JPH03102245A - Absorbancy type automatic analyser - Google Patents

Absorbancy type automatic analyser

Info

Publication number
JPH03102245A
JPH03102245A JP1239144A JP23914489A JPH03102245A JP H03102245 A JPH03102245 A JP H03102245A JP 1239144 A JP1239144 A JP 1239144A JP 23914489 A JP23914489 A JP 23914489A JP H03102245 A JPH03102245 A JP H03102245A
Authority
JP
Japan
Prior art keywords
absorbance
absorbancy
wavelength
reaction
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1239144A
Other languages
Japanese (ja)
Inventor
Kiyokazu Nakano
中野 清和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1239144A priority Critical patent/JPH03102245A/en
Publication of JPH03102245A publication Critical patent/JPH03102245A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To obtain a highly reliable analytical result by mounting a means selectively measuring absorbancy, an absorbancy memory means and an operation means. CONSTITUTION:A predetermined amount of a specimen is injected in a specimen injection station 3 and a predetermined amount of a reaction reagent is injected in a reagent injection station 4 to prepare a specimen reaction solution. In a stage wherein a reaction cell 2 arrives at a measuring station 5, an operational control apparatus 12 selects an absorbancy signal in an equal absorption wavelength Alambda1 and analytical wavelengths Alambda1, Alambda2. The control apparatus 12 calculates the ratio of an equal absorption wavelength Alambda1k and the absorbancy Alambda1b stored in a memory circuit 15 and operates the product of said ratio and the absorbancy difference of analytical wavelengths Alambda1k, Alambda2k to output a value corrected in the error caused by the light path difference of the reaction cell 2 used in analysis now. The difference between two differences of the value after correction and the analytical wavelengths of a specimen blank solution is calculated to be multiplied by a concn. conversion coefficient to obtain a value which is, in turn, operated to calculate the concn. of an objective component. By this method, the concn. value of the objective component corrected in the error due to the light path length fluctuation of the cell 2 can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、複数の反応セルを搬送体に配列させ、試料注
入ステーション、試薬注入ステーション、測定ステーシ
ョンに移動させ、試料と反応試薬の混合液の吸光度から
目的戒分の濃度を測定するようにした自動分析装置にお
ける、前記反応セルの寸法不均一による混合液の光路長
を補正する技術に間する. (従来技術) 反応セルに収容ざれた試料と試薬の混合液(以下、試料
反応液という)の吸光度から目的戊分の濃度を測定する
分析装置においでは、吸光度か反応せルの光路長に大き
く左右ざれるため、光路長か均一となるように反応セル
を高い精度で製作する必要かあるが、コストとの兼合で
或る程度の誤差を許容せざるを得ない. このような反応セルの寸法誤差に起因する分析誤差を補
正するため、反応セルに標準液体を収容し、これに近赤
外波長域の波長の内、共に反応セルの材質にはあまり吸
収を受けない波長で、一方は標準液体により吸収を受け
る波長λ,と、他方は標準液体による吸収を受けない波
長λ2とを用いて吸光度を測定し、この吸光度差に基づ
いて反応セルの光路長を求めるようにした自動分析装置
が提案されている(特開昭60−183560号公報)
.(発明が解決しようとする問題点) しかしながら、現在普及している自動分析装置において
は紮外域から可視域の波長での吸光度の測定を可能とす
る吸光度計だけを具備しでおり、前記従来技術を適用す
るため{こは、ざらに特別な近赤外領域での吸光度の測
定が可能な第2の吸弄度計を用意する必要があるという
問題がある.本発明はこのような問題に鑑みでなざれた
ものであって、その目的とするところは、近赤外領域の
吸光度計を必要としないばかりでなく、分析波長に可及
的に近い波長を用いて反応セルの光路長を正確に補正す
ることにより、信頼性の高い精度の分析結果を得ること
がてきる自動分析装置ヲ褪供ずることにある. (課題を解決するための手段) このような問題を解消するために本発明においては、等
吸収波長と分析波長における吸光度を選択的1こ測定す
る手段と、基準となる反応セルの試液ブランク液の等吸
収波長における吸光度を記憶する記憶手段と、試料反応
液の等吸収波長{こおける吸光度と前記記憶手段の値と
の比を求め、前記比と分析波長での試料の吸光度との積
を演算する手段を備えるようにした. (作用) 分析波長に近い領域の等吸収波長における吸光度を用い
るため、反応セルの光路長を正確に補正することが可能
となる. (実施例) そこで、以下に本発明の詳細を図示した実施例に基づい
て説明する. 第1図は本発明の一実施例を示すものであって、図中行
号1は、反応テーブルで、容器と測定セルを兼ねた反応
セル2、2、2・・・・を列状に収容して、反応セル2
を試料注入ステーション3、試薬注入ステーション4、
後述jる測定ステーション5、及び洗浄ステーションに
循環的fこ移送するように構F&ざれている. 5は、前述の測定ステーションで、反応セルの移17]
経路を挟んで一方の側には光源ランプ6を、また他方の
側には囲折フィルター等からなる分光器7と、祷数の光
電変換素子8、8、8・・・・を設けてなる受光部を配
通して、所望波長の光を選択的に検出する多波長光度計
により構或されている. 多波長光度計の各光電変換素子8、8、8・・・・から
の信号は、マルチブレクサ等の信号切換器9を介して対
数変換回路10、アナログーディジタル変換器11に入
力し、ディジタル信号に変換ざれて後述する演算制御装
置12に入力しでいる。
