP H0334211 A JPH0334211 A JP H0334211A JP 16346089 A JP16346089 A JP 16346089A JP 16346089 A JP16346089 A JP 16346089A JP H0334211 A JPH0334211 A JP H0334211A
Authority
JP
Japan
Prior art keywords
metal
copper
paste
particles
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16346089A
Other languages
Japanese (ja)
Other versions
JP2561537B2 (en
Inventor
Kazuhiro Watanabe
一弘 渡辺
Michihiro Oshima
大嶋 道広
Kazuhiro Setoguchi
瀬戸口 和宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU YAKIN KK
Original Assignee
SHINKU YAKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU YAKIN KK filed Critical SHINKU YAKIN KK
Publication of JPH0334211A publication Critical patent/JPH0334211A/en
Application granted granted Critical
Publication of JP2561537B2 publication Critical patent/JP2561537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance uniform dispersion by using metal superfine particles with less than a specified particle size in an organic solvent. CONSTITUTION:Valves (hereinafter referred to as V) 3, 4 are closed, and exhaust is conducted from V5 to make an evaporating chamber 1 and a recovering chamber 2 into reduced pressure. Helium gas is introduced from V3 to continue the exhaust from V5, alpha-terpineol vapor 10 is introduced from V4, and copper 6 in a crucible 6 is heated by a high frequency induction heating device 8 to generate a copper vapor 9, which is then carried from the chamber 1 to the chamber 2 and concentrated therein, forming copper superfine particles. They are mixed with a steam 10 and deposited as copper superfine particles 12 stabilized on a cooling plate 22 cooled to a low temperature by a coolant 13. The used metal is at least one metal of copper, indium, tin, titanium, gold, silver, nickel, zinc, tantalum, chromium, tungsten, palladium, platinum, iron, cobalt, and silicate, or alloys thereof. The size of the precipitated metal particles, which is controlled by pressure of the inert gas, metal vapor pressure, and evaporation temperature, is preferably less than 1000Angstrom . Hence, a metal paste uniformly dispersed at a high density can be obtained.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明はIC基板などの多層配線、透明導電膜の形成、
金属とセラミックとの接合などに用い・られる金属ペー
スト及びその製造方法に関する。 〔従来の技術〕 上述の金属ペーストに用いられる金属超微粒子の製法と
して、減圧した不活性ガス雰囲気中で金属を蒸発させ、
冷却部上に粒径1000λ以下の超微粒子として回収す
るガス中蒸発法がよく知られている。 従来の金属ペーストの製造方法は、例えば上述のガス中
蒸発法により作製した金属の超微粒子を大気中に取り出
し、それを有機溶媒と混合するというものである。すな
わち5第7図を参照して説明すると、蒸発室(11中の
るつぼ(6)を加熱してるつぼ(6)内の金属(7)を
蒸発させ、それを回収室(2+ に導入して冷却剤(1
3)によって低温に保たれた冷却板又はフィルタ(11
)の上に金属超微粒子(12)として回収する。この金
属超微粒子(12)を大気中に取り出し、有機溶媒と混
合して金属ペーストとするのである。 〔発明が解決しようとする問題点〕 しかしながら従来法によって製造された金属ペーストで
は、金属超微粒子の製造過程で粒子同士がくっついて凝
集やチェーン状化が生じ、又、粒子表面が酸化したり、
汚染されたりしているため、有e!廂媒と混合する時に
分散性が悪い。又、粒子が個々に離れていないため、ペ
ースト中の金属超微粒子の密度が低くなる。 金属ペーストを、例えばIC基板などの多層配線に用い
る場合には微細でかつ均一な導電性を有するパターンを
形成する必要がある。しかし、従来の金属ペーストを用
いた場合には、チェーン状化した粒子があったりして分
散性が悪いために、微細パターンの形成が良くなく、又
導電性が均一にならないことがある。さらに、金属ペー
ストの配線を焼結処理する際に、粒子表面が酸化してい
るため高温を必要とする。あるいは又2ペースト中の粒
子密度が低いために、焼結後に縮みや割れが生じ、この
点でも導電性の均一性が悪くなる。 本発明は以上のような従来の金属ペーストの持つ問題点
を解消し、金属超微粒子が凝集やチェーン状化せずに均
一に分散され、又、表面酸化や汚染のない金属ペースト
及びその製造方法を提供することを目的としている。 [問題点を解決するための手段] 前記目的を達成するため、本発明の金属ペーストは、有
機溶媒中に粒径1000Å以下の金属超微粒子を個々に
