JP2001035255A - Silver superfine particle independently dispersed solution - Google Patents

Silver superfine particle independently dispersed solution

Info

Publication number
JP2001035255A
JP2001035255A JP11207577A JP20757799A JP2001035255A JP 2001035255 A JP2001035255 A JP 2001035255A JP 11207577 A JP11207577 A JP 11207577A JP 20757799 A JP20757799 A JP 20757799A JP 2001035255 A JP2001035255 A JP 2001035255A
Authority
JP
Japan
Prior art keywords
silver
ultrafine
independent dispersion
organic solvent
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11207577A
Other languages
Japanese (ja)
Other versions
JP4362170B2 (en
Inventor
Kutouruku Aarippu
アーリップ・クトゥルク
Masaaki Oda
正明 小田
Hiroyuki Yamakawa
洋幸 山川
Hirohiko Murakami
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuum Metallurgical Co Ltd
Ulvac Inc
Original Assignee
Vacuum Metallurgical Co Ltd
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuum Metallurgical Co Ltd, Ulvac Inc filed Critical Vacuum Metallurgical Co Ltd
Priority to JP20757799A priority Critical patent/JP4362170B2/en
Publication of JP2001035255A publication Critical patent/JP2001035255A/en
Application granted granted Critical
Publication of JP4362170B2 publication Critical patent/JP4362170B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silver-containing superfine particle dispersed solution having low electric resistance at an LSI operating temperature capable of forming a conductive uniform fine pattern by mixing an organic solvent which hardly evaporates at room temperature but evaporates in silver wiring with silver-containing superfine particles having a specified particle size or less, covering the surfaces of the superfine particles with the organic solvent to independently disperse the superfine particles. SOLUTION: A silver-containing fine particle has a particle size of 0.01 μm or smaller and a viscosity at room temperature of 50 cp or lower. As the organic solvent, which preferably evaporates at 150 deg.C or higher, mineral split, tridecane, dodecylbenzne, mixtures thereof, or their mixtures with α-terpineol is preferably used. Furthermore, hydrocarbon having 5 or more carbon atoms, alcohol, ether, ester, ketone, organic nitride, organic silicon compound, organic sulfur compound or a mixture thereof can be properly mixed. The silver- containing ultrafine particle is desirably formed of silver, silver oxide or a mixture thereof, and the concentration is desirably set to 15-50 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、LSI基板などの
半導体基板の微細な配線を形成するために平坦な膜を形
成し、エッチング法によりパターニングする方法または
前もって形成された微細なトレンチ、ビアホール、コン
タクトホールを埋め込み、配線を形成するのに使用する
銀超微粒子独立分散液に関する。
The present invention relates to a method for forming a flat film for forming fine wiring on a semiconductor substrate such as an LSI substrate and patterning the film by an etching method, or a method for forming fine trenches, via holes, or the like in advance. The present invention relates to a silver ultra-fine particle independent dispersion used for filling contact holes and forming wiring.

【0002】[0002]

【従来の技術】従来、LSI基板等の多層配線を形成す
る際に、導電性の均一な微細パターンを形成する金属ペ
ーストとして、炭素数5以上のアルコール類、又は有機
エステル類を含有する有機溶媒中に粒径1000Å
(0.1μm)以下の金属超微粒子がその表面を該有機
溶媒で覆われて個々に均一に分散しているものが知られ
ている(例えば、第2561537号特許公報)。
2. Description of the Related Art Conventionally, when forming a multilayer wiring such as an LSI substrate, an organic solvent containing an alcohol or an organic ester having 5 or more carbon atoms has been used as a metal paste for forming a fine pattern with uniform conductivity. Particle size 1000Å
It is known that ultrafine metal particles (0.1 μm) or less are uniformly dispersed individually with their surfaces covered with the organic solvent (for example, Japanese Patent No. 25661537).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、かかる
従来技術の金属ペーストにおいては、次のような問題が
あった。すなわち、実用化が始まっている銅配線では、
材料である銅はエッチング法によるパターニングが不可
能なものであり、そのために前もってトレンチ、ビアホ
ール等の形成を行い、その中に銅材を埋め込む方法(ダ
マシン法)が採用されている。しかしながら、LSI基
板の配線幅が0.25μm、0.18μmと微細化が進
む中で、塗布された金属ペーストが配線溝内を十分に埋
め込む前に乾燥が始まったり、また粘度が高いために、
微細な溝内部を完全に埋め込むことが困難となってい
た。また、銅はアルミニウムに比べ室温における電気抵
抗は近いものの、電気抵抗の温度係数が大きく、LSI
の動作温度(約150℃)においては抵抗がそれ程低く
ならないため、期待される程のLSIに対する高速動作
ができないことや、焼結過程で銅が酸化することを防止
するために雰囲気調整をする必要があった。
However, such a conventional metal paste has the following problems. In other words, for copper wiring, which has been put into practical use,
Copper, which is a material, cannot be patterned by an etching method. Therefore, a method of forming a trench, a via hole or the like in advance and embedding a copper material therein (damascene method) is employed. However, as the wiring width of the LSI substrate has been reduced to 0.25 μm and 0.18 μm, drying has started before the applied metal paste has sufficiently filled the wiring grooves, and the viscosity has been high due to the high viscosity.
It has been difficult to completely fill the inside of the fine groove. Further, copper has a higher electrical resistance at room temperature than aluminum, but has a large temperature coefficient of electrical resistance.
At the operating temperature (approximately 150 ° C.), the resistance does not decrease so much that high-speed operation of an LSI cannot be performed as expected, and the atmosphere must be adjusted to prevent copper from being oxidized during the sintering process. was there.