Detailed Description of the Invention (Industrial Application Field) The present invention involves arranging a plurality of reaction cells on a carrier, moving them to a sample injection station, a reagent injection station, and a measurement station, and discharging a mixture of a sample and a reaction reagent. In this paper, we develop a technique for correcting the optical path length of a liquid mixture due to nonuniform dimensions of the reaction cell in an automatic analyzer that measures the concentration of a target compound from the absorbance of the reaction cell. (Prior art) In an analyzer that measures the concentration of a target substance from the absorbance of a mixed solution of sample and reagent (hereinafter referred to as sample reaction solution) housed in a reaction cell, there is a large difference between the absorbance and the optical path length of the reaction cell. Since the left and right deviations occur, it is necessary to manufacture the reaction cell with high precision so that the optical path length is uniform, but a certain degree of error must be allowed in consideration of cost. In order to correct analytical errors caused by such dimensional errors in the reaction cell, a standard liquid is contained in the reaction cell, and a standard liquid is added to the liquid at wavelengths in the near-infrared wavelength range, which are not well absorbed by the material of the reaction cell. The absorbance is measured using two wavelengths, one wavelength λ, which is absorbed by the standard liquid, and the other wavelength λ2, which is not absorbed by the standard liquid, and the optical path length of the reaction cell is determined based on this absorbance difference. An automatic analyzer has been proposed (Japanese Unexamined Patent Publication No. 183560/1983).
.. (Problems to be Solved by the Invention) However, the currently widespread automatic analyzers are only equipped with an absorbance meter that can measure absorbance at wavelengths from the ultraviolet region to the visible region. In order to apply this, there is a problem in that it is necessary to prepare a second absorbance meter that can measure absorbance in a special near-infrared region. The present invention was developed in view of these problems, and its purpose is not only to eliminate the need for an absorbance meter in the near-infrared region, but also to use a wavelength as close as possible to the analysis wavelength. The purpose of the present invention is to provide an automatic analyzer that can obtain highly reliable and accurate analysis results by accurately correcting the optical path length of the reaction cell. (Means for Solving the Problems) In order to solve these problems, the present invention provides a means for selectively measuring the absorbance at the isosbestic wavelength and the analysis wavelength, and a method for selectively measuring the absorbance at the isoabsorption wavelength and the analysis wavelength, and a reagent blank solution of the reaction cell as a reference. A storage means for storing the absorbance at the isoabsorption wavelength of the sample reaction solution, and a ratio between the absorbance at the isoabsorption wavelength of the sample reaction solution and the value in the storage means, and the product of the ratio and the absorbance of the sample at the analysis wavelength. A means of calculation was provided. (Function) Since the absorbance at the isosbestic wavelength in the region close to the analysis wavelength is used, it is possible to accurately correct the optical path length of the reaction cell. (Example) Therefore, the details of the present invention will be explained below based on an illustrated example. FIG. 1 shows an embodiment of the present invention, and row number 1 in the figure is a reaction table, in which reaction cells 2, 2, 2, etc., which also serve as containers and measurement cells are housed in a row. Then, reaction cell 2
sample injection station 3, reagent injection station 4,
It is configured to cyclically transfer the water to a measuring station 5 and a cleaning station, which will be described later. 5 is the measurement station mentioned above, and the reaction cell is moved 17]
A light source lamp 6 is provided on one side of the path, and a spectrometer 7 consisting of a surrounding filter, etc., and an arbitrary number of photoelectric conversion elements 8, 8, 8, etc. are provided on the other side. It consists of a multi-wavelength photometer that selectively detects light of a desired wavelength through a light receiving section. Signals from each photoelectric conversion element 8, 8, 8, . The data has been converted into and input to the arithmetic and control unit 12, which will be described later.

