JP2561537B2 - Metal paste and manufacturing method thereof - Google Patents

Metal paste and manufacturing method thereof

Info

Publication number
JP2561537B2
JP2561537B2 JP1163460A JP16346089A JP2561537B2 JP 2561537 B2 JP2561537 B2 JP 2561537B2 JP 1163460 A JP1163460 A JP 1163460A JP 16346089 A JP16346089 A JP 16346089A JP 2561537 B2 JP2561537 B2 JP 2561537B2
Authority
JP
Japan
Prior art keywords
metal
paste
organic solvent
particles
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1163460A
Other languages
Japanese (ja)
Other versions
JPH0334211A (en
Inventor
一弘 渡辺
道広 大嶋
和宏 瀬戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU YAKIN KK
Original Assignee
SHINKU YAKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU YAKIN KK filed Critical SHINKU YAKIN KK
Publication of JPH0334211A publication Critical patent/JPH0334211A/en
Application granted granted Critical
Publication of JP2561537B2 publication Critical patent/JP2561537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はIC基板などの多層配線、透明導電膜の形成、
金属とセラミックとの接合などに用いられる金属ペース
ト及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a multilayer wiring such as an IC substrate, the formation of a transparent conductive film,
The present invention relates to a metal paste used for joining a metal and a ceramic and the like, and a manufacturing method thereof.

〔従来の技術〕[Conventional technology]

上述の金属ペーストに用いられる金属超微粒子と製法
として、減圧した不活性ガス雰囲気中で金属を蒸発さ
せ、冷却部上に粒径1000Å以下の超微粒子として回収す
るガス中蒸発法がよく知られている。
As a method of producing ultrafine metal particles used in the above-mentioned metal paste, a gas evaporation method is well known in which metal is evaporated in a depressurized inert gas atmosphere and ultrafine particles having a particle size of 1000Å or less are collected on a cooling part. There is.

従来の金属ペーストの製造方法は、例えば上述のガス
中蒸発法により作製した金属の超微粒子を大気中に取り
出し、それを有機溶媒と混合するというものである。す
なわち、第7図を参照して説明すると、蒸発室()中
のるつぼ(6)を加熱してるつぼ(6)内の金属(27)
を蒸発させ、それを回収室()に導入して冷却剤(1
3)によって低温に保たれた冷却板又はフィルタ(21)
の上に金属超微粒子(22)として回収する。この金属超
微粒子(12)を大気中に取り出し、有機溶媒と混合して
金属ペーストとするのである。
A conventional method for producing a metal paste is, for example, to take out ultrafine particles of a metal produced by the above-described gas evaporation method into the atmosphere and mix them with an organic solvent. That is, referring to FIG. 7, the crucible (6) in the evaporation chamber ( 1 ) is heated to heat the metal (27) in the crucible (6).
Is evaporated and introduced into the collection chamber ( 2 ) for cooling (1
Cold plate or filter (21) kept cold by 3)
Collected as ultrafine metal particles (22). The ultrafine metal particles (12) are taken out into the atmosphere and mixed with an organic solvent to form a metal paste.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら従来法によって製造された金属ペースト
では、金属超微粒子の粒径が1000Å以下であるので、フ
ァンデルワールス力が強く働くため、金属超微粒子の製
造過程で粒子同士がくっついて凝集やチェーン状化が生
じ、又、粒子表面が酸化したり、汚染されたりしている
ため、有機溶媒と混合する時に分散性が悪い。又、粒子
が個々に離れていないため、ペースト中の金属超微粒子
の密度が低くなる。すなわち、粒径1000Å以下の金属超
微粒子を有する従来の金属ペーストでは、超微粒子同士
がファンデルワールス力により、凝集しやすいため、金
属ペーストとして実用可能な濃度や分散安定性を保つこ
とが困難であった。
However, in the metal paste produced by the conventional method, since the ultrafine metal particles have a particle size of 1000 Å or less, the Van der Waals force is strong, and the particles adhere to each other during the production process of the ultrafine metal particles to form agglomerates or chains. Occurs, and the particle surface is oxidized or contaminated, so that the dispersibility is poor when mixed with an organic solvent. Further, since the particles are not separated from each other, the density of the ultrafine metal particles in the paste becomes low. That is, in a conventional metal paste having ultrafine metal particles having a particle diameter of 1000 Å or less, it is difficult to maintain a concentration and dispersion stability that are practical as a metal paste because ultrafine particles are easily aggregated by Van der Waals force. there were.

金属ペーストを、例えばIC基板などの多層配線に用い
る場合には微細でかつ均一な導電性を有するパターンを
形成する必要がある。しかし、従来の金属ペーストを用
いた場合には、ファンデルワールス力のためチェーン状
化した粒子があったりして分散性が悪いために、微細パ
ターンの形成が良くなく、又導電性が均一にならないこ
とがある。さらに、金属ペーストの配線を焼結処理する
際に、粒子表面が酸化しているため高温を必要とする。
あるいは又、ペースト中の粒子密度が低いために、焼結
後に縮みや割れが生じ、この点でも導電性の均一性が悪
くなる。
When the metal paste is used for multilayer wiring such as an IC substrate, it is necessary to form a fine and uniform conductive pattern. However, when the conventional metal paste is used, the fine pattern is not formed well and the conductivity is uniform because the chain-like particles due to Van der Waals force may be present and the dispersibility is poor. Sometimes it doesn't. Furthermore, when the wiring of the metal paste is sintered, a high temperature is required because the particle surface is oxidized.
Alternatively, since the particle density in the paste is low, shrinkage and cracks occur after sintering, and in this respect also, the uniformity of conductivity deteriorates.