【0004】本発明は、かかる従来技術の問題点を解決
するためになされたものであり、銅では不可能なエッチ
ングによるパターニングも可能となり、または埋め込み
配線形成法によって形成する場合においても、LSI基
板の微細な配線溝、ビアホール、コンタクトホール等
を、銅に比べ融点が低く、酸化しにくい銀又は銀合金を
使用して、雰囲気調整をすることなく、大気中で加熱処
理することにより、溝等の細部への再充填(リフロー)
処理で完全に埋め込むことができ、銅に比べLSIの動
作温度における電気抵抗が低く導電性の均一な微細パタ
ーンを形成することができる銀超微粒子独立分散液を提
供することを課題としている。
The present invention has been made in order to solve the problems of the prior art, and it is possible to perform patterning by etching which is impossible with copper, or to form an LSI substrate even when forming by an embedded wiring forming method. The fine wiring grooves, via holes, contact holes, etc., are made of silver or silver alloy, which has a lower melting point than copper and is hardly oxidized, Refilling details
It is an object of the present invention to provide a silver ultrafine particle independent dispersion liquid which can be completely embedded by processing and has a low electric resistance at an operating temperature of an LSI as compared with copper and can form a fine pattern with uniform conductivity.

【0005】[0005]

【課題を解決するための手段】本発明の銀超微粒子独立
分散液は、粘度が室温で50cP以下であり、室温で蒸
発し難くかつ半導体基板上に銀配線を形成する際の乾燥
・焼成工程で蒸発するような有機溶媒と、粒径0.01
μm以下の銀含有超微粒子とを混合して形成され、該超
微粒子の表面が該有機溶媒で覆われて個々に独立して分
散しているものである。該有機溶媒は、150℃以上で
蒸発するものであることが好ましい。該有機溶媒は、ミ
ネラルスピリット、トリデカン、ドデシルベンゼン若し
くはそれらの混合物、又はそれらにα−テルピネオール
を混合したものであることが望ましく、その他に、炭素
数5以上の炭化水素、アルコール、エーテル、エステ
ル、ケトン、有機窒素化合物、有機ケイ素化合物、有機
イオウ化合物若しくはそれらの混合物を、使用する銀超
微粒子独立分散液の用途によって適宜混合することがで
きる。前記銀含有超微粒子は、銀若しくは酸化銀(Ag
2O、AgO又はAg23)又はそれらの混合物からな
る超微粒子であることが望ましい。また、前記銀含有超
微粒子の濃度は、5〜70wt%、好ましくは15〜5
0wt%である。前記銀超微粒子独立分散液の粘度は5
0cP以下、好ましくは10cP以下である。前記銀超
微粒子独立分散液は、銀含有超微粒子以外に、銀のエレ
クトロマイグレーション(EM)耐性を向上させる金属
又はこれらの金属を含む化合物を少なくとも一種含有し
ていてもよい。この銀含有超微粒子以外の金属の具体的
な例としては、例えばパラジウム、チタン等が挙げられ
る。さらに、前記銀超微粒子独立分散液は、銀含有超微
粒子以外に、銀への溶解度が低く、かつ半導体基板の絶
縁層構成材料と反応しやすい金属又はこれらの金属を含
む化合物を少なくとも一種含有していてもよく、この金
属元素が基材との界面に析出することにより基材との接
着性が向上したり、銀原子が絶縁物中を拡散することが
防止される。この銀含有超微粒子以外の金属の具体的な
例としては、例えば、金、銅、アルミニウム、マグネシ
ウム、スカンジウム、インジウム、亜鉛、ニッケル、白
金、コバルト、ロジウム、イリジウム、バナジウム、
鉄、ルテニウム、オスミウム、クロム、タングステン、
タンタル、ニオブ、ビスマス、鉛、ホウ素、ケイ素、ス
ズ、バリウムから選ばれる金属が挙げられる。
The independent dispersion liquid of ultrafine silver particles of the present invention has a viscosity of 50 cP or less at room temperature, hardly evaporates at room temperature, and a drying / firing step for forming silver wiring on a semiconductor substrate. Organic solvent that evaporates in
It is formed by mixing silver-containing ultrafine particles having a particle size of not more than μm, and the surface of the ultrafine particles is covered with the organic solvent and is dispersed independently. The organic solvent preferably evaporates at 150 ° C. or higher. The organic solvent is preferably mineral spirit, tridecane, dodecylbenzene or a mixture thereof, or a mixture thereof with α-terpineol.In addition, hydrocarbons having 5 or more carbon atoms, alcohols, ethers, esters, A ketone, an organic nitrogen compound, an organic silicon compound, an organic sulfur compound or a mixture thereof can be appropriately mixed depending on the use of the silver ultrafine particle independent dispersion to be used. The silver-containing ultrafine particles are made of silver or silver oxide (Ag).
Ultrafine particles composed of 2 O, AgO or Ag 2 O 3 ) or a mixture thereof are desirable. The concentration of the silver-containing ultrafine particles is 5 to 70 wt%, preferably 15 to 5 wt%.
0 wt%. The silver ultrafine particle independent dispersion has a viscosity of 5
It is 0 cP or less, preferably 10 cP or less. The silver ultrafine particle independent dispersion may contain, in addition to the silver-containing ultrafine particles, at least one metal that improves the electromigration (EM) resistance of silver or a compound containing these metals. Specific examples of the metal other than the silver-containing ultrafine particles include, for example, palladium and titanium. Further, the silver ultrafine particle independent dispersion liquid contains, besides silver-containing ultrafine particles, a metal having low solubility in silver and easily reacting with an insulating layer constituting material of a semiconductor substrate or a compound containing these metals. The metal element may be deposited at the interface with the base material to improve the adhesion to the base material and prevent silver atoms from diffusing in the insulator. Specific examples of the metal other than the silver-containing ultrafine particles include, for example, gold, copper, aluminum, magnesium, scandium, indium, zinc, nickel, platinum, cobalt, rhodium, iridium, vanadium,
Iron, ruthenium, osmium, chromium, tungsten,
Examples include metals selected from tantalum, niobium, bismuth, lead, boron, silicon, tin, and barium.