均一分散せしめたことを特徴とする。 また本発明の金属ペーストの製造方法は、真空室中でか
つ不活性ガスの圧力をLOTorr以下とする雰囲気の
もとで金属を蒸発させ、蒸発した金属蒸気を冷却面上に
粒径1000Å以下の超微粒子として回収する方法にお
いて2前記金属を蒸発させると共に前記真空室に有機溶
媒の蒸気を導入することを特徴とする。 本発明で用いる金属としては、金属ペーストの用途によ
って銀、金、ニッケル、インジウム、錫、亜鉛、チタン
、銅、クロム、タンタル、タングステン、パラジウム、
白金、鉄、コバルト、ケイ素等のうち少なくとも1種の
金属又はこれら金属の合金が挙げられる。 又本発明で用いる有機溶媒としては、炭素数5以上のア
ルコール類(例えばテルピネオール、シトロネロール、
ゲラニオール5ネロール、フェネチルアルコール〉の1
種以上を含有する溶媒又は有機エステル類(例えば酢酸
エチル、オレイン酸メチル、酢酸ブチル、グリセリド)
の1種以上を含有する溶媒であれば良く、使用する金属
又は金属ペーストの用途によって適宜選択できる。なお
、有機溶媒中に必要に応じて適当な有機物を添加しても
良い。 [作   用] 以上のように構成される金属ペーストは、例えばIC基
板などの多層配線に用いられた時には導電性の均一な微
細パターンを形成することができ、又配線の焼結処理が
低温で可能となる。 又金属ペーストの製造方法においては、不活性ガス雰囲
気のもとで金属超微粒子を生成すると共に有機溶媒でそ
の表面を覆うため、金属超微粒子同士がチェーン化する
ことなく、又金属超微粒子の表面が酸化されることもな
い。 [実 施 例] 以下、実施例について図面を参照して説明する。 (第1実施例) 第1図は本発明の第1実施例の金属ペーストを製造する
装置の断面模式図である。 バルブ(3)及びバルブ(4)を閉じた状態でバルブ(
5)から真空ポンプ(図示せず)で排気し、蒸発室(り
及び回収室f2)の圧力を1O−6Torrまで下げた
。次いでバルブ (3)を開いてヘリウムガスを蒸発室
(上)に導入しながらバルブ(5)からの排気を続け、
内部をヘリウムガス圧l Torrに保った。バルブ(
4)を開いてα−テルピネオールの蒸気(lO)を回収
室(,71に導入しながら、蒸発室(41中に設置した
るつぼ(6)内の銅(Cu) (7)を高周波誘導加熱
装置(8)で加熱して銅蒸気(9)を発生させた。銅蒸
気(9)は排気の流れに従って蒸発室(りから回収室(
旦)へと移送され、この流れの中で銅蒸気は凝縮して銅
超微粒子となり、回収室(2)でα−テルピネオール蒸
気(lO)と混合されて、冷却剤(13)によって低温
に保たれた冷却板(11)上に、α−テルピネオールの
薄い膜(14)で覆われて安定化した銅超微粒子(12
)となって沈積した。これを回収して透過電子SJ微鏡
で観察したところ、銅の粒子は凝集やチェーン状化して
おらず、α−テルピネオール中に孤立して良く分散して
いる。これは銅超微粒子がa−テルピネオール蒸気とよ
く混合されるため、粒子同士が接合する前にα−テルピ
ネオールで膜状に包まれてしまうためと思われる。得ら
れた透過電子顕微鏡写真を第2A図に示す。 この写真かられかるように、銅超微粒子はチェーン状化
していないだけでなく溶媒中に孤立して高密度に分散し
ている。粒子の形状は球形でよくそろっており1粒径は
平均200Åである。 比較のために、α−テルピネオール蒸気を導入しない従
来法によって得られた銅超微粒子を大気中に回収し、α
−テルピネオールと混合して金属ペーストを作製した。 この比較試料を同様に透過電子顕微鏡で観察した顕微鏡
写真を第2B図に示す。この写真かられかるように、銅
粒子はほとんど全部がチェーン状に接合しており、全体
としての分散密度が低い上に、その分散は非常に不均一
である。 本実施例の方法及び従来法によって作製した銅ペースト
を用いて、各々、アルミナ基板上に3μm幅の配線パタ
ーンを形成し、窒素ガス雰囲気中で焼結を行った。その
配線の比抵抗の焼結温度に対する変化を第3図に示す。 焼結温度400℃以下では本発明のペーストの方が比抵
抗が高いが、これは個々の銅粒子が溶媒で包まれて孤立
しているためと思われる。焼結温度がさらに高くなると
、従来ペーストによるものは比抵抗は少しずつしか低下
しないが、本発明のペーストでは400℃から急激に低
下し、ペースト中の銅粒子の緻密化、焼結が急速に進ん
だことを示している。これはペースト中にもともと銅粒
子が高密度に存在している上に、チェーン状の粒子がな
いので焼結による緻密化が速く進むこと、さらに各粒子
表面が酸化されていないため低温で焼結が始まることに
よるものと思われる。 従って、この第3図から、従来ペーストでは800℃ま
で焼結温度を上げる必要があったものが1本実施例の銅
ペーストでは500℃で充分であることがわかる。 又、本実施例のペーストでは焼結後も縮みや割れが生じ
なかった。 (第2実施例) 第1実施例と同じ装置を用い、ヘリウム圧力0 、5T
orrの条件下でインジウム(In)を蒸発させ、有機
溶媒としてオレイン酸メチル蒸気を導入してインジウム
ペーストを作製した。さらに同一条件でインジウムの代
りに錫(Snlを用いて錫ペーストを作成した。ペース
ト中の金属粒子の平均粒径はそれぞれ100 Aと70
人であった。 これらのインジウムペーストと錫ペーストとを重量比で
95対5の割合で混合したものを、ガラス基板上に5μ
m厚さで塗布し、大気中で焼結して透明電導膜を得た。 本実施例によるペーストと、従来法によるインジウム−
錫ペーストの両方について、焼結温度に対する光透過率
と電気抵抗率とを測定した結果を第4A図、第4B図に
示す。これらの図から明らかなように、本実施例による
ペーストを用いた膜は従来のものより光透過率、導電率
ともに良好である。又、本実施例による膜は従来のもの
より緻密であり、ピンホールやクラックもなかった。 (第3実施例) 第1実施例と同じ装置を用い、ヘリウム圧力0 、8T
orrの条件下でチタン(Tilを蒸発させ、有機溶媒
として酢酸ブチル蒸気を導入して、チタンペーストを作
製した。ペースト中のチタン粒子の平均粒径は約120
 Aであった。このチタンペースト(17)を第5A図
に示すように安定化ジルコニア(15)とステンレス(
16)との間に挿入して焼結し、接合した。従来法によ
るチタンペーストを用いて同様に安定化ジルコニアとス
テンレス棒とを接合したものと、本実施例による接合と
について、接合温度に対する接合ペーストの引張強度を
測定した結果を第5B図に示す。この図から明らかなよ
うに、本実施例によるペーストを用いた時には強い接合
強度が得られる。 (第4実施例) 第1実施例と同じ装置を用い、ヘリウム圧力0、5To
rrの条件下でtli(Ag)を蒸発させ、有機溶媒と
してリノール酸グリセリド、リノ−ル酸グリセリド及び
オレイン酸グリセリドの混合蒸気を導入して銀ペースト
を作製した。前記、有機溶媒の混合蒸気は各々別容器に
いれて加熱し、所定の蒸気量となるように液温を調節し
、これを加熱した配管中で混合した後、バルブ(4)よ
り回収室(2)に導入した。得られた銀ベーストはその
銀粒子の平均粒径が60八であった。さらに混合溶媒を
用いたため、得られた銀ペーストを比較的高い温度環境
下に長時間密栓して放置した場合で6銀粒子の凝集は生