演算制御装置12は、マイクロプロセッサ13と、分析
作業のシーケシスを格納した記憶回路14と、試液ブラ
ンク液の等吸収波長λ1における吸光度Aλlbを格納
する第1の記憶回路15と、2つの分析波長久,、λ2
における吸光度Aλ111% Aλ2bの差A入+b−
A入,bを格納する第2の記憶回路16から構成ざれて
いる.次に、このように構成ざれた装置の動作をキシリ
ジプルー法を用いたマグネシュウムの分析(こ例を採っ
て第2図1こ示した吸収曲線に基づいて説明する. マグネシュウム検出試薬であるキシリジフル反応試薬と
、試料量と同一量の蒸留*等の純水を混合してなる試液
ブランク液を反応セル2に収容して、信号切換器9によ
り試薬のJ度だけに影響を受ける波長(今の例では56
3ナノメートル)、いわゆる′4吸収波長久1における
吸光度八λ1bと、2つの分析波長人+、入2(今の例
では600ナノメートルと700ナノメートル)での吸
光度A入+b、Aλ2ゎを測定する.これら測定した複
数の吸光慶A入,bの平均値A入1を第1の記憶回路1
5に、また分析波長λ1、λ2における吸光度の差分A
入,。一Aλ2bの平均値A入./λ2b’t求めて第
2の記憶回路16に格納する. 次に、予め目的或分の濃度C s tが既知である標準
試料と所定量の反応試薬を反応セル2に注入して標準試
料反応液を調製し、この標準試料反応液の等吸収波長λ
lにおける吸光度Aλ1.、分析波長大,、入2におけ
る吸光度Aλ13% Aλ2,を測定する.この吸光度
Aλ,!、Aλ2,によりその差分Aλ1/入,,=A
入,,−Aλ2,を求める.一方、M1の記憶回路15
に格納されている試液フランク液の等吸収波長における
吸光度の平均値Aλtbと、今測定した標準試料反応液
の等吸収波長における吸光度Aλ五.との比Aλ+−/
Aλ!ゎ=Lを求め、さらに標準試料反応液の2つの分
析波長間の吸光度差Aλ,/λ23と比Lとの積LXA
λ,/λ2.を求める. ところで、この比しは、基準となる反応セル2の光路差
との比を表すことになるから、LXAλ,/λ2sは、
反応セルの光路差が補正ざれた値となる. ついで、換算係数K=C../(Aλ,/λ2,ーAλ
1。)を求め、この@Kを記憶させてお〈.このような
準備を終えた段階で、試料注入ステーション3において
所定量の試料を、また試薬注入ステーション4において
所定量の反応試薬を注入して試料反応液を調製する.反
応セル2が測定ステーション5に到達した段階で、演算
制御装I!12は、信号切換器9により等吸収波長Aλ
1、及び分析波長Aλ,、Aλ2における吸光度信号を
選択する. 演算制御装1l12は、等吸収波&Aλhと第1の記憶
回路15に格納ざれでいる吸光度Aλlbと?比L.=
Aλ1k/A入1fiを求め、この比Lhと、分析波長
Aλ■、Aλ2kの吸光度の差分A入,/λ■:Aλ,
k− Aλ2,との積LkxAλ,/λ2k%演算し、
今、分析に使用した反応でル2の光路差に起因する誤差
を補正した値を出力する. この補正後のit−it XAλ,/λ2,と試液ブラ
ンク液の分析波長における2つの差分Aλ,/λ2,と
の差Lk XAλl/λ,,−Aλ,/λ2。を求めこ
れに濃度換算係数Kを乗じた(Lk XAλI/λ2,
−AλI/入zb)XKt演算して目的或分の濃度を算
出する.これにより目的成分の濃度を、反応セル2の光
路長変動による誤差を補正した値を得ることができる. もとより等吸収波長A入lが分析波長Aλ1、A入2に
援近した波&域にあるため、等吸収波長A入)における
吸光度は分析時の光路差を正確に表すことになり、精度
の高い光路差補正が可能となる. [比較例] 或る吸光度式自動分析装置の20個の反応セルのそれぞ
れに、同一のキシリジブルー法の試液ブランク液を分注
して8吸収波長563ナノメートルにおける吸光度A入
II,(表1における工)、2つの分析波長(600n
mと700nm)における吸光度差Aλl/′λ2t,
(表11こおけるII)、及び表1における■の欄のデ
ータの平均値Aλ1/入zk= 1.2147と各反応
セルの′:4吸収波長での吸光度とにより反応セルの光
路差を補正した値(表1における■)とをそれぞれ求め
たところ表1のような結果となった. 表1 表2 一方、萌述の反応セルを使用するとともに、これら反応
セルに標準試料と反応試薬を混合調製した同一の標準試
料反応液を用いで、等吸収波長における吸光度(表2に
おける■)、2つの分析波長(600nmと700nm
)における吸光度差(表2における■)、各試料の吸光
度差と、2つの分析波長(600nmと700nm)に
おける試液ブランク液の吸光度差との差分(表2におけ
るIII)、表2のHの各測定@を表1の工等吸収の平
均値(1.1280)に基づいて反応セルの光路差を補
正した分析波長におCナる吸光度差(表2における■)
、及び表2の■の値と表1の■の平均値(1.2148
)との差(表2CこおけるV)をそれぞれ求めたところ
、表2のようになった.表2の■欄と■欄の値のCv値
をそれぞれ計算したところ、前者、つまり反応セルの光
路差を補正しでいないものはCV=2.1%となり、ま
た後者、つまり等吸収1こよる反応セルの光路差補正を
行なったものは、C V = 0.83%となった.こ
のことから等吸収波長を用いて反応セルの光路差を補正
する本発明は、分析結果の再現牲を向よさせる上で極め
て有効な手法であることが実証できた。
The arithmetic and control unit 12 includes a microprocessor 13, a memory circuit 14 that stores the sequence of analysis work, a first memory circuit 15 that stores the absorbance Aλlb of the test solution blank at the isoabsorption wavelength λ1, and two analysis wavelengths. ,,λ2
Absorbance Aλ111% Aλ2b difference A+b-
It consists of a second memory circuit 16 that stores A and B. Next, the operation of the apparatus configured as described above will be explained based on the analysis of magnesium using the xyridiflu method (taking this as an example, and based on the absorption curve shown in Fig. 2). A reagent blank solution made by mixing the same amount of distilled water or other pure water as the sample amount is placed in the reaction cell 2, and the signal switch 9 selects a wavelength that is affected only by the J degree of the reagent (in this example). So 56