【0006】[0006]

【実施例】以下、本発明の銀超微粒子独立分散液の実施
例をその分散液の使用例と共に説明する。 (実施例1)ヘリウム圧力0.5Torrの条件下で銀
を蒸発させ、ガス中蒸発法により銀の超微粒子を生成す
る際に、生成過程の銀超微粒子にミネラルスピリットの
蒸気を接触させて冷却回収し、溶媒中に独立した状態で
分散している平均粒子径0.008μmの銀超微粒子を
20wt%含有する銀超微粒子独立分散液を作製した。
この分散液は粘度が室温で5cPであった。
EXAMPLES Examples of the ultrafine silver particle independent dispersion of the present invention will be described below together with examples of use of the dispersion. (Example 1) When silver is evaporated under the condition of a helium pressure of 0.5 Torr and silver ultrafine particles are generated by an in-gas evaporation method, a mineral spirit vapor is brought into contact with the silver ultrafine particles in the production process and cooled. A silver ultrafine particle independent dispersion liquid containing 20 wt% of the silver ultrafine particles having an average particle diameter of 0.008 μm which was collected and independently dispersed in a solvent was prepared.
This dispersion had a viscosity of 5 cP at room temperature.

【0007】同様の方法で平均粒径0.006μmのパ
ラジウム超微粒子を20wt%含有するパラジウム超微
粒子独立分散液を作製した。この分散液は粘度が室温で
5cPであった。このパラジウム超微粒子独立分散液を
上記銀超微粒子独立分散液と混合し、パラジウムが1.
0wt%をしめるように銀・パラジウム混合液を作製し
た。
In the same manner, a palladium ultrafine particle independent dispersion liquid containing 20 wt% of palladium ultrafine particles having an average particle diameter of 0.006 μm was prepared. This dispersion had a viscosity of 5 cP at room temperature. This palladium ultrafine particle independent dispersion was mixed with the silver ultrafine particle independent dispersion, and
A silver / palladium mixture was prepared so as to contain 0 wt%.

【0008】次いで、既に半導体素子が形成され、上部
配線とのコンタクトのためにW(タングステン)ビアが
形成されたSi基板を用意した。このSi基板のビアの
部分を除いた他の部分には、絶縁膜としてのSiO2
とその上に厚さ0.03μmのTiNバリア膜が形成さ
れている。
Next, a Si substrate having a semiconductor element formed thereon and a W (tungsten) via formed for contact with an upper wiring was prepared. Except for the via portion of the Si substrate, a SiO 2 film as an insulating film and a 0.03 μm-thick TiN barrier film are formed on the SiO 2 film as an insulating film.

【0009】上記の基板をスピンコータにセットして5
00rpmで回転させ、その上方から室温で上記の銀・
パラジウム超微粒子独立分散液を滴下することによっ
て、スピンコーティングし、基板の表面に平坦な該分散
液の液膜を形成した。この状態の基板を大気中、250
℃の温度で、2分間加熱して有機溶媒を蒸発させ、次い
で温度を300℃に上げて、10分間焼成した。かくし
て、銀超微粒子が相互に融着して、割れのない厚さ1μ
mの銀・パラジウム合金薄膜が形成された。
The above substrate is set on a spin coater and 5
At room temperature and at room temperature from above.
Spin-coating was performed by dropping the palladium ultrafine particle independent dispersion, and a flat liquid film of the dispersion was formed on the surface of the substrate. The substrate in this state is placed in the atmosphere for 250 minutes.
The organic solvent was evaporated by heating at a temperature of 2 ° C. for 2 minutes, then the temperature was increased to 300 ° C. and baked for 10 minutes. Thus, the ultrafine silver particles are fused together and have a thickness of 1 μm without cracks.
Thus, a silver-palladium alloy thin film of m was formed.

【0010】その上にフォトレジスト膜をコーティング
し、銀・パラジウム膜をエッチングにより取り除きたい
部分以外を残すようにフォトレジスト膜のパターニング
処理を行った。この基板を真空チャンバー内にセット
し、チャンバー内を真空排気した後に、酸素と塩素とか
らなる混合ガス(10-4Torr)を導入し、高周波プ
ラズマ処理を施して不用部分の銀・パラジウム膜を除去
し、さらに銀・パラジウム膜上に残ったフォトレジスト
を取り除き、Wビア上に幅0.15μmの銀配線を形成
した。その比抵抗値は1.87μΩcmであった。 (実施例2)実施例1で作製した銀・パラジウム超微粒
子独立分散液を用いて、Si基板上に設けられたビアホ
ールを処理した。このSi基板に形成されている絶縁膜
としてのSiO2膜には孔径0.15μm(アスペクト
比6.7)、0.25μm(アスペクト比4)のビアホ
ールが開けられており、ビアホールの内表面を含む基板
の表面にはスパッタにより、WNのバリア膜が厚さ0.
02μmで形成されている。
A photoresist film was coated thereon, and the photoresist film was subjected to a patterning process so as to leave a portion other than a portion where the silver / palladium film was to be removed by etching. This substrate was set in a vacuum chamber, and after evacuation of the chamber, a mixed gas (10 -4 Torr) containing oxygen and chlorine was introduced, and high-frequency plasma treatment was performed to remove unnecessary silver / palladium films. Then, the photoresist remaining on the silver / palladium film was removed, and a silver wiring having a width of 0.15 μm was formed on the W via. Its specific resistance was 1.87 μΩcm. (Example 2) Via holes provided on a Si substrate were treated using the silver / palladium ultrafine particle independent dispersion liquid prepared in Example 1. Via holes having a hole diameter of 0.15 μm (aspect ratio 6.7) and 0.25 μm (aspect ratio 4) are formed in the SiO 2 film as an insulating film formed on the Si substrate. A WN barrier film having a thickness of 0.
It is formed with a thickness of 02 μm.