本発明は以上のような従来の金属ペーストの持つ問題
点を解消し、金属超微粒子の粒径が1000Å以下であって
も、金属超微粒子が凝集やチェーン状化せずに均一に分
散され、又、表面酸化や汚染のない金属ペースト及びそ
の製造方法を提供することを目的としている。
The present invention solves the problems with the conventional metal paste as described above, and even if the particle size of the ultrafine metal particles is 1000 Å or less, the ultrafine metal particles are uniformly dispersed without aggregation or chain formation, Another object of the present invention is to provide a metal paste free from surface oxidation and contamination and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的を達成するため、本発明の金属ペーストは、
炭素数5以上のアルコール類の1種以上を含有する有機
溶媒、又は有機エステル類の1種以上を含有する有機溶
媒中に、粒径1000Å以下の金属超微粒子がその表面を該
有機溶媒で覆われて個々に均一分散していることを特徴
とする金属ペースト。
In order to achieve the above object, the metal paste of the present invention,
In an organic solvent containing one or more kinds of alcohols having 5 or more carbon atoms or an organic solvent containing one or more kinds of organic esters, ultrafine metal particles having a particle size of 1000 Å or less are coated with the organic solvent. A metal paste characterized by being dispersed evenly and individually.

また本発明の金属ペーストの製造方法は、真空室中で
かつ不活性ガスの圧力を10Torr以下とする雰囲気のもと
で金属を蒸発させ、蒸発した金属蒸気を冷却面上に粒径
1000Å以下の超微粒子として回収する方法において、前
記金属を蒸発させると共に前記真空室に、炭素数5以上
のアルコール類の1種以上を含有する有機溶媒、又は有
機エステル類の1種以上を含有する有機溶媒の蒸気を導
入して、生成した前記金属の超微粒子表面を該有機溶媒
で覆うようにしたことを特徴とする。
Further, the method for producing a metal paste of the present invention is to evaporate a metal in an atmosphere in which the pressure of an inert gas is 10 Torr or less in a vacuum chamber, and the vaporized metal vapor has a particle size on a cooling surface.
In the method of recovering ultrafine particles of 1000 Å or less, the metal is evaporated and the vacuum chamber contains an organic solvent containing one or more kinds of alcohols having 5 or more carbon atoms or one or more kinds of organic esters. It is characterized in that vapor of an organic solvent is introduced to cover the surface of the generated ultrafine particles of the metal with the organic solvent.

本発明で用いる金属としては、金属ペーストの用途に
よって、銀、金、ニッケル、インジウム、錫、亜鉛、チ
タン、銅、クロム、タンタル、タングステン、パラジウ
ム、白金、鉄、コバルト、ケイ素等のうち少なくとも1
種の金属又はこれら金属の合金が挙げられる。
The metal used in the present invention is at least one of silver, gold, nickel, indium, tin, zinc, titanium, copper, chromium, tantalum, tungsten, palladium, platinum, iron, cobalt, silicon, etc. depending on the use of the metal paste.
Mention may be made of certain metals or alloys of these metals.

又本発明で用いる有機溶媒としては、炭素数5以上の
アルコール類(例えばテルピネオール、シトロネロー
ル、ゲラニオール、フェネチルアルコール)の1種以上
を含有する溶媒又は有機エステル類(例えば酢酸エチ
ル、オレイン酸メチル、酢酸ブチル、グリセリド)の1
種以上を含有する溶媒であれば良く、使用する金属又は
金属ペーストの用途によって適宜選択できる。なお、有
機溶媒に必要に応じて適当な有機物を添加しても良い。
The organic solvent used in the present invention is a solvent or organic ester containing one or more alcohols having 5 or more carbon atoms (eg, terpineol, citronellol, geraniol, phenethyl alcohol) (eg, ethyl acetate, methyl oleate, acetic acid). Butyl, glyceride) 1
Any solvent containing at least one species may be used and can be appropriately selected depending on the intended use of the metal or metal paste used. In addition, you may add a suitable organic substance to an organic solvent as needed.

〔作用〕[Action]

以上のように構成される金属ペーストは、例えばIC基
板などの多層配線に用いられた時には導電性の均一な微
細パターンを形成することができ、又配線の焼結処理が
低温で可能となる。
When the metal paste configured as described above is used for a multilayer wiring such as an IC substrate, a fine pattern having uniform conductivity can be formed, and the wiring can be sintered at a low temperature.

又金属ペーストの製造方法においては、不活性ガス雰
囲気のもとで金属超微粒子を生成すると共に有機溶媒で
その表面を覆うため、ファンデルワールス力が強く働く
1000Å以下の粒子でも、金属超微粒子同士がチェーン化
することなく、又金属超微粒子の表面が酸化されること
もない。
In addition, in the method for producing the metal paste, since the ultrafine metal particles are generated in an inert gas atmosphere and the surface thereof is covered with an organic solvent, the Van der Waals force is strong.
Even with particles of 1000 Å or less, the ultrafine metal particles do not form chains and the surface of the ultrafine metal particles is not oxidized.

〔実 施 例〕〔Example〕

以下、実施例について図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.