3 nanometers), the absorbance at the so-called '4 absorption wavelength K1, 8λ1b, and the absorbance at the two analytical wavelengths A +b, Aλ2ゎ (600 nm and 700 nm in the present example). Measure. The average value A of these measured absorption values A and b is stored in the first storage circuit 1.
5, and the difference A in absorbance at analysis wavelengths λ1 and λ2
Enter,. - Average value of Aλ2b. /λ2b't and stores it in the second memory circuit 16. Next, a standard sample reaction solution whose target concentration C s t is known in advance and a predetermined amount of reaction reagent are injected into the reaction cell 2 to prepare a standard sample reaction solution, and the equiabsorption wavelength λ of this standard sample reaction solution is
Absorbance at Aλ1. , Measure the absorbance Aλ13% Aλ2 at the analysis wavelength large, input 2. This absorbance Aλ,! , Aλ2, the difference Aλ1/in, ,=A
Find input, , -Aλ2,. On the other hand, the memory circuit 15 of M1
The average value Aλtb of the absorbance at the isoabsorption wavelength of the reagent flank solution stored in , and the absorbance Aλtb at the isoabsorption wavelength of the standard sample reaction solution just measured. The ratio Aλ+-/
Aλ! Calculate ゎ=L, and further calculate the product LXA of the absorbance difference Aλ,/λ23 between the two analysis wavelengths of the standard sample reaction solution and the ratio L.
λ, /λ2. Find. By the way, this ratio represents the ratio to the optical path difference of the reaction cell 2 which is the reference, so LXAλ,/λ2s is
This is the corrected value for the optical path difference of the reaction cell. Then, the conversion coefficient K=C. .. /(Aλ, /λ2, -Aλ
1. ), memorize this @K, and <. After completing such preparations, a predetermined amount of sample is injected at sample injection station 3, and a predetermined amount of reaction reagent is injected at reagent injection station 4 to prepare a sample reaction solution. When the reaction cell 2 reaches the measurement station 5, the arithmetic and control unit I! 12 is the equiabsorption wavelength Aλ by the signal switcher 9.
1, and the absorbance signals at the analysis wavelengths Aλ, , Aλ2 are selected. The arithmetic and control unit 1l12 outputs the equal absorption wave &Aλh and the absorbance Aλlb stored in the first storage circuit 15. Ratio L. =
Find Aλ1k/A1fi, and calculate the difference between this ratio Lh and the absorbance of the analysis wavelengths Aλ■ and Aλ2k Aλ, /λ■:Aλ,
k-Aλ2, and calculate the product LkxAλ,/λ2k%,
Now, output the value corrected for the error caused by the optical path difference of Le 2 using the reaction used in the analysis. The difference Lk between it-it XAλ, /λ2 after this correction and the two differences Aλ, /λ2 in the analysis wavelength of the reagent blank solution. was calculated and multiplied by the concentration conversion coefficient K (Lk XAλI/λ2,
