JPH0666808A - Chromogen measurement method - Google Patents

Chromogen measurement method

Info

Publication number
JPH0666808A
JPH0666808A JP24119892A JP24119892A JPH0666808A JP H0666808 A JPH0666808 A JP H0666808A JP 24119892 A JP24119892 A JP 24119892A JP 24119892 A JP24119892 A JP 24119892A JP H0666808 A JPH0666808 A JP H0666808A
Authority
JP
Japan
Prior art keywords
absorbance
chyle
wavelength
hemoglobin
bilirubin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24119892A
Other languages
Japanese (ja)
Other versions
JP3203798B2 (en
Inventor
Junichi Matsumoto
順一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP24119892A priority Critical patent/JP3203798B2/en
Publication of JPH0666808A publication Critical patent/JPH0666808A/en
Application granted granted Critical
Publication of JP3203798B2 publication Critical patent/JP3203798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3148Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using three or more wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To compute chyle, hemoglobin and bilirubin by measuring absorbance of a specimen blank liquid by means of four kinds of wavelengths, and since one of these wavelengths is absorbed only by the chyle, adopting the absorbance of the chyle to an exponential function of the wavelength to find a regression function in relation to the chyle, while solving equations of absorbance in the measurement wavelengths in relation to the hemoglobin and bilirubin. CONSTITUTION:A fixed quantity of reagent for blank reaction is mixed with a specimen to prepare a specimen blank liquid and absorbance, when it is measured with measurement wavelengths lambda1-lambda4 is denoted by A(lambda1)-A(lambda4), thus establishing equations. The wavelength lambda4 is adapted to the measurement wavelength for the specimen having only the absorbance because of the chyle. Ah(lambda), Ab(lambda), and At(lambda) respectively represent the absorbance of the hemoglobin, bilirubin and chyle at the wavelength lambda. The absorbance by the chyle is expressed by At(lambda)=alambda<b>, wherein (a), (b) are constants based on the number of particles and a diameter of the particle respectively. In relation to the hemoglobin and bilirubin, absorbance conversion between wavelengths from absorbance at one wavelength to absorbance at another wavelengtn can be performed by multiplucation of a predetermined coefficient. By multiplying the absorbance by concentration conversion coefficient and dilution magnification, the hemoglobin and bilirubin can be quantitatively determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は乳び(濁り)、ヘモグロ
ビン(溶血)、ビリルビン(黄疸)などのクロモゲンを
含む検体の多項目生化学分析において、乳び、ヘモグロ
ビン、ビリルビンを定量する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for quantifying chyle, hemoglobin and bilirubin in a multi-item biochemical analysis of a sample containing chromogens such as chyle (turbidity), hemoglobin (hemolysis) and bilirubin (jaundice). It is a thing.

【0002】[0002]

【従来の技術】臨床検査で分析測定しようとする検体に
含まれる乳び、ヘモグロビン及びビリルビンの3種のク
ロモゲンを同じ検体から同時期に定量する方法として、
可視光波長域のうちの乳びの影響はあるがヘモグロビン
及びビリルビンの影響が実質的にない長波長域での適正
な波長における吸光度を測定して乳びの程度を求め、可
視光波長域のうちのビリルビンの影響が実質的にない中
波長域での適正な波長における吸光度の値及び長波長域
における測定値に基づいてヘモグロビンの程度を求め、
可視光波長域のうちのヘモグロビンの影響がある短波長
域での適正な波長における吸光度の値及び中波長域にお
ける測定値に基づいてビリルビンの程度を求めることが
提案されている(特公昭61−19933号公報参
照)。
2. Description of the Related Art As a method for quantifying three types of chromogens of chyle, hemoglobin and bilirubin contained in a sample to be analyzed and measured in a clinical test from the same sample at the same time,
There is an influence of chyle in the visible light wavelength range, but the influence of hemoglobin and bilirubin is not substantially measured, and the degree of chyle is obtained by measuring the absorbance at an appropriate wavelength in a long wavelength range, The degree of hemoglobin is determined based on the absorbance value at a proper wavelength in the medium wavelength range where the effect of bilirubin is not present and the measured value in the long wavelength range,
It has been proposed to determine the degree of bilirubin based on the value of absorbance at an appropriate wavelength in the short wavelength region where the influence of hemoglobin is present in the visible light region and the measured value in the intermediate wavelength region (Japanese Patent Publication No. 61- (See Japanese Patent Publication No. 19933).