じなかった。例えば60℃恒温槽中に168時間放置し
た場合でも凝集は生じず高い安定性を示した。 (第5実施例) 第1実施例と同じ装置を用い、ヘリウム圧力0.5To
rrの条件下で白金(pt)を蒸発させ、有機溶媒とし
てシトロネロール、ゲラニオール、フェネチルアルコー
ル、ネロールの混合蒸気を導入して白金ペーストを作製
した。前記、有機溶媒の混合蒸気は第4実施例と同じ方
法で導入した。得られた白金ペーストはその白金粒子の
平均粒径が80Aであった。 (第6実施例) 第1実施例と同じ装置を用い、ヘリウム圧力0.5To
rrの条件下でパラジウム(Pd)を蒸発させ、有機溶
媒としてオレイン酸メチルとある種の界面活性剤の混合
蒸気を導入してパラジウムペーストを作製した。前記、
有機溶媒の混合蒸気は第4実施例と同じ方法で導入した
。得られたパラジウムペーストはそのパラジウム粒子の
平均粒径が60人であった。さらに界面活性剤を含むた
めガラス基板上へのペーストのぬれ性が改善され、又高
い分散安定性をも示した。 以上、本発明の各実施例について説明したが、勿論、本
発明はこれらに限定されることなく、本発明の技術的思
想に基づき種々の変形が可能である。 例えば、実施例では回収室(孝)にのみ排気用のバルブ
(5)を設け、蒸発室(1)と回収室(2)とを−緒に
排気したが、蒸発室(1)と回収室(2)両方に排気用
バルブを設け、別々に排気を行ってち良い。その場合は
、金属蒸気が圧力差によって蒸発室(上)から回収室(
2)へと移送されるように、回収室(2)の方を低圧に
する必要がある。 実施例では金属超微粒子を回収するための冷却板(11
)が回収室(2)内に設けられているが、代りに冷却フ
ィルタを用いてもよいし、あるいはこれらを設けずに回
収室(工)全体を冷却して内壁面上で回収するようにし
ても良い。 あるいは又、実施例では蒸発室(圭)と回収室(2)と
を別に設けたが、第6図に示すように真空室fig)を
1つだけにし、その中で金属を加熱蒸発させると共に有
機溶媒蒸気を導入し、それらを真空室(lδ)の冷却壁
面(19)上で回収しても良い。 用いられる金属は銅、インジウム、錫、チタン以外に銀
、金、ニッケル、亜鉛、クロム、タンクル、タングステ
ン、パラジウム、白金、鉄、コバルト、ケイ素でも良い
し、それらの合金でも良い。 析出する金属粒子の大きさは不活性ガスの圧力、金属の
蒸気圧、蒸発温度等によって制御できるが、1oooÅ
以下の範囲が適する。1000Å以上になると、例えば
配線パターンに用いた時に微小パターンの形成が悪くな
るからである。又、焼結した場合に焼結性が悪くなり、
従って抵抗値が高くなるからでもある。有機溶媒として
は上記実施例で使用したちの以外にも炭素数5以上のア
ルコール類又は有機ニス、チル類の中から、用いる金属
の使用条件に応じて1種以上適宜選択して使用できる。 金属を蒸発させる方法としては、実施例の誘導加熱の他
に、ガス中蒸発法で通常使用される抵抗加熱、t!1子
ビーム加熱、レーザービーム加熱あるいはスパッタリン
グ法等が利用できる。 又、雰囲気ガスとしてはヘリウムの他に、アルゴン等の
不活性ガスが使用される。 〔発明の効果1 本発明は以上のような構成になっているので、表面酸化
のない金属超微粒子が、チェーン状化することなく均一
に、かつ、高密度に分散した金属ペーストが得られる。 従って、これを例えばIC基板の配線に用いると、微細
なパターンが形成できる。又、表面酸化がないので低温
で焼結でき、従って熱歪みも小さい。さらに又、金属超
微粒子が高密度に分散しているので、焼結した時の変化
量が小さく、割れも生じない。
Detailed Description of the Invention [Industrial Application Field] The present invention is applicable to multilayer wiring such as IC substrates, formation of transparent conductive films,
This invention relates to a metal paste used for joining metals and ceramics, and a method for producing the same. [Prior Art] As a method for producing ultrafine metal particles used in the metal paste described above, metal is evaporated in a reduced pressure inert gas atmosphere,
The in-gas evaporation method, in which ultrafine particles with a particle size of 1000λ or less are collected on a cooling section, is well known. A conventional method for producing a metal paste is to take out ultrafine metal particles produced by, for example, the above-mentioned in-gas evaporation method into the atmosphere, and mix them with an organic solvent. That is, to explain with reference to Fig. 7, the metal (7) in the crucible (6) is heated by heating the crucible (6) in the evaporation chamber (11), and then introduced into the recovery chamber (2+). Coolant (1
3) A cooling plate or filter (11) kept at a low temperature by
) is recovered as ultrafine metal particles (12). These ultrafine metal particles (12) are taken out into the atmosphere and mixed with an organic solvent to form a metal paste. [Problems to be solved by the invention] However, in the metal paste manufactured by the conventional method, the particles stick together during the manufacturing process of ultrafine metal particles, causing agglomeration and chain formation, and the surface of the particles is oxidized.