-AλI/input zb)XKt calculation to calculate the target concentration. Thereby, it is possible to obtain a concentration of the target component with a value corrected for errors due to variations in the optical path length of the reaction cell 2. Of course, since the isoabsorption wavelength A is in the wavelength range close to the analysis wavelengths Aλ1 and A2, the absorbance at the isoabsorption wavelength A is an accurate representation of the optical path difference during analysis, which improves accuracy. High optical path difference correction is possible. [Comparative Example] The same test solution blank solution of the xylidi blue method was dispensed into each of the 20 reaction cells of a certain absorbance-type automatic analyzer, and the absorbance at an absorption wavelength of 563 nanometers was measured as follows: ), two analytical wavelengths (600n
m and 700 nm), the absorbance difference Aλl/'λ2t,
(II in Table 11), and the average value Aλ1/input zk = 1.2147 of the data in the column ■ in Table 1 and the absorbance at the ':4 absorption wavelength of each reaction cell to correct the optical path difference of the reaction cell. When the values (■ in Table 1) were calculated, the results shown in Table 1 were obtained. Table 1 Table 2 On the other hand, when Moejo's reaction cells were used and the same standard sample reaction solution prepared by mixing the standard sample and reaction reagent was used in these reaction cells, the absorbance at the isosbestic wavelength (■ in Table 2) , two analysis wavelengths (600nm and 700nm
) (■ in Table 2), the difference between the absorbance difference of each sample and the absorbance difference of the test solution blank solution at the two analysis wavelengths (600 nm and 700 nm) (III in Table 2), each of H in Table 2 The absorbance difference (■ in Table 2) when the measurement @ is changed to the analysis wavelength corrected for the optical path difference of the reaction cell based on the average value of the optical absorption (1.1280) in Table 1.
, and the average value of ■ in Table 2 and ■ in Table 1 (1.2148
) (Table 2C), the results are as shown in Table 2. When we calculated the Cv values for the values in columns ■ and ■ in Table 2, we found that the former, that is, the one in which the optical path difference of the reaction cell was not corrected, was CV = 2.1%, and the latter, that is, the one in which the optical path difference of the reaction cell was not corrected. When the optical path difference of the reaction cell was corrected according to the method, CV = 0.83%. From this, it has been demonstrated that the present invention, which corrects the optical path difference of the reaction cell using the isoabsorption wavelength, is an extremely effective method for improving the reproducibility of analysis results.