(第1実施例) 第1図は本発明の第1実施例の金属ペーストを製造す
る装置の断面模式図である。 バルブ(3)及びバルブ
(4)を閉じた状態でバルブ(5)から真空ポンプ(図
示せず)で排気し、蒸発室()及び回収室()の圧
力を10-6Torrまで下げた。次いでバルブ(3)を開いて
ヘリウムガスを蒸発室()に導入しながらバルブ
(5)からの排気を続け、内部をヘリウムガス圧1Torr
に保った。バルブ(4)を開いてα−テルピネオールの
蒸気(10)を回収室()に導入しながら、蒸発室
)中に設置したるつぼ(6)内の銅(Cu)(7)を
高周波誘導加熱装置(8)で加熱して銅蒸気(9)を発
生させた。銅蒸気(9)は排気の流れに従って蒸発室
)から回収室()へと移送され、この流れの中で
銅蒸気は凝縮して銅超微粒子となり、回収室()でα
−テルピネオール蒸気(10)と混合されて、冷却剤(1
3)によって低温に保たれた冷却板(11)上に、α−テ
ルピネオールの薄い膜(14)で覆われて安定化した銅超
微粒子(12)となって沈積した。これを回収して透過電
子顕微鏡で観察したところ、銅の粒子は凝集やチェーン
状化しておらず、α−テルピネオール中に孤立して良く
分散している。これは銅超微粒子がα−テルピネオール
蒸気とよく混合されるため、粒子同士が接合する前にα
−テルピネオールで膜状に包まれてしまうためと思われ
る。得られた透過電子顕微鏡写真を第2A図に示す。
(First Embodiment) FIG. 1 is a schematic sectional view of an apparatus for producing a metal paste according to the first embodiment of the present invention. With the valve (3) and valve (4) closed, the valve (5) was evacuated by a vacuum pump (not shown), and the pressure in the evaporation chamber ( 1 ) and the recovery chamber ( 2 ) was lowered to 10 -6 Torr. It was Next, the valve (3) is opened to introduce the helium gas into the evaporation chamber ( 1 ), and the exhaust from the valve (5) is continued until the helium gas pressure is 1 Torr.
Kept at. While opening the valve (4) and introducing the vapor of α-terpineol (10) into the recovery chamber ( 2 ), the copper (Cu) (7) in the crucible (6) installed in the evaporation chamber ( 1 ) was subjected to high frequency. It was heated by an induction heating device (8) to generate copper vapor (9). The copper vapor (9) is transferred from the evaporation chamber ( 1 ) to the recovery chamber ( 2 ) according to the flow of exhaust gas, and in the flow, the copper vapor is condensed into copper ultrafine particles, and α is generated in the recovery chamber ( 2 ).
-Mixed with terpineol vapor (10), coolant (1
On the cooling plate (11) kept at a low temperature by 3), the stabilized copper ultrafine particles (12) were deposited by being covered with the thin film (14) of α-terpineol. When this was collected and observed with a transmission electron microscope, the copper particles were not aggregated or formed into chains, but were isolated and well dispersed in α-terpineol. This is because the ultrafine copper particles are mixed well with the α-terpineol vapor, so that the α
-It seems that it is wrapped in a film with terpineol. The obtained transmission electron micrograph is shown in FIG. 2A.

この写真からわかるように、銅超微粒子はチェーン状
化していないだけでなく溶媒中に孤立して高密度に分散
している。粒子の形状は球形でよくそろっており、粒径
は平均200Åである。
As can be seen from this photograph, not only the ultrafine copper particles are not chain-shaped, but they are also isolated and highly dispersed in the solvent. The shape of the particles is spherical and well arranged, and the average particle size is 200Å.

比較のために、α−テルピネオール蒸気を導入しない
従来法によって得られた銅超微粒子を大気中に回収し、
α−テルピネオールと混合して金属ペーストを作製し
た。この比較試料を同様に透過電子顕微鏡で観察した顕
微鏡写真を第2B図に示す。この写真からわかるように、
銅粒子はほとんど全部がチェーン状に接合しており、全
体としての分散密度が低い上に、その分散は非常に不均
一である。
For comparison, the ultrafine copper particles obtained by the conventional method without introducing α-terpineol vapor are collected in the atmosphere,
A metal paste was prepared by mixing with α-terpineol. A micrograph of this comparative sample similarly observed with a transmission electron microscope is shown in FIG. 2B. As you can see from this picture,
Almost all of the copper particles are joined in a chain shape, the dispersion density as a whole is low, and the dispersion is very uneven.

本実施例の方法及び従来法によって作製した銅ペース
トを用いて、各々、アルミナ基板上に3μm幅の配線パ
ターンを形成し、質素ガス雰囲気中で焼結を行った。そ
の配線の比抵抗の焼結温度に対する変化を第3図に示
す。焼結温度400℃以下では本発明のペーストの方が比
抵抗が高いため、これは個々の銅粒子が溶媒で包まれて
孤立しているためと思われる。焼結温度がさらに高くな
ると、従来ペーストによるものは比抵抗は少しずつしか
低下しないが、本発明のペーストでは400℃から急激に
低下し、ペースト中の銅粒子の緻密化、焼結が急速に進
んだことを示している。これはペースト中にもともと銅
粒子が高密度に存在している上に、チェーン状の粒子が
ないので焼結による緻密化が速く進むこと、さらに各粒
子表面が酸化されていないため低温で焼結が始まること
によるものと思われる。
Using the copper paste produced by the method of this example and the conventional method, a wiring pattern having a width of 3 μm was formed on an alumina substrate and sintered in a gas atmosphere. FIG. 3 shows the change in the specific resistance of the wiring with respect to the sintering temperature. The specific resistance of the paste of the present invention is higher at a sintering temperature of 400 ° C. or lower, and this is considered to be because individual copper particles are wrapped in a solvent and are isolated. When the sintering temperature is further increased, the resistivity of the conventional paste decreases only little by little, but the paste of the present invention sharply decreases from 400 ° C., and the densification and sintering of the copper particles in the paste rapidly. It shows that you have advanced. This is because copper particles originally existed in the paste at a high density, and because there were no chain-shaped particles, the densification due to sintering proceeded quickly, and since the surface of each particle was not oxidized, it was sintered at a low temperature. It seems that this is due to the beginning of.

従って、この第3図から、従来ペーストでは800℃ま
で焼結温度を上げる必要があったものが、本実施例の銅
ペーストでは500℃で充分であることがわかる。
Therefore, it can be seen from FIG. 3 that the conventional paste required to raise the sintering temperature up to 800 ° C., but the copper paste of this example was sufficient at 500 ° C.

又、本実施例のペーストでは焼結後も縮みや割れが生
じなかった。
Further, with the paste of this example, neither shrinkage nor cracking occurred even after sintering.