Because it is contaminated, yes! Poor dispersibility when mixed with a carrier medium. Furthermore, since the particles are not separated from each other, the density of the ultrafine metal particles in the paste is low. When a metal paste is used for multilayer wiring such as an IC board, it is necessary to form a fine pattern with uniform conductivity. However, when conventional metal pastes are used, they may contain chain-shaped particles and have poor dispersibility, resulting in poor formation of fine patterns and non-uniform conductivity. Furthermore, when sintering metal paste wiring, high temperatures are required because the particle surfaces are oxidized. Alternatively, because the particle density in the two pastes is low, shrinkage and cracking occur after sintering, which also impairs the uniformity of conductivity. The present invention solves the problems of conventional metal pastes as described above, and provides a metal paste in which ultrafine metal particles are uniformly dispersed without agglomeration or chain formation, and is free from surface oxidation and contamination, and a method for producing the same. is intended to provide. [Means for Solving the Problems] In order to achieve the above object, the metal paste of the present invention is characterized in that ultrafine metal particles having a particle size of 1000 Å or less are individually and uniformly dispersed in an organic solvent. In addition, the method for producing a metal paste of the present invention involves evaporating metal in a vacuum chamber under an atmosphere where the pressure of inert gas is LO Torr or less, and applying the evaporated metal vapor onto a cooling surface with a particle size of 1000 Å or less. The method for recovering ultrafine particles is characterized in that 2 the metal is evaporated and at the same time the vapor of an organic solvent is introduced into the vacuum chamber. The metals used in the present invention include silver, gold, nickel, indium, tin, zinc, titanium, copper, chromium, tantalum, tungsten, palladium,
Examples include at least one metal selected from platinum, iron, cobalt, silicon, etc., or alloys of these metals. In addition, the organic solvent used in the present invention includes alcohols having 5 or more carbon atoms (for example, terpineol, citronellol,
Geraniol 5 Nerol, Phenethyl Alcohol〉1
Solvents or organic esters containing more than one species (e.g. ethyl acetate, methyl oleate, butyl acetate, glycerides)
Any solvent may be used as long as it contains one or more of the following, and can be appropriately selected depending on the metal used or the purpose of the metal paste. Note that an appropriate organic substance may be added to the organic solvent as necessary. [Function] The metal paste configured as described above can form a conductive uniform fine pattern when used for multilayer wiring such as an IC board, and the wiring can be sintered at a low temperature. It becomes possible. In addition, in the method for producing metal paste, ultrafine metal particles are generated in an inert gas atmosphere and their surfaces are covered with an organic solvent. is not oxidized. [Example] Hereinafter, an example will be described with reference to the drawings. (First Example) FIG. 1 is a schematic cross-sectional view of an apparatus for producing a metal paste according to a first example of the present invention. With valve (3) and valve (4) closed, open the valve (
5) was evacuated using a vacuum pump (not shown), and the pressure in the evaporation chamber (li and recovery chamber f2) was lowered to 10-6 Torr. Next, open the valve (3) and introduce helium gas into the evaporation chamber (upper) while continuing to exhaust the gas from the valve (5).
The interior was maintained at a helium gas pressure of 1 Torr. valve(
While opening 4) and introducing α-terpineol vapor (lO) into the recovery chamber (71), the copper (Cu) (7) in the crucible (6) installed in the evaporation chamber (41) is heated using a high-frequency induction heating device. (8) to generate copper vapor (9).Copper vapor (9) flows from the evaporation chamber (from the recovery chamber to the recovery chamber) according to the flow of exhaust gas.
In this flow, the copper vapor condenses into ultrafine copper particles, which are mixed with α-terpineol vapor (IO) in the recovery chamber (2) and kept at a low temperature by the coolant (13). Ultrafine copper particles (12) stabilized by being covered with a thin film (14) of α-terpineol are placed on a hanging cooling plate (11).
) and was deposited. When this was collected and observed with a transmission electron SJ microscope, the copper particles were not aggregated or chained, but were isolated and well dispersed in α-terpineol. This is thought to be because the ultrafine copper particles are well mixed with the a-terpineol vapor and are therefore wrapped in a film of alpha-terpineol before the particles are bonded to each other. The obtained transmission electron micrograph is shown in FIG. 2A. As can be seen from this photo, the copper ultrafine particles are not only not chain-shaped, but also isolated and highly densely dispersed in the solvent. The shape of the particles is spherical and uniform, and each particle size is 200 Å on average. For comparison, ultrafine copper particles obtained by a conventional method without introducing α-terpineol vapor were collected into the atmosphere, and α-terpineol vapor was not introduced.
- A metal paste was prepared by mixing with terpineol. A micrograph of this comparative sample similarly observed using a transmission electron microscope is shown in FIG. 2B. As can be seen from this photograph, almost all of the copper particles are joined in the form of chains, and the overall dispersion density is low, and the dispersion is very non-uniform. A wiring pattern with a width of 3 μm was formed on an alumina substrate using the copper paste produced by the method of this example and the conventional method, and sintered in a nitrogen gas atmosphere. FIG. 3 shows the change in specific resistance of the wiring with respect to the sintering temperature. At a sintering temperature of 400° C. or lower, the paste of the present invention has a higher specific resistance, but this is probably because the individual copper particles are wrapped in a solvent and isolated. As the sintering temperature rises further, the resistivity of conventional pastes decreases only gradually, but with the paste of the present invention, it rapidly decreases from 400°C, and the copper particles in the paste rapidly become densified and sintered. It shows that progress has been made. This is because copper particles are originally present in the paste at a high density, and since there are no chain-like particles, densification through sintering progresses quickly.Furthermore, the surface of each particle is not oxidized, so it can be sintered at a low temperature. This seems to be due to the start of Therefore, it can be seen from FIG. 3 that in the conventional paste, it was necessary to raise the sintering temperature to 800°C, but in the copper paste of this embodiment, a sintering temperature of 500°C is sufficient. Further, the paste of this example did not shrink or crack even after sintering. (Second example) Using the same equipment as in the first example, helium pressure was 0 and 5T.
Indium (In) was evaporated under conditions of orr, and methyl oleate vapor was introduced as an organic solvent to prepare an indium paste. Further, a tin paste was prepared using tin (Snl) instead of indium under the same conditions.The average particle diameter of the metal particles in the paste was 100A and 70A, respectively.
It was a person. A mixture of these indium pastes and tin pastes in a weight ratio of 95:5 was placed on a glass substrate with 5μ
The transparent conductive film was coated to a thickness of m and sintered in the air to obtain a transparent conductive film. Paste according to this example and indium paste according to the conventional method
The results of measuring the optical transmittance and electrical resistivity with respect to sintering temperature for both tin pastes are shown in FIGS. 4A and 4B. As is clear from these figures, the film using the paste according to this example has better light transmittance and electrical conductivity than the conventional film. Furthermore, the film according to this example was denser than the conventional film and had no pinholes or cracks. (Third Example) Using the same equipment as in the first example, helium pressure was 0 and 8T.
A titanium paste was prepared by evaporating titanium (Til) and introducing butyl acetate vapor as an organic solvent under the conditions of
It was A. This titanium paste (17) is mixed with stabilized zirconia (15) and stainless steel (15) as shown in Figure 5A.