【0011】上記の基板をスピンコータにセットして5
00rpmで回転させ、その上方から室温で上記の銀・
パラジウム超微粒子独立分散液を滴下することによっ
て、スピンコーティングした。ビアホール内にはこの分
散液が充填され、基板の表面には平坦な該分散液の液膜
が形成された。この状態の基板を大気中、250℃の温
度で、2分間加熱して有機溶媒を蒸発させ、次いで温度
を300℃に上げて、10分間焼成した。かくして、銀
超微粒子が相互に融着して、ビアホール内が銀で空洞な
く埋め込まれた縮みや割れのない銀薄膜が形成された。
次いで、該ビアホールの内部以外の銀膜をCMP処理し
たところ、基板表面の余分な銀が除去され、ビアホール
内に平坦な表面を有する銀薄膜が形成された。その比抵
抗は1.87μΩcmであった。 (実施例3)1Torrのヘリウムガス中に0.01T
orrのO2 ガスを混合した雰囲気下で銀を蒸発させて
酸化銀(Ag2O)の超微粒子を生成し、ドデシルベンゼ
ンとフタル酸ジエチルとの混合蒸気に接触させて冷却
し、平均粒径0.01μmの酸化銀(Ag2O)超微粒子
を25wt%含有する室温での粘度10cPの酸化銀
(Ag2O)超微粒子独立分散液を作製した。また、この
酸化銀(Ag2O)超微粒子独立分散液と実施例1で作製
した銀・パラジウム超微粒子独立分散液とを混合して、
室温での粘度7cPの銀・パラジウム・酸化銀混合分散
液を作製した。
The above substrate is set on a spin coater and 5
At room temperature and at room temperature from above.
Spin coating was performed by dropping the palladium ultrafine particle independent dispersion liquid. This dispersion was filled in the via hole, and a flat liquid film of the dispersion was formed on the surface of the substrate. The substrate in this state was heated in the air at a temperature of 250 ° C. for 2 minutes to evaporate the organic solvent, and then the temperature was raised to 300 ° C. and baked for 10 minutes. Thus, the ultrafine silver particles were fused with each other to form a silver thin film without shrinkage or cracking in which the via holes were filled with silver without voids.
Next, when the silver film other than the inside of the via hole was subjected to the CMP treatment, excess silver on the substrate surface was removed, and a silver thin film having a flat surface was formed in the via hole. Its specific resistance was 1.87 μΩcm. (Example 3) 0.01T in helium gas of 1 Torr
The silver is evaporated under an atmosphere mixed with O 2 gas of orr to produce ultrafine particles of silver oxide (Ag 2 O), which is cooled by contacting with a mixed vapor of dodecylbenzene and diethyl phthalate. Silver oxide having a viscosity of 10 cP at room temperature containing 25 wt% of 0.01 μm silver oxide (Ag 2 O) ultrafine particles
An (Ag 2 O) ultrafine particle independent dispersion was prepared. Further, this silver oxide (Ag 2 O) ultrafine particle independent dispersion and the silver / palladium ultrafine particle independent dispersion prepared in Example 1 were mixed,
A silver / palladium / silver oxide mixed dispersion having a viscosity of 7 cP at room temperature was prepared.

【0012】次いで、上記分散液を用いて、実施例2と
同様にして室温で基板のビアホールを埋め込み、銀・パ
ラジウム膜を形成したところ、得られた薄膜は、いずれ
も焼結後も縮や割れが生じることもなく、その比抵抗は
1.87μΩcmであった。 (実施例4)実施例1における銀・パラジウム超微粒子
独立分散液の代わりに、トリデカンとフェネトールとの
混合溶媒を加えて濃度を20wt%とした銀・パラジウ
ム超微粒子独立分散液に銅、アルミニウム、マグネシウ
ム、スカンジウム、バナジウム、タンタル、ニオブ又は
ホウ素の有機化合物の添加されたものを作製した。この
分散液の粘度は室温で10cPであった。
Next, using the above-mentioned dispersion liquid, the via holes of the substrate were buried at room temperature in the same manner as in Example 2 to form a silver / palladium film. No cracking occurred, and the specific resistance was 1.87 μΩcm. (Example 4) Instead of the silver / palladium ultrafine particle independent dispersion in Example 1, a mixed solvent of tridecane and phenetole was added to adjust the concentration to 20 wt%, and copper, aluminum, Magnesium, scandium, vanadium, tantalum, niobium, or those to which an organic compound of boron was added were prepared. The viscosity of this dispersion was 10 cP at room temperature.

【0013】次いで、これらの分散液を用いて、TiN
等のバリア膜を形成する工程を省き、他は実施例2と同
様にして基板のビアホールを埋め込み、銀膜を形成した
ところ、得られた薄膜は、焼結後も及びCMPによる平
坦化処理工程中も縮や割れが生じることもなく、基板と
の密着性も良好であり、絶縁膜であるSiO2中への銀
原子の拡散もなく、その比抵抗は1.87μΩcmであ
った。 (実施例5)実施例1のミネラルスピリットにα−テル
ピネオールを混合した溶媒中に分散させた室温での粘度
50cPの銀超微粒子独立分散液を作製し、これを用い
て、Si基板上に配線パターンを形成した。このSi基
板に形成されている絶縁膜としてのSiO2 膜には幅
0.5μm、深さ1μm(アスペクト比2)の溝がパタ
ーン状に形成されており、溝の内表面を含む基板の表面
にはスパッタにより、WNバリア膜が厚さ0.02μm
で形成されている。
Next, using these dispersions, TiN
A step of forming a barrier film such as that described above was omitted, and the other steps were the same as in Example 2, except that the via holes of the substrate were buried and a silver film was formed. The obtained thin film was flattened after sintering and by CMP. There was no shrinkage or cracking inside, the adhesion to the substrate was good, there was no diffusion of silver atoms into the insulating film, SiO 2 , and the specific resistance was 1.87 μΩcm. (Example 5) An independent dispersion of ultrafine silver particles having a viscosity of 50 cP at room temperature was prepared by dispersing in a solvent in which α-terpineol was mixed with the mineral spirit of Example 1 and used for wiring on a Si substrate. A pattern was formed. A groove having a width of 0.5 μm and a depth of 1 μm (aspect ratio 2) is formed in a pattern on the SiO 2 film as an insulating film formed on the Si substrate, and the surface of the substrate including the inner surface of the groove is formed. Has a WN barrier film thickness of 0.02 μm by sputtering.
It is formed with.