(第2実施例) 第1実施例と同じ装置を用い、ヘリウム圧力0.5Torr
の条件下でインジウム(In)を蒸発させ、有機溶媒とし
てオレイン酸メチル蒸気を導入してインジウムペースト
を作製した。さらに同一条件でインジウムの代りに錫
(Sn)を用いて錫ペーストを作成した。ペースト中の金
属粒子の平均粒径はそれぞれ100Åと70Åであった。こ
れらのインジウムペーストと錫ペーストとを重量比で95
対5の割合で混合したものを、ガラス基板上に5μm厚
さで塗布し、大気中に焼結して透明電導膜を得た。本実
施例によるペーストと、従来法によるインジウム−錫ペ
ーストの両方について、焼結温度に対する光透過率と電
気抵抗率とを測定した結果を第4A図、第4B図に示す。こ
れらの図から明らかなように、本実施例によるペースト
を用いた膜は従来のものより光透過率、導電率ともに良
好である。又、本実施例による膜は従来のものより緻密
であり、ピンホールやクラックもなかった。
(Second Embodiment) Using the same device as the first embodiment, the helium pressure is 0.5 Torr.
Indium (In) was evaporated under the conditions of, and methyl oleate vapor was introduced as an organic solvent to prepare an indium paste. Furthermore, under the same conditions, tin (Sn) was used instead of indium to prepare a tin paste. The average particle size of the metal particles in the paste was 100Å and 70Å, respectively. The weight ratio of these indium paste and tin paste is 95
A mixture having a ratio of 5 to 5 was applied onto a glass substrate in a thickness of 5 μm and sintered in the air to obtain a transparent conductive film. The results of measuring the light transmittance and the electrical resistivity with respect to the sintering temperature for both the paste according to this example and the indium-tin paste according to the conventional method are shown in FIGS. 4A and 4B. As is clear from these figures, the film using the paste according to this example has better light transmittance and conductivity than the conventional film. Further, the film according to this example was denser than the conventional one, and had no pinhole or crack.

(第3実施例) 第1実施例と同じ装置を用い、ヘリウム圧力0.8Torr
の条件下でチタン(Ti)を蒸発させ、有機溶媒として酢
酸ブチル蒸気を導入して、チタンペーストを作製した。
ペースト中のチタン粒子の平均粒径は約120Åであっ
た。このチタンペースト(17)を第5A図に示すように安
定化ジルコニア(15)とステンレス(16)との間に挿入
して焼結し、接合した。従来法によるチタンペーストを
用いて同様に安定化ジルコニアとステンレス棒とを接合
したものと、本実施例による接合とについて、接合温度
に対する接合ペーストの引張強度を測定した結果を第5B
図に示す。この図から明らかなように、本実施例による
ペーストを用いた時には強い接合強度が得られる。
(Third Embodiment) Using the same apparatus as in the first embodiment, the helium pressure is 0.8 Torr.
Titanium (Ti) was evaporated under the conditions of, and butyl acetate vapor was introduced as an organic solvent to prepare a titanium paste.
The average particle size of titanium particles in the paste was about 120Å. The titanium paste (17) was inserted between the stabilized zirconia (15) and the stainless steel (16) as shown in FIG. 5A, sintered and bonded. Similarly, the results obtained by measuring the tensile strength of the bonding paste with respect to the bonding temperature with respect to the bonding of the stabilized zirconia and the stainless steel rod using the titanium paste according to the conventional method and the bonding according to the present example are 5B.
Shown in the figure. As is clear from this figure, a strong bonding strength is obtained when the paste according to this embodiment is used.

(第4実施例) 第1実施例と同じ装置を用い、ヘリウム圧力0.5Torr
の条件下で銀(Ag)を蒸発させ、有機溶媒としてリノー
ル酸グリセリド、リノレイン酸グリセリド及びオレイン
酸グリセリドの混合蒸気を導入して銀ペーストを作製し
た。前記、有機溶媒の混合蒸気は各々別容器にいれて加
熱し、所定の蒸気量となるように液温を調節し、これを
加熱した配管中で混合した後、バルブ(4)より回収室
)に導入した。得られた銀ペーストはその銀粒子の
平均粒径が60Åであった。さらに混合溶媒を用いたた
め、得られた銀ペーストを比較的高い温度環境下に長時
間密栓して放置した場合でも銀粒子の凝集は生じなかっ
た。例えば60℃恒温槽中に168時間放置した場合でも凝
集は生じす高い安定性を示した。
(Fourth Embodiment) Using the same device as the first embodiment, the helium pressure is 0.5 Torr.
Silver (Ag) was evaporated under the conditions of, and a mixed vapor of linoleic acid glyceride, linoleic acid glyceride and oleic acid glyceride was introduced as an organic solvent to prepare a silver paste. The mixed vapor of the organic solvent is put in a separate container and heated, the liquid temperature is adjusted so that a predetermined vapor amount is obtained, and this is mixed in a heated pipe, and then the recovery chamber (from the valve (4) ( 2 ). The obtained silver paste had an average particle size of silver particles of 60Å. Further, since the mixed solvent was used, aggregation of silver particles did not occur even when the obtained silver paste was tightly stoppered and left for a long time in a relatively high temperature environment. For example, even when it was left in a constant temperature bath at 60 ° C for 168 hours, it showed high stability with aggregation.

(第5実施例) 第1実施例と同じ装置を用い、ヘリウム圧力0.5Torr
の条件下で白金(Pt)を蒸発させ、有機溶媒としてシト
ロネロール、ゲラニオール、フェネチルアルコール、ネ
ロールの混合蒸気を導入して白金ペーストを作製した。
前記、有機溶媒の混合蒸気は第4実施例と同じ方法で導
入した。得られた白金ペーストはその白金粒子の平均粒
径が80Åであった。
(Fifth Embodiment) The same apparatus as in the first embodiment is used, and the helium pressure is 0.5 Torr.
Platinum (Pt) was evaporated under the conditions described above, and a mixed vapor of citronellol, geraniol, phenethyl alcohol, and nerol was introduced as an organic solvent to prepare a platinum paste.
The mixed vapor of the organic solvent was introduced by the same method as in the fourth embodiment. The obtained platinum paste had an average particle size of platinum particles of 80Å.