16), and was sintered and joined. FIG. 5B shows the results of measuring the tensile strength of the bonding paste with respect to the bonding temperature for a case in which stabilized zirconia and a stainless steel rod were similarly bonded using a titanium paste according to a conventional method, and a case in which a stainless steel rod was bonded using a titanium paste according to the conventional method. As is clear from this figure, strong bonding strength can be obtained when the paste according to this example is used. (Fourth Example) Using the same equipment as in the first example, helium pressure was 0, 5To.
tli(Ag) was evaporated under conditions of rr, and a mixed vapor of linoleic acid glyceride, linoleic acid glyceride, and oleic acid glyceride was introduced as an organic solvent to prepare a silver paste. The above-mentioned mixed vapor of the organic solvent is heated in separate containers, the liquid temperature is adjusted to a predetermined amount of vapor, and after mixing in the heated piping, it is sent to the recovery chamber ( 2) was introduced. The average particle size of the silver particles in the obtained silver base was 60. Further, since a mixed solvent was used, no agglomeration of silver 6 particles occurred even when the obtained silver paste was left sealed in a relatively high temperature environment for a long time. For example, even when left in a constant temperature bath at 60° C. for 168 hours, no aggregation occurred and high stability was exhibited. (Fifth Example) Using the same equipment as in the first example, helium pressure was 0.5To.
Platinum (pt) was evaporated under conditions of rr, and a mixed vapor of citronellol, geraniol, phenethyl alcohol, and nerol was introduced as an organic solvent to prepare a platinum paste. The mixed vapor of the organic solvent was introduced in the same manner as in the fourth example. The platinum paste obtained had an average particle diameter of 80A. (Sixth Example) Using the same equipment as in the first example, helium pressure was 0.5To.
Palladium (Pd) was evaporated under conditions of rr, and a mixed vapor of methyl oleate and a certain surfactant was introduced as an organic solvent to prepare a palladium paste. Said,
The mixed vapor of organic solvent was introduced in the same manner as in the fourth example. The palladium paste obtained had an average particle size of 60 particles. Furthermore, since it contained a surfactant, the wettability of the paste on the glass substrate was improved, and it also showed high dispersion stability. Although each embodiment of the present invention has been described above, the present invention is of course not limited to these, and various modifications can be made based on the technical idea of the present invention. For example, in the example, an exhaust valve (5) was provided only in the recovery chamber (Ko), and the evaporation chamber (1) and recovery chamber (2) were evacuated together, but the evaporation chamber (1) and the recovery chamber (2) You can install exhaust valves on both sides and exhaust the air separately. In that case, the metal vapor moves from the evaporation chamber (top) to the recovery chamber (top) due to the pressure difference.
2), it is necessary to lower the pressure in the collection chamber (2). In the example, a cooling plate (11
) is provided in the recovery chamber (2), but a cooling filter may be used instead, or the entire recovery chamber (engine) may be cooled and recovered on the inner wall surface without providing these. It's okay. Alternatively, in the embodiment, the evaporation chamber (Kei) and the recovery chamber (2) were provided separately, but as shown in Fig. 6, there is only one vacuum chamber (Fig. Organic solvent vapors may be introduced and recovered on the cooled wall (19) of the vacuum chamber (lδ). In addition to copper, indium, tin, and titanium, the metals used may be silver, gold, nickel, zinc, chromium, tankle, tungsten, palladium, platinum, iron, cobalt, silicon, or alloys thereof. The size of the precipitated metal particles can be controlled by the inert gas pressure, metal vapor pressure, evaporation temperature, etc.
The following ranges are suitable. This is because if the thickness exceeds 1000 Å, formation of minute patterns becomes difficult when used for wiring patterns, for example. Also, when sintered, the sinterability becomes poor,
This is also because the resistance value becomes high. As the organic solvent, in addition to those used in the above examples, one or more kinds can be appropriately selected from among alcohols having 5 or more carbon atoms, organic varnishes, and chills depending on the usage conditions of the metal used. In addition to the induction heating described in this embodiment, methods for evaporating metal include resistance heating, which is commonly used in gas evaporation, and t! Single beam heating, laser beam heating, sputtering method, etc. can be used. In addition to helium, an inert gas such as argon is used as the atmospheric gas. [Effect of the Invention 1] Since the present invention has the above-described configuration, a metal paste in which ultrafine metal particles without surface oxidation are uniformly and densely dispersed without forming chains can be obtained. Therefore, if this is used for wiring of an IC board, for example, a fine pattern can be formed. Furthermore, since there is no surface oxidation, it can be sintered at low temperatures, and therefore thermal distortion is small. Furthermore, since the ultrafine metal particles are dispersed at a high density, the amount of change during sintering is small and no cracks occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例にかかる金属ペーストを製
造する方法及び装置を模式的に示す図、第2A図、第2
B図はそれぞれ、第1実施例によって得られた銅ペース
ト及び従来法による銅ペーストの透過電子顕微鏡写真、
第3図は第1実施例によって得られた銅ペースト及び従
来法による銅ペーストをそれぞれ配線パターンの形成に
用いた場合について、それらの配線の比抵抗の焼結温度
に対する変化を示すグラフ、第4A図第4B図は、第2
実施例によって得られたインジウム−錫ペーストと、従
来法によるインジウム−錫ペーストをそれぞれの透明電
導膜の形成に用いた場合について、焼結温度に対する光
透過率と電気抵抗率との変化を示すグラフ、第5A図は
第3実施例によって得られたチタンペーストを用いて安
定化ジルコニアとステンレスとを接合した状態を示す図
、第5B図は、第3実施例によって得られたチタンペー
ストと、従来法によるチタンペーストのそれぞれについ
て、安定化ジルコニアとステンレスとを接合する時の温
度とそれに対する接合部分の引彊強度の変化を示すグラ
フ、第6図は本発明の変形例にかかる金属ペーストを製
造する方法及び装置を模式的に示す図、第7図は従来法
による金属超微粒子を製造する1例を示す模式図である
。 なお1図において、 (i・・・・・・・・・−蒸  発  室(2・・・・
・・・・・・回  収  室(7・・・・・・・・・−
銅 (9・・・・・・・・・・銅  蒸  気(lO)・・
・・・・・−・ (Ill・・・・・・・・・ (12)・・・・・・・・・ (14)・・・・・・・・・ (18J・・・・・・・・・ (19)・・・・・・・・・ α−テルピネオール蒸気 冷     却     板 銅  超  微  粒  子 α−テルピネオール 真     空     室 冷   却   壁   面 代 第1 図 7・・・・・・・・銅 9・・・・・・・・・銅蒸気 10・・・・・・・・α−テルピネオール蒸気11 −
・・・・・・)ぢ邪板 12・・・−・−・訓U微粒子 14・・・・・−・・α−テルピネオール第 図 第 図 第3 図 焼 皓温度 ℃ 第4A図 焼成温度°C 焼成温度°C 第5A閃 第5B図 第6図 k・・・・・・・・真空室 19・・・・・・・・冷却壁面 第7図 411 年 月31日 1L和 年 特 許 願 第163460号 3、 補正をする者 事件との関係
FIG. 1 is a diagram schematically showing a method and apparatus for producing a metal paste according to a first embodiment of the present invention, FIG. 2A, and FIG.