【0003】[0003]

【発明が解決しようとする課題】上記の引用例において
は、乳び度を求めるために、ヘモグロビン及びビリルビ
ンの影響が実質的にない長波長域での2波長で吸光度を
求め、その吸光度差に基準液で求めた単位濁度当たりの
吸光度差を表わす一定の定数をかけて中波長域での乳び
度とし、その乳び度を中波長域での2波長の吸光度差か
ら引くことによりヘモグロビン度を算出している。しか
し、乳びに関しては波長間の吸光度変換を表わす定数は
検体中の粒子の大きさに関係する値であり、検体によっ
て異なる。そのため、もしその定数を用いるとすれば検
体ごとに求めなければならないにも拘らず、検体が変わ
っても一定であるとしているので、その定数を用いて算
出されるヘモグロビンとビリルビンの値には誤差を含ん
でいる。また、その引用例の方法では、3種の各クロモ
ゲンについて2波長ずつ測定しなければならないので、
合計で6波長での測定が必要になる。
In the above cited example, in order to obtain the milkiness, the absorbance is calculated at two wavelengths in the long wavelength range where the effects of hemoglobin and bilirubin are not substantially obtained, and the difference in absorbance is calculated. Hemoglobin is obtained by multiplying the chyle degree in the mid-wavelength range by multiplying a constant constant that represents the difference in absorbance per unit turbidity obtained with the reference solution, and subtracting the chyle degree from the difference in the two-wavelength absorbance in the mid-wavelength range. The degree is calculated. However, with respect to chyle, the constant representing the absorbance conversion between wavelengths is a value related to the size of particles in the sample and varies depending on the sample. Therefore, if the constant is used, it is said that it is constant even if the sample changes, even though it has to be calculated for each sample.Therefore, there is an error in the values of hemoglobin and bilirubin calculated using the constant. Is included. Also, in the method of the cited example, since it is necessary to measure two wavelengths for each of the three types of chromogens,
A total of 6 wavelengths must be measured.

【0004】そこで、本発明の第1の目的は、乳びの吸
光度が粒子の大きさの関数であることを考慮して乳び、
ヘモグロビン及びビリルビンを正しく算出することであ
る。本発明の第2の目的は、測定波長数が多いほど誤差
は小さくなるが、クロモゲンの算出に必要な測定波長数
を少なくすることによって測定時間を短縮し、測定装置
を簡略化することである。
Therefore, the first object of the present invention is to consider that the absorbance of the chyle is a function of the particle size,
Correct calculation of hemoglobin and bilirubin. A second object of the present invention is to reduce the error as the number of measurement wavelengths increases, but to shorten the measurement time by simplifying the measurement device by reducing the number of measurement wavelengths required for chromogen calculation. .

【0005】[0005]