(第6実施例) 第1実施例と同し装置を用い、ヘリウム圧力0.5Torr
の条件下でパラジウム(Pd)を蒸発させ、有機溶媒とし
てオレイン酸メチルとある種の界面活性剤の混合蒸気を
導入してパラジウムペーストを作製した。前記、有機溶
媒の混合蒸気は第4実施例と同し方向で導入した。得ら
れたパラジウムペーストはそのパラジウム粒子の平均粒
径が60Åであった。さらに界面活性剤を含むためガラス
基板上へのペーストのぬれ性が改善され、又高い分散安
定性をも示した。
(Sixth Embodiment) Using the same apparatus as in the first embodiment, the helium pressure is 0.5 Torr.
Palladium (Pd) was evaporated under the conditions of, and a mixed paste of methyl oleate and a kind of surfactant was introduced as an organic solvent to prepare a palladium paste. The mixed vapor of the organic solvent was introduced in the same direction as in the fourth embodiment. In the obtained palladium paste, the average particle size of the palladium particles was 60Å. Furthermore, since a surfactant was included, the wettability of the paste on the glass substrate was improved, and high dispersion stability was also exhibited.

以上、本発明の各実施例について説明したが、勿論、
本発明はこれに限定されることなく、本発明の技術的思
想に基づき種々の変形が可能である。
The embodiments of the present invention have been described above.
The present invention is not limited to this, and various modifications can be made based on the technical idea of the present invention.

例えば、実施例では回収室()にのみ排気用のバル
ブ(5)を設け、蒸発室()と回収室()とを一緒
に排気したが、蒸発室()と回収室()両方に排気
用バルブを設け、別々に排気を行っても良い。その場合
は、金属蒸気が圧力差によって蒸発室()から回収室
)へと移送されるように、回収室()の方を低圧
にする必要がある。
For example, in the embodiment, the exhaust valve (5) is provided only in the recovery chamber ( 2 ) and the evaporation chamber ( 1 ) and the recovery chamber ( 2 ) are exhausted together, but the evaporation chamber ( 1 ) and the recovery chamber ( 2 ) Exhaust valves may be provided on both sides to perform exhaust separately. In that case, it is necessary to lower the pressure in the recovery chamber ( 2 ) so that the metal vapor is transferred from the evaporation chamber ( 1 ) to the recovery chamber ( 2 ) due to the pressure difference.

実施例では金属超微粒子を回収するための冷却板(1
1)が回収室()内に設けられているが、代りに冷却
フィルタを用いてもよいし、あるいはこれらを設けずに
回収室()全体を冷却して内壁面上で回収するように
しても良い。
In the embodiment, a cooling plate (1
Although 1) is provided in the recovery chamber ( 2 ), cooling filters may be used instead, or the entire recovery chamber ( 2 ) may be cooled and recovered on the inner wall surface without providing these. You can

あるいは又、実施例では蒸発室()と回収室(
とを別に設けたが、第6図に示すように真空室(18)を
1つだけにし、その中で金属を加熱蒸発させると共に有
機溶媒蒸気を導入し、それらを真空室(18)の冷却壁面
(19)上で回収しても良い。
Alternatively, in the embodiment, the evaporation chamber ( 1 ) and the recovery chamber ( 2 )
However, as shown in FIG. 6, there is only one vacuum chamber ( 18 ), the metal is heated and vaporized in it, and the organic solvent vapor is introduced, and they are cooled in the vacuum chamber (18). You may collect it on the wall (19).

用いられる金属は銅、インジウム、錫、チタン以外に
銀、金、ニッケル、亜鉛、クロム、タンタル、タングス
テン、パラジウム、白金、鉄、コバルト、ケイ素でも良
いし、それらの合金でも良い。
The metal used may be silver, gold, nickel, zinc, chromium, tantalum, tungsten, palladium, platinum, iron, cobalt, silicon, or alloys thereof, in addition to copper, indium, tin and titanium.

析出する金属粒子の大きさは不活性ガスの圧力、金属
の蒸気圧、蒸発温度等によって制御できるが、1000Å以
下の範囲が適する。1000Å以上になると、例えば配線パ
ターンに用いた時に微小パターンの形成が悪くなるから
である。又、焼結した場合に焼結性が悪くなり、従って
抵抗値が高くなるからでもある。本願発明では、粒径が
1000Å以下の大きさの粒子を孤立して生成することがで
きるので、これらの欠点は解消される。有機溶媒として
は蒸気実施例で使用したもの以外にも炭素数5以上のア
ルコール類又は有機エステル類の中から、用いる金属の
使用条件に応じて1種以上適宜選択して使用できる。金
属を蒸発させる方法としては、実施例の誘導加熱の他
に、ガス中蒸発法で通常使用される抵抗加熱、電子ビー
ム加熱、レーザーヒーム加熱あるいはスパッタリング法
等が利用できる。
The size of the deposited metal particles can be controlled by the pressure of the inert gas, the vapor pressure of the metal, the evaporation temperature, etc., but a range of 1000Å or less is suitable. This is because if it is 1000 Å or more, for example, when it is used for a wiring pattern, the formation of a fine pattern becomes worse. Also, when sintered, the sinterability deteriorates, and therefore the resistance value increases. In the present invention, the particle size is
These drawbacks are eliminated because particles of 1000 Å or less can be generated in isolation. As the organic solvent, one or more selected from alcohols having 5 or more carbon atoms or organic esters other than those used in the steam examples can be appropriately selected and used according to the usage conditions of the metal used. As a method for evaporating the metal, resistance heating, electron beam heating, laser heme heating, sputtering method or the like which is usually used in the gas evaporation method can be used in addition to the induction heating of the embodiment.

又、雰囲気ガスとしてはヘリウムの他に、アルゴン等
の不活性ガスが使用される。
In addition to helium, an inert gas such as argon is used as the atmosphere gas.