Figure B is a transmission electron micrograph of the copper paste obtained by the first example and the copper paste obtained by the conventional method, respectively.
FIG. 3 is a graph showing the change in specific resistance of the wiring with respect to the sintering temperature when the copper paste obtained in the first embodiment and the copper paste obtained by the conventional method are respectively used to form wiring patterns; Figure 4B shows the second
Graph showing changes in light transmittance and electrical resistivity with respect to sintering temperature when the indium-tin paste obtained in the example and the indium-tin paste obtained by the conventional method are used to form transparent conductive films. , FIG. 5A is a diagram showing a state in which stabilized zirconia and stainless steel are bonded using the titanium paste obtained in the third example, and FIG. 5B is a diagram showing a state in which the titanium paste obtained in the third example and the conventional Figure 6 is a graph showing the temperature at which stabilized zirconia and stainless steel are bonded and the change in the scratch strength of the bonded portion for each of the titanium pastes produced by the method. FIG. 7 is a schematic diagram showing an example of manufacturing ultrafine metal particles by a conventional method. In Figure 1, (i... - evaporation chamber (2...
・・・・・・Recovery room (7・・・・・・・・・−
Copper (9... Copper vapor (lO)...
......・・・ (19)・・・・・・ α-Terpineol Vapor cooling Plate copper Ultrafine particles α-Terpineol Vacuum Room cooling Wall Surface thickness 1 Fig. 7・・・・・・・・・Copper 9...Copper vapor 10...α-Terpineol vapor 11 -
・・・・・・) Diameter plate 12・・・−・−・Kun U fine particles 14・・・・・・・−・α-Terpineol Figure Figure 3 Figure Calcining temperature °C Figure 4A Calcining temperature ° C Firing temperature °C 5A Flash Figure 5B Figure 6 k...Vacuum chamber 19... Cooling wall surface Figure 7 411 Year/Month/31st 1L Japanese Year Patent Application No. 163460 No. 3, Relationship with the person making the amendment case

Claims (6)

【特許請求の範囲】[Claims] (1)有機溶媒中に粒径1000Å以下の金属超微粒子
を個々に均一分散せしめたことを特徴とする金属ペース
ト。
(1) A metal paste characterized by individually uniformly dispersing ultrafine metal particles with a particle size of 1000 Å or less in an organic solvent.
(2)前記金属が、銀、金、ニッケル、インジウム、錫
、亜鉛、チタン、銅、クロム、タンタル、タングステン
、パラジウム、白金、鉄、コバルト、ケイ素のうち少な
くとも1種の金属、又はこれら金属の合金である請求項
(1)に記載の金属ペースト。
(2) The metal is at least one metal selected from silver, gold, nickel, indium, tin, zinc, titanium, copper, chromium, tantalum, tungsten, palladium, platinum, iron, cobalt, and silicon, or a combination of these metals. The metal paste according to claim 1, which is an alloy.
(3)前記有機溶媒が、炭素数5以上のアルコール類の
1種以上を含有する溶媒、又は有機エステル類の1種以
上を含有する溶媒である請求項(1)又は(2)に記載
の金属ペースト。
(3) The organic solvent according to claim (1) or (2), wherein the organic solvent is a solvent containing one or more types of alcohols having 5 or more carbon atoms, or a solvent containing one or more types of organic esters. metal paste.
(4)真空室中でかつ不活性ガスの圧力を10Torr
以下とする雰囲気のもとで金属を蒸発させ、蒸発した金
属蒸気を冷却面上に粒径1000Å以下の超微粒子とし
て回収する方法において、前記金属を蒸発させると共に
前記真空室に有機溶媒の蒸気を導入することを特徴とす
る金属ペーストの製造方法。
(4) In a vacuum chamber with an inert gas pressure of 10 Torr
In the method of evaporating a metal in the following atmosphere and collecting the evaporated metal vapor on a cooling surface as ultrafine particles with a particle size of 1000 Å or less, the metal is evaporated and organic solvent vapor is introduced into the vacuum chamber. 1. A method for producing a metal paste, comprising:
(5)前記金属が、銀、金、ニッケル、インジウム、錫
、亜鉛、チタン、銅、クロム、タンタル、タングステン
、パラジウム、白金、鉄、コバルト、ケイ素のうち少な
くとも1種の金属、又はこれら金属の合金である請求項
(4)に記載の金属ペーストの製造方法。
(5) The metal is at least one metal selected from silver, gold, nickel, indium, tin, zinc, titanium, copper, chromium, tantalum, tungsten, palladium, platinum, iron, cobalt, and silicon, or a combination of these metals. The method for producing a metal paste according to claim 4, wherein the metal paste is an alloy.
(6)前記有機溶媒が、炭素数5以上のアルコール類の
1種以上を含有する溶媒、又は有機エステル類の1種以
上を含有する溶媒である請求項(4)又は(5)に記載
の金属ペーストの製造方法。
(6) The organic solvent according to claim (4) or (5), wherein the organic solvent is a solvent containing one or more types of alcohols having 5 or more carbon atoms, or a solvent containing one or more types of organic esters. Method of manufacturing metal paste.