なお、この実施例においてはキシリジブルー法を例に採
って説明したが、試料に含まれる総タンパク量を測定す
るどウレット法に適用しても同様の作用を奏する. すなわち、ビウレット法試薬にあっては第3図に示した
ように波長700ナノメートル附近が等吸収波長久よと
なるので、この波長Aλ1の吸光度Aλ1と、分析波長
である540ナノメートルと、波長700ナノメートル
とにおける吸光度Aλ,、Aλ2を測定すれば、前述と
同様の手法により反応セルの光路差を補正することがで
きることは明らかである. なお、血清等のように混濁或分を含む試料に対しでは、
混濁成分を含む標準試料と試薬との混合液を用いて検体
ブランク値を求め、これにより等吸収波長における吸光
度を補正するようにすればよい. また、本発明においては2つの分析波長における吸光度
の差分を用いでいるが、単一の分析波長の吸光度を用い
るものに適用しても同様の作用を奏することは明らかで
ある. ざらに、この天施例においでは複数の反応セル{こつい
ての等吸収波長における吸光度、試液ブランク液の平均
値を使用しているが、基準となる1つの反応セルについ
ての値を基準として用いでも同様の作用を奏することは
明らかである.なお、本発明においでは、反応セルの製
造公差に基づく光路差を補正するようCこしでいるが、
一般的(こ反応試薬の分注量は極めで少ないばかりでな
く、1つの試薬の分注作業が終了した段階で洗浄液によ
り分注具を洗浄する場合《こは、分注具内に洗浄液が残
留し、これによる反応試薬の希釈に起因する各反応セル
への反応試薬の実貢的な分注量のばらつきの補正にも適
用することもできる. (発明の効果) 以上、説明したように本発明においては、等吸収波長と
分析′S長における吸光度を選択的に測定する手段と、
基準となる反応セルの試液ブランウ液の等吸収波長にお
ける吸光度を記憶する記憶手段と、試料反応液の等吸収
波長における吸光度と前記記憶手段の値との比を求め、
前記比と分析波長での試料の吸光度との積を演算する手
段t!備えたので、分析波長に近い領域の等吸収波長に
おける吸光度により反応セルの光路長を補正して、吸光
度か大きくで反応セルの光路長の影1fを受け易い分析
法に対しでも、信頼性の高い測定結果を得ることかでき
る.
Although this example has been explained using the xylidiblue method as an example, the same effect can be achieved even if the method is applied to the uret method for measuring the total amount of protein contained in a sample. In other words, for the biuret method reagent, as shown in Figure 3, the wavelength around 700 nanometers is the equiabsorption wavelength, so the absorbance Aλ1 of this wavelength Aλ1, the analysis wavelength of 540 nanometers, and the wavelength It is clear that by measuring the absorbance Aλ, Aλ2 at 700 nanometers, it is possible to correct the optical path difference in the reaction cell using the same method as described above. In addition, for samples containing turbidity such as serum,
The sample blank value can be determined using a mixture of a standard sample and reagent containing turbid components, and the absorbance at the isosbestic wavelength can be corrected using this value. Furthermore, although the present invention uses the difference in absorbance at two analytical wavelengths, it is clear that the same effect can be achieved even if the present invention is applied to one that uses absorbance at a single analytical wavelength. Generally speaking, in this example, the average value of the absorbance at the equiabsorption wavelength of multiple reaction cells and the sample solution blank solution is used, but the value for one reaction cell is used as the standard. However, it is clear that it has a similar effect. In addition, in the present invention, the optical path difference based on the manufacturing tolerance of the reaction cell is corrected, but
Generally speaking (not only is the amount of reaction reagent dispensed extremely small, but the dispensing tool is cleaned with a cleaning solution after dispensing one reagent) The present invention can also be applied to correction of variations in the actual amount of the reaction reagent dispensed to each reaction cell due to residual dilution of the reaction reagent. (Effects of the Invention) As explained above, In the present invention, a means for selectively measuring absorbance at an isosbestic wavelength and an analysis 'S length;
A storage means for storing the absorbance at the isoabsorption wavelength of the test solution Braun's solution of the reaction cell serving as a reference, and a ratio between the absorbance at the isoabsorption wavelength of the sample reaction solution and the value of the storage means,
means t! for calculating the product of said ratio and the absorbance of the sample at the analysis wavelength; Since the optical path length of the reaction cell is corrected by the absorbance at the isobestic wavelength in the region close to the analysis wavelength, reliability can be improved even for analytical methods that are susceptible to the influence of the optical path length of the reaction cell 1f due to the large absorbance. It is possible to obtain high measurement results.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す装置の構成図、第2図
はキシリジブルー法試藁の吸収曲線を示す図、及び第3
図はとウレット法試薬の吸収曲線を示す図である. 1・・・反応テーブル     2・・・反応セル3・
・・試料注入ステーション 4・・・試薬注入ステーション 5・・・測定ステーション   6・・・光源ランプ7
・・・分光器 9・・・信号切換器 8・一光電変換素子 12・・・演算制御回路
Figure 1 is a block diagram of an apparatus showing an embodiment of the present invention, Figure 2 is a diagram showing the absorption curve of xylidi blue test straw, and Figure 3
The figure shows the absorption curve of the uret method reagent. 1... Reaction table 2... Reaction cell 3.
...Sample injection station 4...Reagent injection station 5...Measurement station 6...Light source lamp 7
... Spectrometer 9 ... Signal switch 8 - One photoelectric conversion element 12 ... Arithmetic control circuit