〔発明の効果〕〔The invention's effect〕

本発明は以上のような構成になっているので、表面酸
化のない金属超微粒子が、チェーン状化することなく均
一に、かつ、高密度に分散した金属ペーストが得られ
る。
Since the present invention is configured as described above, a metal paste in which ultrafine metal particles having no surface oxidation are dispersed uniformly and at high density without forming a chain can be obtained.

従って、これを例えばIC基板の配線に用いると、微細
なパターンが形成できる。又、表面酸化がないので低温
で焼結でき、従って熱歪みも小さい。さらに又、金属超
微粒子が高密度に分散しているので、焼結した時の変化
量が小さく、割れも生じない。また、本発明の金属ペー
ストを、透明電導膜として用いると、光透過率、導電率
が良好であり、ピンホールやクラックのない緻密な膜が
得られ、更に、安定化ジルコニアとステンレスとの接合
に用いる際には、強い接着強度が得られるという効果を
も奏することができる。
Therefore, if this is used for wiring of an IC substrate, for example, a fine pattern can be formed. Further, since there is no surface oxidation, it can be sintered at a low temperature, and therefore the thermal strain is small. Furthermore, since the ultrafine metal particles are dispersed at a high density, the amount of change during sintering is small and cracking does not occur. Further, when the metal paste of the present invention is used as a transparent conductive film, the light transmittance and the conductivity are good, a dense film without pinholes and cracks is obtained, and further, the bonding of stabilized zirconia and stainless steel is achieved. When used for the above, the effect of obtaining a strong adhesive strength can also be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例にかかる金属ペーストを製
造する方法及び装置を模式的に示す図、第2A図、第2B図
はそれぞれ、第1実施例によって得られた銅ペースト及
び従来法による銅ペーストの粒子構造を示す透過電子顕
微鏡写真、第3図は第1実施例によって得られた銅ペー
スト及び従来法による銅ペーストをそれぞれ配線パター
ンの形成に用いた場合について、それらの配線の比抵抗
の焼結温度に対する変化を示すグラフ、第4A図第4B図
は、第2実施例によって得られたインジウム−錫ペース
トと、従来法によるインジウム−錫ペーストをそれぞれ
の透明電導膜の形成に用いた場合について、焼結温度に
対する光透過率と電気抵抗率との変化を示すグラフ、第
5A図は第3実施例によって得られたチタンペーストを用
いて安定化ジルコニアとステンレスとを接合した状態を
示す図、第5B図は、第3実施例によって得られたチタン
ペーストと、従来法によるチタンペーストのそれぞれに
ついて、安定化ジルコニアとステンレスとを接合する時
の温度とそれに対する接合部分の引張強度の変化を示す
グラフ、第6図は本発明の変形例にかかる金属ペースト
を製造する方法及び装置を模式的に示す図、第7図は従
来法による金属超微粒子を製造する1例を示す模式図で
ある。 なお、図において、 ()……蒸発室 ()……回収室 (7)……銅 (9)……銅蒸気 (10)……α−テルピネオール蒸気 (11)……冷却板 (12)……銅超微粒子 (14)……α−テルピネオール (18)……真空室 (19)……冷却壁面
FIG. 1 is a diagram schematically showing a method and an apparatus for producing a metal paste according to a first embodiment of the present invention, FIGS. 2A and 2B are the copper paste obtained by the first embodiment and a conventional method, respectively. FIG. 3 is a transmission electron micrograph showing the particle structure of the copper paste prepared by the method, FIG. 3 shows the case where the copper paste obtained by the first embodiment and the copper paste prepared by the conventional method were used for forming the wiring patterns. Graphs showing changes in resistivity with respect to sintering temperature, FIG. 4A and FIG. 4B show that the indium-tin paste obtained by the second embodiment and the indium-tin paste obtained by the conventional method were used to form the respective transparent conductive films. A graph showing changes in light transmittance and electrical resistivity with respect to sintering temperature when used,
FIG. 5A is a view showing a state in which stabilized zirconia and stainless steel are joined using the titanium paste obtained in the third embodiment, and FIG. 5B is a titanium paste obtained in the third embodiment and a conventional method. For each of the titanium pastes, a graph showing the change in temperature when joining stabilized zirconia and stainless steel and the tensile strength of the joined portion with respect to that, FIG. 6 is a method for producing a metal paste according to a modification of the present invention, and FIG. FIG. 7 is a schematic diagram showing the apparatus, and FIG. 7 is a schematic diagram showing an example of producing ultrafine metal particles by a conventional method. In the figure, ( 1 ) …… Evaporation chamber ( 2 ) …… Recovery chamber (7) …… Copper (9) …… Copper vapor (10) …… α-Terpineol vapor (11) …… Cooling plate (12 ) …… Copper ultrafine particles (14) …… α-terpineol ( 18 ) …… Vacuum chamber (19) …… Cooling wall surface