JP1163460A 1989-03-30 1989-06-26 Metal paste and manufacturing method thereof Expired - Lifetime JP2561537B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-79340 1989-03-30
JP7934089 1989-03-30

Publications (2)

Publication Number Publication Date
JPH0334211A true JPH0334211A (en) 1991-02-14
JP2561537B2 JP2561537B2 (en) 1996-12-11

Family

ID=13687171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163460A Expired - Lifetime JP2561537B2 (en) 1989-03-30 1989-06-26 Metal paste and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2561537B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124157A (en) * 1998-08-10 2000-04-28 Vacuum Metallurgical Co Ltd FORMATION OF Cu THIN FILM
JP2000123634A (en) * 1998-08-10 2000-04-28 Vacuum Metallurgical Co Ltd Copper very fine particle independent dispersion solution
US6068939A (en) * 1996-11-21 2000-05-30 Mitsuboshi Belting Ltd. Colored and fired film and method for producing the same
JP2001035255A (en) * 1999-07-22 2001-02-09 Vacuum Metallurgical Co Ltd Silver superfine particle independently dispersed solution
JP2001035814A (en) * 1999-07-22 2001-02-09 Vacuum Metallurgical Co Ltd Method of forming silver wiring pattern
WO2001027983A1 (en) * 1999-10-15 2001-04-19 Ebara Corporation Method and apparatus for forming interconnection
JP2002060805A (en) * 2000-08-24 2002-02-28 Chemiprokasei Kaisha Ltd Method for producing multicomponent composite metallic grain colloid dispersed liquid
WO2002031068A1 (en) * 2000-10-13 2002-04-18 Ulvac, Inc. Ink-jet ink and process for producing the same
WO2002030600A1 (en) * 2000-10-13 2002-04-18 Ulvac, Inc. Dispersion of ultrafine metal particles and process for producing the same
US6620220B2 (en) 2000-01-31 2003-09-16 Toho Titanium Co., Ltd. Nickel powder dispersion, method of producing nickel power dispersion and method of producing conductive paste
WO2005025787A1 (en) 2003-09-12 2005-03-24 National Institute Of Advanced Industrial Science And Technology Metal nano particle liquid dispersion capable of being sprayed in fine particle form and being applied in laminated state
WO2005037465A1 (en) 2003-10-20 2005-04-28 Harima Chemicals, Inc. Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
WO2006011180A1 (en) * 2004-06-23 2006-02-02 Harima Chemicals, Inc. Conductive metal paste
JP2006073550A (en) * 2004-08-31 2006-03-16 Toshiba Corp Bonding member and its manufacturing method
US7276263B2 (en) 2003-01-31 2007-10-02 Asahi Glass Company, Limited Process for producing low reflection glass plate, and low reflection glass plate
KR100784762B1 (en) * 2007-01-22 2007-12-14 하리마 카세이 가부시키가이샤 Conductive metal paste
US7367999B2 (en) 2001-07-27 2008-05-06 Fujifilm Corporation Ultrafine particles and method and apparatus for producing the same
GB2425779B (en) * 2004-02-16 2008-08-06 Climax Engineered Mat Llc Method and apparatus for producing nano-particles of silver
JP2008285761A (en) * 2002-11-12 2008-11-27 Dowa Electronics Materials Co Ltd Fine granular copper powder
EP2045028A1 (en) 2007-09-26 2009-04-08 Fujifilm Corporation Metal nanoparticles, method for producing the same, aqueous dispersion, method for manufacturing printed wiring or electrode, and printed wiring board or device
WO2010101209A1 (en) 2009-03-04 2010-09-10 有限会社マイテック Assaying substrate with surface-enhanced raman scattering activity
US8067702B2 (en) 2005-06-03 2011-11-29 Gunze Limited Electromagnetic wave shielding material and production process of the same
JP2012514060A (en) * 2008-12-24 2012-06-21 イントリンジック マテリアルズ リミテッド Fine particles
CN104379247A (en) * 2012-06-05 2015-02-25 道康宁公司 Fluid capture of nanoparticles
US9309119B2 (en) 2010-03-24 2016-04-12 Hitachi Metals, Ltd. Producing method of metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
KR20170032275A (en) 2014-07-14 2017-03-22 도다 고교 가부시끼가이샤 Method for producing conductive coating film, and conductive coating film
CN111804926A (en) * 2020-07-06 2020-10-23 昆明理工大学 Method for preparing refractory metal powder

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677092B2 (en) * 2000-12-04 2011-04-27 株式会社アルバック Electrode forming method for flat panel display
JP4578100B2 (en) * 2001-12-18 2010-11-10 旭化成イーマテリアルズ株式会社 Metal oxide dispersion
US7618704B2 (en) 2003-09-29 2009-11-17 E.I. Du Pont De Nemours And Company Spin-printing of electronic and display components
JP2008285347A (en) * 2007-05-16 2008-11-27 Asahi Kasei Corp Dispersion of cuprous oxide
KR101051590B1 (en) * 2009-08-24 2011-07-22 삼성전기주식회사 Ceramic substrate and its manufacturing method
JP5556097B2 (en) * 2009-09-11 2014-07-23 東洋紡株式会社 Copper thin film manufacturing method and copper thin film
MY159795A (en) 2009-09-16 2017-01-31 Hitachi Chemical Co Ltd Process for making printing ink
JP4932050B2 (en) * 2011-09-16 2012-05-16 旭化成イーマテリアルズ株式会社 Method for producing cuprous oxide dispersion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146103A (en) * 1983-02-09 1984-08-21 昭和電工株式会社 Conductive paste

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146103A (en) * 1983-02-09 1984-08-21 昭和電工株式会社 Conductive paste

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068939A (en) * 1996-11-21 2000-05-30 Mitsuboshi Belting Ltd. Colored and fired film and method for producing the same
JP2000123634A (en) * 1998-08-10 2000-04-28 Vacuum Metallurgical Co Ltd Copper very fine particle independent dispersion solution
JP2000124157A (en) * 1998-08-10 2000-04-28 Vacuum Metallurgical Co Ltd FORMATION OF Cu THIN FILM
JP2001035255A (en) * 1999-07-22 2001-02-09 Vacuum Metallurgical Co Ltd Silver superfine particle independently dispersed solution
JP2001035814A (en) * 1999-07-22 2001-02-09 Vacuum Metallurgical Co Ltd Method of forming silver wiring pattern
WO2001027983A1 (en) * 1999-10-15 2001-04-19 Ebara Corporation Method and apparatus for forming interconnection
US6730596B1 (en) 1999-10-15 2004-05-04 Ebara Corporation Method of and apparatus for forming interconnection
US6620220B2 (en) 2000-01-31 2003-09-16 Toho Titanium Co., Ltd. Nickel powder dispersion, method of producing nickel power dispersion and method of producing conductive paste