Claims (1)

【特許請求の範囲】[Claims] 等吸収波長と分析波長における吸光度を選択的に測定す
る手段と、基準となる反応セルの試液ブランク液の等吸
収波長における吸光度を記憶する記憶手段と、試料反応
液の等吸収波長における吸光度と前記記憶手段の値との
比を求め、前記比と分析波長での試料の吸光度との積を
演算する手段とを備えてなる吸光度式自動分析装置。
means for selectively measuring the absorbance at the isoabsorption wavelength and the analysis wavelength; a storage means for storing the absorbance at the isoabsorption wavelength of a sample reaction solution blank of a reference reaction cell; 1. An absorbance-type automatic analyzer, comprising means for determining a ratio with a value in a storage means and calculating the product of the ratio and the absorbance of a sample at an analysis wavelength.
JP1239144A 1989-09-14 1989-09-14 Absorbancy type automatic analyser Pending JPH03102245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1239144A JPH03102245A (en) 1989-09-14 1989-09-14 Absorbancy type automatic analyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1239144A JPH03102245A (en) 1989-09-14 1989-09-14 Absorbancy type automatic analyser

Publications (1)

Publication Number Publication Date
JPH03102245A true JPH03102245A (en) 1991-04-26

Family

ID=17040415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1239144A Pending JPH03102245A (en) 1989-09-14 1989-09-14 Absorbancy type automatic analyser

Country Status (1)

Country Link
JP (1) JPH03102245A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10900892B1 (en) 2020-02-17 2021-01-26 SciLogica Corp. Validation of sensor calibration
US11230447B2 (en) 2015-01-23 2022-01-25 Symbolic Llc Storage and retrieval system transport vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11230447B2 (en) 2015-01-23 2022-01-25 Symbolic Llc Storage and retrieval system transport vehicle
US10900892B1 (en) 2020-02-17 2021-01-26 SciLogica Corp. Validation of sensor calibration
EP3865853A1 (en) * 2020-02-17 2021-08-18 SciLogica Corp. Validation of sensor calibration
WO2021165662A1 (en) * 2020-02-17 2021-08-26 SciLogica Corp. Validation of sensor calibration

Similar Documents

Publication Publication Date Title
US4263512A (en) Colorimetric method for liquid sampler including disturbing chromogens
JPH0134337B2 (en)
JPH0666808A (en) Chromogen measurement method
JPS61194336A (en) Automatic chemical analyser
EP0303707A1 (en) Optical measurement method and apparatus therefor in automatic analyzer
JPS6332132B2 (en)
JPH03102245A (en) Absorbancy type automatic analyser
JPH0514855B2 (en)
JPS6182145A (en) Automatic analysis device
JPH0547782B2 (en)
Cole et al. NIST Spectroscopic Measurement Standards
JP2869610B2 (en) Calibration method of electrolyte analyzer
JPH0593725A (en) Prozone adjustment and analysis method in antigen-antibody reaction
JPS63101758A (en) Automatic chemical analyzer
JPH0359461A (en) Automatic biochemical analysis apparatus
JPH0257863B2 (en)
JPS6140569A (en) Automatic analyzer
JPH0792432B2 (en) Automatic chemical analyzer
Tsih et al. Validating Slope Spectroscopy Methods: A Formula for Robust Measurements
JPS6298264A (en) Automatic analyzer
CN117191728B (en) Method for measuring multi-component concentration based on ultraviolet-visible absorption spectrum and application
JPS6060558A (en) Analyzing method for plural measurements
JPS62179639A (en) Multi-item biochemical analysis
JPH0513573B2 (en)
JPS5838744B2 (en) Analyzer for clinical testing