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素数5以上のアルコール類の1種以上を
含有する有機溶媒、又は有機エステル類の1種以上を含
有する有機溶媒中に、粒径1000Å以下の金属超微粒子が
その表面を該有機溶媒で覆われて個々に均一分散してい
ることを特徴とする金属ペースト。
1. Ultrafine metal particles having a particle size of 1000Å or less are applied to the surface of an organic solvent containing one or more alcohols having 5 or more carbon atoms or an organic solvent containing one or more organic esters. A metal paste which is covered with the organic solvent and is uniformly dispersed.
【請求項2】前記金属が、銀、金、ニッケル、インジウ
ム、錫、亜鉛、チタン、銅、クロム、タンタル、タング
ステン、パラジウム、白金、鉄、コバルト、ケイ素のう
ち少なくとも1種の金属、又はこれら金属の合金である
請求項(1)に記載の金属ペースト。
2. The metal is at least one metal selected from silver, gold, nickel, indium, tin, zinc, titanium, copper, chromium, tantalum, tungsten, palladium, platinum, iron, cobalt and silicon, or a metal thereof. The metal paste according to claim 1, which is an alloy of metals.
【請求項3】真空室中でかつ不活性ガスの圧力を10Torr
以下とする雰囲気のもとで金属を蒸発させ、蒸発した金
属蒸気を冷却面上に粒径1000Å以下の超微粒子として回
収する方法において、前記金属を蒸発させると共に前記
真空室に、炭素数5以上のアルコール類の1種以上を含
有する有機溶媒、又は有機エステル類の1種以上を含有
する有機溶媒の蒸気を導入して、生成した前記金属の超
微粒子表面を該有機溶媒で覆うようにしたことを特徴と
する金属ペーストの製造方法。
3. The pressure of the inert gas is 10 Torr in the vacuum chamber.
In the method of evaporating a metal under the following atmosphere and recovering the evaporated metal vapor as ultrafine particles having a particle size of 1000 Å or less on the cooling surface, the metal is evaporated and the carbon number in the vacuum chamber is 5 or more. Of the organic solvent containing at least one of the alcohols or the organic solvent containing at least one of the organic esters is introduced to cover the surface of the produced ultrafine particles of the metal with the organic solvent. A method for producing a metal paste, comprising:
【請求項4】前記金属が、銀、金、ニッケル、インジウ
ム、錫、亜鉛、チタン、銅、クロム、タンタル、タング
ステン、パラジウム、白金、鉄、コバルト、ケイ素のう
ち少なくとも1種の金属、又はこれら金属の合金である
請求項(3)に記載の金属ペーストの製造方法。
4. The metal is at least one metal selected from silver, gold, nickel, indium, tin, zinc, titanium, copper, chromium, tantalum, tungsten, palladium, platinum, iron, cobalt and silicon, or a metal thereof. The method for producing a metal paste according to claim 3, which is a metal alloy.
JP1163460A 1989-03-30 1989-06-26 Metal paste and manufacturing method thereof Expired - Lifetime JP2561537B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-79340 1989-03-30
JP7934089 1989-03-30

Publications (2)

Publication Number Publication Date
JPH0334211A JPH0334211A (en) 1991-02-14
JP2561537B2 true JP2561537B2 (en) 1996-12-11

Family

ID=13687171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163460A Expired - Lifetime JP2561537B2 (en) 1989-03-30 1989-06-26 Metal paste and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2561537B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247341B2 (en) * 2000-12-04 2007-07-24 Ulvac, Inc. Method for forming electrodes of flat panel display
KR100851801B1 (en) * 2000-10-13 2008-08-13 가부시키가이샤 알박 Process for producing dispersion of ultrafine metal particles
JP2008285347A (en) * 2007-05-16 2008-11-27 Asahi Kasei Corp Dispersion of cuprous oxide
US7674401B2 (en) 2001-12-18 2010-03-09 Asahi Kasei Kabushiki Kaisha Method of producing a thin conductive metal film
US7708910B2 (en) 2000-10-13 2010-05-04 Ulvac, Inc. Ink for ink jet printing and method for preparing the same
EP2256550A1 (en) 2003-09-29 2010-12-01 E. I. du Pont de Nemours and Company Spin-printing of electronic and display components
JP2011044683A (en) * 2009-08-24 2011-03-03 Samsung Electro-Mechanics Co Ltd Ceramic substrate, and manufacturing method therefor
JP2011058068A (en) * 2009-09-11 2011-03-24 Toyobo Co Ltd Method for producing copper thin film and copper thin film
WO2011034019A1 (en) 2009-09-16 2011-03-24 日立化成工業株式会社 Printing ink, metal nanoparticles used in the same, wiring, circuit board, and semiconductor package
JP2011251908A (en) * 2011-09-16 2011-12-15 Asahi Kasei E-Materials Corp Method for producing cuprous oxide dispersion
US9309119B2 (en) 2010-03-24 2016-04-12 Hitachi Metals, Ltd. Producing method of metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69708165T2 (en) * 1996-11-21 2002-03-07 Mitsuboshi Belting Ltd Colored and baked coating and process for its manufacture
JP2000124157A (en) * 1998-08-10 2000-04-28 Vacuum Metallurgical Co Ltd FORMATION OF Cu THIN FILM
JP4362173B2 (en) * 1998-08-10 2009-11-11 アルバックマテリアル株式会社 Cu ultrafine particle independent dispersion
JP2001035814A (en) * 1999-07-22 2001-02-09 Vacuum Metallurgical Co Ltd Method of forming silver wiring pattern
JP4362170B2 (en) * 1999-07-22 2009-11-11 アルバックマテリアル株式会社 Silver ultrafine particle independent dispersion
WO2001027983A1 (en) * 1999-10-15 2001-04-19 Ebara Corporation Method and apparatus for forming interconnection
KR100447965B1 (en) 2000-01-31 2004-09-13 토호 티타늄 가부시키가이샤 Nickel power dispersion, method of producing nickel power dispersion and method of producing conductive paste
JP4903932B2 (en) * 2000-08-24 2012-03-28 ケミプロ化成株式会社 Method for producing binary metal particle colloidal dispersion
JP2003041305A (en) 2001-07-27 2003-02-13 Fuji Photo Film Co Ltd Ultra-fine particle, and manufacturing method and apparatus therefor
JP5336776B2 (en) * 2002-11-12 2013-11-06 Dowaエレクトロニクス株式会社 Fine copper powder
WO2004067465A1 (en) 2003-01-31 2004-08-12 Asahi Glass Company, Limited Process for producing low-reflection glass plate and low-reflection glass plate
JP4284550B2 (en) 2003-09-12 2009-06-24 独立行政法人産業技術総合研究所 Metal nanoparticle dispersion that can be sprayed in the form of fine droplets
TWI289488B (en) 2003-10-20 2007-11-11 Harima Chemicals Inc Fine metal particles, fine metal oxide particles in the form of dried-up powder, and use of the same
US7384448B2 (en) * 2004-02-16 2008-06-10 Climax Engineered Materials, Llc Method and apparatus for producing nano-particles of silver
DE602004020396D1 (en) * 2004-06-23 2009-05-14 Harima Chemicals Inc CONDUCTIVE METAL PASTE
JP2006073550A (en) * 2004-08-31 2006-03-16 Toshiba Corp Bonding member and its manufacturing method
CN101185385B (en) 2005-06-03 2010-06-16 大日本油墨化学工业株式会社 Electromagnetic shielding material and method for producing same
KR100784762B1 (en) * 2007-01-22 2007-12-14 하리마 카세이 가부시키가이샤 Conductive metal paste
EP2045028A1 (en) 2007-09-26 2009-04-08 Fujifilm Corporation Metal nanoparticles, method for producing the same, aqueous dispersion, method for manufacturing printed wiring or electrode, and printed wiring board or device
US9527133B2 (en) * 2008-12-24 2016-12-27 Intrinsiq Materials Limited Fine particles
EP2405257A4 (en) 2009-03-04 2017-08-02 Mytech Co., Ltd. Assaying substrate with surface-enhanced raman scattering activity
CN104379247A (en) * 2012-06-05 2015-02-25 道康宁公司 Fluid capture of nanoparticles
CN106663504A (en) 2014-07-14 2017-05-10 户田工业株式会社 Method for producing conductive coating film, and conductive coating film
CN111804926A (en) * 2020-07-06 2020-10-23 昆明理工大学 Method for preparing refractory metal powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146103A (en) * 1983-02-09 1984-08-21 昭和電工株式会社 Conductive paste