JP2002060805A (en) * 2000-08-24 2002-02-28 Chemiprokasei Kaisha Ltd Method for producing multicomponent composite metallic grain colloid dispersed liquid
JP2002121437A (en) * 2000-10-13 2002-04-23 Ulvac Corporate Center:Kk Ink for ink jet and method for producing the same
JP2002121606A (en) * 2000-10-13 2002-04-26 Ulvac Corporate Center:Kk Metallic hyperfine grain dispersed solution and its production method
WO2002030600A1 (en) * 2000-10-13 2002-04-18 Ulvac, Inc. Dispersion of ultrafine metal particles and process for producing the same
WO2002031068A1 (en) * 2000-10-13 2002-04-18 Ulvac, Inc. Ink-jet ink and process for producing the same
US7708910B2 (en) * 2000-10-13 2010-05-04 Ulvac, Inc. Ink for ink jet printing and method for preparing the same
US7367999B2 (en) 2001-07-27 2008-05-06 Fujifilm Corporation Ultrafine particles and method and apparatus for producing the same
JP2008285761A (en) * 2002-11-12 2008-11-27 Dowa Electronics Materials Co Ltd Fine granular copper powder
US7276263B2 (en) 2003-01-31 2007-10-02 Asahi Glass Company, Limited Process for producing low reflection glass plate, and low reflection glass plate
US9006296B2 (en) 2003-09-12 2015-04-14 Harima Chemicals, Inc. Metal nanoparticle dispersion usable for ejection in the form of fine droplets to be applied in the layered shape
WO2005025787A1 (en) 2003-09-12 2005-03-24 National Institute Of Advanced Industrial Science And Technology Metal nano particle liquid dispersion capable of being sprayed in fine particle form and being applied in laminated state
US9233420B2 (en) 2003-10-20 2016-01-12 Harima Chemicals, Inc. Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
WO2005037465A1 (en) 2003-10-20 2005-04-28 Harima Chemicals, Inc. Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
US8758475B2 (en) 2003-10-20 2014-06-24 Harima Chemicals, Inc. Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
GB2425779B (en) * 2004-02-16 2008-08-06 Climax Engineered Mat Llc Method and apparatus for producing nano-particles of silver
US7575711B2 (en) 2004-02-16 2009-08-18 Climax Engineered Materials, Llc Apparatus for producing nano-particles of silver
WO2006011180A1 (en) * 2004-06-23 2006-02-02 Harima Chemicals, Inc. Conductive metal paste
US8021580B2 (en) 2004-06-23 2011-09-20 Harima Chemicals, Inc. Conductive metal paste
JP2006073550A (en) * 2004-08-31 2006-03-16 Toshiba Corp Bonding member and its manufacturing method
US8067702B2 (en) 2005-06-03 2011-11-29 Gunze Limited Electromagnetic wave shielding material and production process of the same
KR100784762B1 (en) * 2007-01-22 2007-12-14 하리마 카세이 가부시키가이샤 Conductive metal paste
EP2045028A1 (en) 2007-09-26 2009-04-08 Fujifilm Corporation Metal nanoparticles, method for producing the same, aqueous dispersion, method for manufacturing printed wiring or electrode, and printed wiring board or device
JP2012514060A (en) * 2008-12-24 2012-06-21 イントリンジック マテリアルズ リミテッド Fine particles
WO2010101209A1 (en) 2009-03-04 2010-09-10 有限会社マイテック Assaying substrate with surface-enhanced raman scattering activity
US9309119B2 (en) 2010-03-24 2016-04-12 Hitachi Metals, Ltd. Producing method of metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
CN104379247A (en) * 2012-06-05 2015-02-25 道康宁公司 Fluid capture of nanoparticles
KR20170032275A (en) 2014-07-14 2017-03-22 도다 고교 가부시끼가이샤 Method for producing conductive coating film, and conductive coating film
CN111804926A (en) * 2020-07-06 2020-10-23 昆明理工大学 Method for preparing refractory metal powder

Also Published As

Publication number Publication date
JP2561537B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
JPH0334211A (en) Metal paste and manufacture thereof
US5587111A (en) Metal paste, process for producing same and method of making a metallic thin film using the metal paste
US5576248A (en) Group IV semiconductor thin films formed at low temperature using nanocrystal precursors
EP0449309B1 (en) Method of making metalic thin film
US7780876B2 (en) Fine metal particle colloidal solution, conductive paste material, conductive ink material, and process for producing the same
JP3205793B2 (en) Ultrafine particles and method for producing the same
CN108203582B (en) Method for preparing nano quantum dots, nano quantum dot material, application and quantum dot product
US6027796A (en) Mesoporous ceramic film with one dimensional through channels and process for its production
US11377358B2 (en) Method for producing porous carbon material
JP7272834B2 (en) Silver powder and its manufacturing method
Huang et al. Silver catalyzed gallium phosphide nanowires integrated on silicon and in situ Ag-alloying induced bandgap transition
KR20140106468A (en) MoTi TARGET MATERIAL AND METHOD FOR MANUFACTURING FOR THE SAME
Olynick et al. In situ ultra-high vacuum transmission electron microscopy studies of nanocrystalline copper
Pellegrini Experimental methods for the preparation of selectively absorbing textured surfaces for photothermal solar conversion
Iwama et al. Sintering of ultrafine metal powders. I. Coalescence growth stage of Au and Ag
Barman et al. Interaction of size-selected Ag-clusters on Au-thin films: a composition study with in-situ XPS analysis at an elevated temperature
JP2590255B2 (en) Copper material with good bondability with ceramics
TWI588267B (en) High purity tungsten metal material and preparation method of tungsten target
Zhou et al. Low-temperature sintering behavior (≤ 400° C) of micro-sized silver particles decorated by silver nanoparticles through surface iodination
JPS60211717A (en) Method of producing electrode for vacuum breaker
WO2012124840A1 (en) Method for manufacturing titanium powder for manufacturing oxide-dispersion strengthening-type titanium material
Webster The effect of low melting point phases on the elevated temperature microstructural stability of hot pressed beryllium
CA1265961A (en) Substrates coated with solvated clusters of metal particles
US7695543B2 (en) Process for the production of silver filaments having micrometric or sub-micrometric diameter and product thereof
CN110396603B (en) Remelting method of iron-aluminum alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13