【0014】上記の基板をスピンコータにセットして5
00rpmで回転させ、その上方から上記の銀超微粒子
独立分散液を滴下することによって、スピンコーティン
グした。パターン状の溝内にはこの分散液が充填され、
基板の表面には平坦な該分散液の液膜が形成された。こ
の状態の基板を大気中、250℃の温度で、2分間加熱
して有機溶媒を蒸発させ、次いで温度を300℃に上げ
て10分間焼成した。かくして、銀超微粒子が相互に融
着して、溝内が銀で空洞なく埋め込まれた縮みや割れの
ない銀薄膜が形成された。次いで、該溝の内部以外の銀
膜をCMP処理したところ、基板表面の余分な銀が除去
され、溝内に平坦な表面を有する銀薄膜が形成された。
その比抵抗は1.87μΩcmであった。
The above substrate is set on a spin coater and 5
Spinning was performed at 00 rpm, and the above-mentioned independent dispersion liquid of ultrafine silver particles was dropped from above to perform spin coating. This dispersion is filled in the pattern-like grooves,
A flat liquid film of the dispersion was formed on the surface of the substrate. The substrate in this state was heated in the air at a temperature of 250 ° C. for 2 minutes to evaporate the organic solvent, and then the temperature was raised to 300 ° C. and baked for 10 minutes. Thus, the ultrafine silver particles were fused with each other to form a silver thin film without shrinkage or cracking in which the grooves were filled with silver without any voids. Next, when the silver film other than the inside of the groove was subjected to the CMP treatment, excess silver on the substrate surface was removed, and a silver thin film having a flat surface was formed in the groove.
Its specific resistance was 1.87 μΩcm.

【0015】[0015]

【発明の効果】本発明の銀超微粒子独立分散液によれ
ば、銅の場合に必要な雰囲気調整をしない大気中での焼
成により銀膜形成が可能となり、アルミニウム配線形成
で用いられている従来からのエッチング法によりLSI
配線のパターニングが可能となり、又銅配線形成で用い
られるダマシン法によってLSI基板の微細な配線溝、
ビアホール、コンタクトホール等を完全に埋め込むこと
ができ、LSIの動作温度(150℃)において他の材
料に比べ、より低抵抗で導電性の均一な微細パターンを
形成することができる。
According to the independent dispersion liquid of ultrafine silver particles of the present invention, it is possible to form a silver film by sintering in the atmosphere without adjusting the atmosphere required for copper, and it is possible to form a silver film by a conventional method. LSI by etching method
Wiring patterning is possible, and fine wiring grooves in the LSI substrate can be formed by the damascene method used in copper wiring formation.
Via holes, contact holes and the like can be completely buried, and a fine pattern with lower resistance and uniform conductivity can be formed at the operating temperature (150 ° C.) of the LSI as compared with other materials.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 洋幸 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 (72)発明者 村上 裕彦 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 Fターム(参考) 4M104 BB08 BB30 BB33 DD51 FF18 FF22 HH01 HH09 5F033 HH14 HH33 JJ14 JJ19 JJ33 JJ34 MM01 MM12 MM13 NN06 NN07 PP26 QQ08 QQ12 QQ37 QQ48 QQ73 WW00 WW01 WW03 WW04 XX05 XX14 XX28 5G301 DA02 DA03 DA04 DA05 DA06 DA07 DA10 DA11 DA12 DA13 DA14 DA15 DA42 DD01 DD02 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroyuki Yamakawa 5-9-7 Tokodai, Tsukuba, Ibaraki Japan Inside Tsukuba Super Materials Research Laboratory, Japan Vapor Technology Co., Ltd. (72) Inventor Hirohiko Murakami 5 Tokodai, Tsukuba, Ibaraki -9-7 F-term (reference) in Tsukuba Super Materials Research Laboratories, Japan Vacuum Engineering Co., Ltd. WW04 XX05 XX14 XX28 5G301 DA02 DA03 DA04 DA05 DA06 DA07 DA10 DA11 DA12 DA13 DA14 DA15 DA42 DD01 DD02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 室温で蒸発し難くかつ半導体基板上に銀
配線を形成する際の乾燥・焼成工程で蒸発するような有
機溶媒と、粒径0.01μm以下の銀含有超微粒子とを
混合して形成され、該超微粒子の表面が該有機溶媒で覆
われて個々に独立して分散しており、粘度が室温で50
cP以下であることを特徴とする銀超微粒子独立分散
液。
An organic solvent which is difficult to evaporate at room temperature and which evaporates in a drying / firing step when forming silver wiring on a semiconductor substrate is mixed with silver-containing ultrafine particles having a particle size of 0.01 μm or less. And the surface of the ultrafine particles is covered with the organic solvent and dispersed individually, and has a viscosity of 50 at room temperature.
A silver ultrafine particle independent dispersion having a cP or less.
【請求項2】 前記有機溶媒が150℃以上で蒸発する
ものであることを特徴とする請求項1記載の銀超微粒子
独立分散液。
2. The silver ultrafine particle independent dispersion according to claim 1, wherein the organic solvent evaporates at 150 ° C. or higher.
【請求項3】 前記有機溶媒がミネラルスピリット、ト
リデカン、ドデシルベンゼン若しくはそれらの混合物、
又はそれらにα−テルピネオール若しくは炭素数5以上
の炭化水素、アルコール、エーテル、エステル、有機窒
素化合物、有機ケイ素化合物、有機イオウ化合物を混合
したものであることを特徴とする請求項1又は2に記載
の銀超微粒子独立分散液。
3. The method according to claim 1, wherein the organic solvent is mineral spirit, tridecane, dodecylbenzene, or a mixture thereof.
Or a mixture thereof with α-terpineol or a hydrocarbon having 5 or more carbon atoms, an alcohol, an ether, an ester, an organic nitrogen compound, an organic silicon compound, or an organic sulfur compound. Silver ultrafine particle independent dispersion.
【請求項4】 前記銀含有超微粒子が、銀若しくは酸化
銀又はそれらの混合物からなる超微粒子であることを特
徴とする請求項1乃至3のいずれかに記載の銀超微粒子
独立分散液。
4. The silver ultrafine particle independent dispersion according to claim 1, wherein the silver-containing ultrafine particles are ultrafine particles made of silver, silver oxide, or a mixture thereof.
【請求項5】 前記銀含有超微粒子の濃度が5〜70w
t%であることを特徴とする請求項1乃至4のいずれか
に記載の銀超微粒子独立分散液。
5. The silver-containing ultrafine particles having a concentration of 5 to 70 watts.
The silver ultrafine particle independent dispersion according to any one of claims 1 to 4, wherein the dispersion is t%.
【請求項6】 前記銀超微粒子独立分散液が、前記銀含
有超微粒子以外に、銀のエレクトロマイグレーション
(EM)耐性を向上させる金属又はこれらの金属を含む
化合物、及び/又は銀への溶解度が低く、かつ半導体基
板の絶縁層構成材料と反応しやすい金属又はこれらの金
属を含む化合物を含有していることを特徴とする請求項
1乃至5のいずれかに記載の銀超微粒子独立分散液。
6. The silver ultrafine particle independent dispersion liquid has a solubility in silver or a metal that improves electromigration (EM) resistance of silver, and / or a compound containing these metals, in addition to the silver-containing ultrafine particles. The silver ultrafine particle independent dispersion according to any one of claims 1 to 5, further comprising a metal which is low and easily reacts with a material constituting the insulating layer of the semiconductor substrate, or a compound containing these metals.
【請求項7】 前記銀のエレクトロマイグレーション
(EM)耐性を向上させる金属がパラジウム、チタンで
あることを特徴とする請求項6記載の銀超微粒子独立分
散液。
7. The independent dispersion liquid of ultrafine silver particles according to claim 6, wherein the metal for improving the electromigration (EM) resistance of silver is palladium or titanium.
【請求項8】 前記銀への溶解度が低く、かつ半導体基
板の絶縁層構成材料と反応しやすい金属が、金、銅、ア
ルミニウム、マグネシウム、スカンジウム、インジウ
ム、亜鉛、ニッケル、白金、コバルト、ロジウム、イリ
ジウム、バナジウム、鉄、ルテニウム、オスミウム、ク
ロム、タングステン、タンタル、ニオブ、ビスマス、
鉛、ホウ素、ケイ素、スズ、バリウムから選ばれる少な
くとも一種の金属であることを特徴とする請求項6記載
の銀超微粒子独立分散液。
8. A metal having low solubility in silver and easily reacting with a material constituting an insulating layer of a semiconductor substrate includes gold, copper, aluminum, magnesium, scandium, indium, zinc, nickel, platinum, cobalt, rhodium, Iridium, vanadium, iron, ruthenium, osmium, chromium, tungsten, tantalum, niobium, bismuth,
7. The silver ultrafine particle independent dispersion according to claim 6, which is at least one metal selected from the group consisting of lead, boron, silicon, tin, and barium.
JP20757799A 1999-07-22 1999-07-22 Silver ultrafine particle independent dispersion Expired - Lifetime JP4362170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20757799A JP4362170B2 (en) 1999-07-22 1999-07-22 Silver ultrafine particle independent dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20757799A JP4362170B2 (en) 1999-07-22 1999-07-22 Silver ultrafine particle independent dispersion