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100851801B1 (en) * 2000-10-13 2008-08-13 가부시키가이샤 알박 Process for producing dispersion of ultrafine metal particles
US7708910B2 (en) 2000-10-13 2010-05-04 Ulvac, Inc. Ink for ink jet printing and method for preparing the same
US7247341B2 (en) * 2000-12-04 2007-07-24 Ulvac, Inc. Method for forming electrodes of flat panel display
DE10297544B4 (en) * 2001-12-18 2015-10-29 Asahi Kasei Kabushiki Kaisha Process for producing a metal thin film
US7674401B2 (en) 2001-12-18 2010-03-09 Asahi Kasei Kabushiki Kaisha Method of producing a thin conductive metal film
EP2256550A1 (en) 2003-09-29 2010-12-01 E. I. du Pont de Nemours and Company Spin-printing of electronic and display components
JP2008285347A (en) * 2007-05-16 2008-11-27 Asahi Kasei Corp Dispersion of cuprous oxide
JP2011044683A (en) * 2009-08-24 2011-03-03 Samsung Electro-Mechanics Co Ltd Ceramic substrate, and manufacturing method therefor
JP2011058068A (en) * 2009-09-11 2011-03-24 Toyobo Co Ltd Method for producing copper thin film and copper thin film
WO2011034019A1 (en) 2009-09-16 2011-03-24 日立化成工業株式会社 Printing ink, metal nanoparticles used in the same, wiring, circuit board, and semiconductor package
KR20120094157A (en) 2009-09-16 2012-08-23 히다치 가세고교 가부시끼가이샤 Printing ink, metal nanoparticles used in the same, wiring, circuit board, and semiconductor package
US9309119B2 (en) 2010-03-24 2016-04-12 Hitachi Metals, Ltd. Producing method of metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
JP2011251908A (en) * 2011-09-16 2011-12-15 Asahi Kasei E-Materials Corp Method for producing cuprous oxide dispersion

Also Published As

Publication number Publication date
JPH0334211A (en) 1991-02-14

Similar Documents

Publication Publication Date Title
JP2561537B2 (en) Metal paste and manufacturing method thereof
US5587111A (en) Metal paste, process for producing same and method of making a metallic thin film using the metal paste
EP0449309B1 (en) Method of making metalic thin film
US5576248A (en) Group IV semiconductor thin films formed at low temperature using nanocrystal precursors
EP0947245B1 (en) Method of forming metal colloids and method of forming a metal oxide sensitive layer for a chemical sensor device
JP3419788B2 (en) Method for producing thin layer carrying non-evaporable getter material and getter device produced thereby
JPS5818961B2 (en) Method of forming refractory metallurgy on ceramic substrate
KR20200080219A (en) Process for producing graphene-based transparent conductive electrodes and products using them
WO2009134771A1 (en) Molybdenum-niobium alloys, sputtering targets containing such alloys, methods of making such targets, thin films prepared therefrom and uses thereof
CN104212997B (en) The film build method of Cu Mn alloy films and Cu Mn alloy sputtering targets and Cu Mn alloy films
Olynick et al. In situ ultra-high vacuum transmission electron microscopy studies of nanocrystalline copper
JPH1150242A (en) Copper sputtering target for forming electrode coating, its production and copper series electrode coating
JP2001295035A (en) Sputtering target and its manufacturing method
CN108004506B (en) A kind of noble metal nano particles and preparation method thereof based on In alloy
Ogugua et al. Effects of deposition environment and temperature on photoluminescence, particle morphology, and crystal structure of pulsed laser deposited Ga2O3 thin films
JP2000129432A (en) Electroconductive metallic oxide sinetred body and its use
CA1265961A (en) Substrates coated with solvated clusters of metal particles
JPH0320907A (en) Conductive paste
KR102545196B1 (en) sensor and manufacturing method of the same
JPH05263219A (en) Production of copper indium selenide thin film
Kȩpiński Dispersion and electrical resistance of discontinuous silver and copper films on amorphous carbon and silicon oxide
Lan et al. Grids for Applications in High-Temperature High-Resolution Transmission Electron Microscopy
KR102054594B1 (en) Tungsten thin film with improved conductivity and manufacturing method thereof
FR3057701A1 (en) METHOD OF MAKING AN ELECTRICAL CONTACT ON A GRAPHITE LAYER, CONTACT OBTAINED USING SUCH A METHOD AND ELECTRONIC DEVICE USING SUCH CONTACT
Zh et al. Tem Study of Crystallization of a-SiC in Contact With Silver

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13