Publications (2)

Publication Number Publication Date
JP2001035255A true JP2001035255A (en) 2001-02-09
JP4362170B2 JP4362170B2 (en) 2009-11-11

Family

ID=16542069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20757799A Expired - Lifetime JP4362170B2 (en) 1999-07-22 1999-07-22 Silver ultrafine particle independent dispersion

Country Status (1)

Country Link
JP (1) JP4362170B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334618A (en) * 2001-05-07 2002-11-22 Harima Chem Inc Forming method of plating-substitute conductive metal film using metal fine particle dispersed liquid
JP2005015289A (en) * 2003-06-27 2005-01-20 Mitsui Mining & Smelting Co Ltd Superfine silver oxide powder suspension and method of producing the same
JP2005104825A (en) * 2003-09-10 2005-04-21 Dowa Mining Co Ltd Fine silver oxide powder and its manufacturing method
EP1626106A2 (en) 2004-07-23 2006-02-15 Sumitomo Electric Industries, Ltd. Method of forming a conductive wiring pattern by laser irradiation and a conductive wiring pattern
JP2007042301A (en) * 2005-07-29 2007-02-15 Toda Kogyo Corp Conductive composition, conductive paste, and conductive film
US7226573B2 (en) 2003-09-10 2007-06-05 Dowa Mining Co., Ltd. Fine-grain silver oxide powder
JP2007522347A (en) * 2004-02-16 2007-08-09 クライマックス・エンジニアード・マテリアルズ・エルエルシー Method and apparatus for producing silver nanoparticles
WO2007094361A1 (en) 2006-02-16 2007-08-23 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008044695A1 (en) 2006-10-12 2008-04-17 Idemitsu Kosan Co., Ltd. Organic thin film transistor device and organic thin film light-emitting transistor
US20080093422A1 (en) * 2001-10-05 2008-04-24 Cabot Corporation Low viscosity precursor compositions and methods for the deposition of conductive electronic features
WO2008059817A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008059816A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008084558A1 (en) 2007-01-09 2008-07-17 Dowa Electronics Materials Co., Ltd. Silver particle dispersion and process for producing the same
WO2008099510A1 (en) 2007-02-15 2008-08-21 Dowa Electronics Materials Co., Ltd. Process for producing silver powder
US7445731B2 (en) 2004-03-01 2008-11-04 Sumitomo Electric Industries, Ltd. Metallic colloidal solution and inkjet-use metallic ink
JPWO2006126614A1 (en) * 2005-05-25 2008-12-25 ニホンハンダ株式会社 Pasty silver composition, its production method, solid silver production method, solid silver, adhesion method and circuit board production method
US7491257B2 (en) 2005-03-01 2009-02-17 Dowa Electronics Materials Co., Ltd. Silver particle powder and method of manufacturing same
WO2009041254A1 (en) 2007-09-26 2009-04-02 Idemitsu Kosan Co., Ltd. Organic thin film transistor
WO2009054453A1 (en) 2007-10-24 2009-04-30 Dowa Electronics Materials Co., Ltd. Silver microparticle-containing composition, process for production of the composition, process for production of the silver microparticle, and paste containing the silver microparticle
US7535626B2 (en) 2006-06-06 2009-05-19 Konica Minolta Opto, Inc. Shape-variable optical element, optical device and image pickup apparatus
DE112007001519T5 (en) 2006-06-22 2009-06-18 Mitsubishi Paper Mills Limited Method for producing a conductive material
US7560051B2 (en) 2005-03-18 2009-07-14 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
JP2009252881A (en) * 2008-04-03 2009-10-29 Nichicon Corp Solid-state electrolytic capacitor and its manufacturing method
JP2010008465A (en) * 2008-06-24 2010-01-14 Ulvac Japan Ltd Panel for display device, liquid crystal display device, and wiring forming method
US7691175B2 (en) 2003-10-15 2010-04-06 Sumitomo Electric Industries, Ltd. Granular metal powder
US7776442B2 (en) 2005-02-02 2010-08-17 Dowa Electronics Materials Co., Ltd. Particulate powder of silver and method of manufacturing same
JP2012153863A (en) * 2011-01-28 2012-08-16 Nobumasa Okuda Cleaning composition
US8333820B2 (en) 1997-02-24 2012-12-18 Cabot Corporation Forming conductive features of electronic devices
KR20160025449A (en) 2014-08-27 2016-03-08 제이에스알 가부시끼가이샤 Method for forming three-dimensional wiring, circuit device having three-dimensional wiring, and composition for forming metal film for three-dimensional wiring
JP2017095747A (en) * 2015-11-20 2017-06-01 株式会社 M&M研究所 Manufacturing method of metal film formation article

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6683003B2 (en) 2016-05-11 2020-04-15 日亜化学工業株式会社 Semiconductor element, semiconductor device, and method for manufacturing semiconductor element
JP6720747B2 (en) 2016-07-19 2020-07-08 日亜化学工業株式会社 Semiconductor device, base and manufacturing method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215367A (en) * 1983-05-23 1984-12-05 Tdk Corp Electrically conductive paste composition
JPH0334211A (en) * 1989-03-30 1991-02-14 Shinku Yakin Kk Metal paste and manufacture thereof
JPH03116608A (en) * 1989-09-29 1991-05-17 Tdk Corp Conductor paste and conductor
JPH05114306A (en) * 1991-10-18 1993-05-07 Nippon Cement Co Ltd Low viscosity copper ink composite for metallizing ceramics
JPH0786737A (en) * 1993-09-20 1995-03-31 Fujitsu Ltd Manufacture of thin film multilayer circuit board
JPH0786128A (en) * 1993-09-13 1995-03-31 Fujitsu Ltd Formation of electrical characteristic film and spin coater therefor
JPH07147469A (en) * 1993-11-24 1995-06-06 Sumitomo Kinzoku Ceramics:Kk Conductor paste
JPH0837376A (en) * 1994-07-21 1996-02-06 Fujitsu Ltd Manufacture of multilayered circuit board
JPH09134891A (en) * 1995-09-06 1997-05-20 Vacuum Metallurgical Co Ltd Formation of thin film of semiconductor substrate
JPH10195350A (en) * 1996-12-25 1998-07-28 Clariant Internatl Ltd Coating composition
JPH1166957A (en) * 1997-08-12 1999-03-09 Tanaka Kikinzoku Kogyo Kk Conductor composition

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215367A (en) * 1983-05-23 1984-12-05 Tdk Corp Electrically conductive paste composition
JPH0334211A (en) * 1989-03-30 1991-02-14 Shinku Yakin Kk Metal paste and manufacture thereof
JPH03116608A (en) * 1989-09-29 1991-05-17 Tdk Corp Conductor paste and conductor
JPH05114306A (en) * 1991-10-18 1993-05-07 Nippon Cement Co Ltd Low viscosity copper ink composite for metallizing ceramics
JPH0786128A (en) * 1993-09-13 1995-03-31 Fujitsu Ltd Formation of electrical characteristic film and spin coater therefor
JPH0786737A (en) * 1993-09-20 1995-03-31 Fujitsu Ltd Manufacture of thin film multilayer circuit board
JPH07147469A (en) * 1993-11-24 1995-06-06 Sumitomo Kinzoku Ceramics:Kk Conductor paste
JPH0837376A (en) * 1994-07-21 1996-02-06 Fujitsu Ltd Manufacture of multilayered circuit board
JPH09134891A (en) * 1995-09-06 1997-05-20 Vacuum Metallurgical Co Ltd Formation of thin film of semiconductor substrate
JPH10195350A (en) * 1996-12-25 1998-07-28 Clariant Internatl Ltd Coating composition
JPH1166957A (en) * 1997-08-12 1999-03-09 Tanaka Kikinzoku Kogyo Kk Conductor composition

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8333820B2 (en) 1997-02-24 2012-12-18 Cabot Corporation Forming conductive features of electronic devices
JP2002334618A (en) * 2001-05-07 2002-11-22 Harima Chem Inc Forming method of plating-substitute conductive metal film using metal fine particle dispersed liquid
US20080093422A1 (en) * 2001-10-05 2008-04-24 Cabot Corporation Low viscosity precursor compositions and methods for the deposition of conductive electronic features
JP2005015289A (en) * 2003-06-27 2005-01-20 Mitsui Mining & Smelting Co Ltd Superfine silver oxide powder suspension and method of producing the same
US7226573B2 (en) 2003-09-10 2007-06-05 Dowa Mining Co., Ltd. Fine-grain silver oxide powder
JP2005104825A (en) * 2003-09-10 2005-04-21 Dowa Mining Co Ltd Fine silver oxide powder and its manufacturing method
JP4686771B2 (en) * 2003-09-10 2011-05-25 Dowaエレクトロニクス株式会社 Method for producing fine silver oxide powder and method for producing dispersion
US7691175B2 (en) 2003-10-15 2010-04-06 Sumitomo Electric Industries, Ltd. Granular metal powder
JP2007522347A (en) * 2004-02-16 2007-08-09 クライマックス・エンジニアード・マテリアルズ・エルエルシー Method and apparatus for producing silver nanoparticles
US7608203B2 (en) 2004-03-01 2009-10-27 Sumitomo Electric Industries, Ltd. Metallic colloidal solution and inkjet-use metallic ink
US7445731B2 (en) 2004-03-01 2008-11-04 Sumitomo Electric Industries, Ltd. Metallic colloidal solution and inkjet-use metallic ink
EP1626106A2 (en) 2004-07-23 2006-02-15 Sumitomo Electric Industries, Ltd. Method of forming a conductive wiring pattern by laser irradiation and a conductive wiring pattern
US7776442B2 (en) 2005-02-02 2010-08-17 Dowa Electronics Materials Co., Ltd. Particulate powder of silver and method of manufacturing same
US7491257B2 (en) 2005-03-01 2009-02-17 Dowa Electronics Materials Co., Ltd. Silver particle powder and method of manufacturing same
US7767115B2 (en) 2005-03-18 2010-08-03 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
US7560051B2 (en) 2005-03-18 2009-07-14 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
JPWO2006126614A1 (en) * 2005-05-25 2008-12-25 ニホンハンダ株式会社 Pasty silver composition, its production method, solid silver production method, solid silver, adhesion method and circuit board production method
JP2007042301A (en) * 2005-07-29 2007-02-15 Toda Kogyo Corp Conductive composition, conductive paste, and conductive film
WO2007094361A1 (en) 2006-02-16 2007-08-23 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US7535626B2 (en) 2006-06-06 2009-05-19 Konica Minolta Opto, Inc. Shape-variable optical element, optical device and image pickup apparatus
DE112007001519B4 (en) 2006-06-22 2022-03-10 Mitsubishi Paper Mills Limited Method of making a conductive material
DE112007001519T5 (en) 2006-06-22 2009-06-18 Mitsubishi Paper Mills Limited Method for producing a conductive material
WO2008044695A1 (en) 2006-10-12 2008-04-17 Idemitsu Kosan Co., Ltd. Organic thin film transistor device and organic thin film light-emitting transistor
WO2008059817A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008059816A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008084558A1 (en) 2007-01-09 2008-07-17 Dowa Electronics Materials Co., Ltd. Silver particle dispersion and process for producing the same
US8287771B2 (en) 2007-02-15 2012-10-16 Dowa Electronics Materials Co., Ltd. Method for producing silver particle powder
WO2008099510A1 (en) 2007-02-15 2008-08-21 Dowa Electronics Materials Co., Ltd. Process for producing silver powder
WO2009041254A1 (en) 2007-09-26 2009-04-02 Idemitsu Kosan Co., Ltd. Organic thin film transistor
US8293144B2 (en) 2007-10-24 2012-10-23 Dowa Electronics Materials Co., Ltd. Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
US8293142B2 (en) 2007-10-24 2012-10-23 Dowa Electronics Materials Co., Ltd. Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
WO2009054453A1 (en) 2007-10-24 2009-04-30 Dowa Electronics Materials Co., Ltd. Silver microparticle-containing composition, process for production of the composition, process for production of the silver microparticle, and paste containing the silver microparticle
US8486310B2 (en) 2007-10-24 2013-07-16 Dowa Electronics Materials Co., Ltd. Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
EP3042727A1 (en) 2007-10-24 2016-07-13 DOWA Electronics Materials Co., Ltd. Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
JP2009252881A (en) * 2008-04-03 2009-10-29 Nichicon Corp Solid-state electrolytic capacitor and its manufacturing method
JP2010008465A (en) * 2008-06-24 2010-01-14 Ulvac Japan Ltd Panel for display device, liquid crystal display device, and wiring forming method
JP2012153863A (en) * 2011-01-28 2012-08-16 Nobumasa Okuda Cleaning composition
KR20160025449A (en) 2014-08-27 2016-03-08 제이에스알 가부시끼가이샤 Method for forming three-dimensional wiring, circuit device having three-dimensional wiring, and composition for forming metal film for three-dimensional wiring
US9543201B2 (en) 2014-08-27 2017-01-10 Jsr Corporation Method for forming three-dimensional interconnection, circuit arrangement comprising three-dimensional interconnection, and metal film-forming composition for three-dimensional interconnection
JP2017095747A (en) * 2015-11-20 2017-06-01 株式会社 M&M研究所 Manufacturing method of metal film formation article

Also Published As

Publication number Publication date
JP4362170B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP2001035255A (en) Silver superfine particle independently dispersed solution
US6607982B1 (en) High magnesium content copper magnesium alloys as diffusion barriers
TWI241701B (en) Copper recess process with application to selective capping and electroless plating
US8357609B2 (en) Dual damascene-like subtractive metal etch scheme
KR100365643B1 (en) Method for forming damascene interconnection of semiconductor device and damascene interconnection fabricated thereby
JP2828540B2 (en) Method for forming low resistance and low defect density tungsten contacts for silicon semiconductor wafers
JP3704203B2 (en) Copper alloys for chip and package interconnections and methods for their manufacture
JP3724592B2 (en) Method for planarizing a semiconductor substrate
US6214259B1 (en) Dispersion containing Cu ultrafine particles individually dispersed therein
JPH10321594A (en) Method, system and integrated circuit for cleaning metallic surface in situ by selectively removing metallic oxide
US6794755B2 (en) Surface alteration of metal interconnect in integrated circuits for electromigration and adhesion improvement
TW200931531A (en) Method for forming cu wiring
US5976970A (en) Method of making and laterally filling key hole structure for ultra fine pitch conductor lines
JPH11135504A (en) Manufacture of semiconductor device
CN1708846A (en) A method for depositing a metal layer on a semiconductor interconnect structure having a capping layer
JP4362173B2 (en) Cu ultrafine particle independent dispersion
DE102007022621B4 (en) A method of making a dielectric overcoat for copper metallization using a hydrogen-based thermal-chemical treatment
JP4949551B2 (en) A barrier layer tuned to improve the electrical transfer resistance of copper interconnects
JP2001035814A (en) Method of forming silver wiring pattern
JP6268036B2 (en) Manufacturing method of Cu wiring
JP2004000006U (en) Semiconductor device
JP2004000006U6 (en) Semiconductor device
JP2001254185A (en) Method of depositing electrically conductive metallic thin film and electrically conductive metallic hyperfine particle-dispersed material used for the method
JPS62500060A (en) Integrated circuit devices and methods of manufacturing the same
EP0980094B1 (en) Method for forming Cu-thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Ref document number: 4362170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term