【課題を解決するための手段】本発明では、懸濁物質が
混在する検体にブランク反応用試薬を混合して検体ブラ
ンク液を調製し、この検体ブランク液の吸光度を乳びの
吸収がありヘモグロビンとビリルビンの吸収が実質的に
ない波長を含む少なくとも4種の波長により吸光度を測
定し、乳びに関しては吸光度が波長の指数関数で表され
ると仮定して波長−吸光度の回帰関数を求め、ヘモグロ
ビンとビリルビンに関しては異なる波長での吸光度間に
予め求められた一定の関係があると仮定して、前記測定
波長における吸光度に関する連立一次方程式を作り、そ
れを解いて乳び、ヘモグロビンおよびビリルビンの程度
を算出する。ブランク反応用試薬は各種の分析項目の測
定に使用される既知の種々の反応試薬から反応成分を除
いたもので上記の測定波長域に吸収をもたないもの、例
えば反応試薬の溶媒に使用される緩衝液、生理食塩水、
水などである。
According to the present invention, a sample blank solution is prepared by mixing a blank reaction reagent with a sample in which suspended substances are mixed, and the absorbance of this sample blank solution is determined by absorption of chyle. Absorbance of bilirubin and the absorbance is measured by at least four types of wavelengths including wavelengths that do not substantially exist, and for chyle, the absorbance is calculated by assuming that the absorbance is represented by an exponential function of wavelength, and a regression function of the absorbance is obtained, For hemoglobin and bilirubin, assuming that there is a predetermined relationship between the absorbances at different wavelengths, make a simultaneous linear equation for the absorbances at the measurement wavelengths and solve it to determine the extent of chyle, hemoglobin and bilirubin. To calculate. A blank reaction reagent is one obtained by removing reaction components from various known reaction reagents used for measurement of various analytical items and having no absorption in the above measurement wavelength range, for example, used as a solvent for reaction reagents. Buffer solution, physiological saline,
For example, water.

【0006】[0006]

【作用】一定量の検体に一定量のブランク反応用試薬を
混合して検体ブランク液を調製し、この検体ブランク液
について測定波長λ1,λ2,λ3,λ4で測定したときの
吸光度をそれぞれA(λ1),A(λ2),A(λ3),A
4)とすると、次の式が成り立つ。 A(λ1)=Ah(λ1)+Ab(λ1)+At(λ1) A(λ2)=Ah(λ2)+Ab(λ2)+At(λ2) A(λ3)=Ah(λ3)+Ab(λ3)+At(λ3) A(λ4)= At(λ4) ここで、Ah(λ),Ab(λ),At(λ)はそれぞれ
波長λにおけるヘモグロビン、ビリルビン、乳びによる
吸光度であり、波長λ4は検体が乳びに起因する吸光度
しかもたない測定波長であるとする。各クロモゲンの吸
収スペクトルを図1に示す。Hはヘモグロビン、Bはビ
リルビン、tは乳びを表している。測定波長λ1,λ2
λ3,λ4は例えば340,410,450,660nm
とする。
[Function] Absorbance of a sample blank solution prepared by mixing a certain amount of sample with a certain amount of blank reaction reagent, and measuring this sample blank solution at measurement wavelengths λ 1 , λ 2 , λ 3 , and λ 4. Are A (λ 1 ), A (λ 2 ), A (λ 3 ), A
4 ), the following equation holds. A (λ 1 ) = Ah (λ 1 ) + Ab (λ 1 ) + At (λ 1 ) A (λ 2 ) = Ah (λ 2 ) + Ab (λ 2 ) + At (λ 2 ) A (λ 3 ) = Ah ( λ 3 ) + Ab (λ 3 ) + At (λ 3 ) A (λ 4 ) = At (λ 4 ), where Ah (λ), Ab (λ), At (λ) are hemoglobin, bilirubin at wavelength λ, and It is the absorbance due to chyle, and the wavelength λ 4 is the measurement wavelength at which the sample has only the absorbance due to chyle. The absorption spectrum of each chromogen is shown in FIG. H represents hemoglobin, B represents bilirubin, and t represents chyle. Measurement wavelength λ 1 , λ 2 ,
λ 3 and λ 4 are, for example, 340, 410, 450, 660 nm
And

【0007】乳びに起因する吸光度は At(λ)=aλb と表わすことができる(特開昭62−179639号参
照)。ここで、aは粒子の数に起因する定数、bは平均
粒子径に起因する定数で、a,bはともに検体によって
異なる。一方、ヘモグロビンとビリルビンに関しては検
体が異なっても吸収スペクトルの形状は変わらないこと
が実験的確かめられているので、ある波長の吸光度から
別の波長の吸光度へは予め求められた係数をかけること
によって波長間の吸光度換算ができる。
The absorbance due to chyle can be expressed as At (λ) = aλ b (see JP-A-62-179639). Here, a is a constant resulting from the number of particles, b is a constant resulting from the average particle diameter, and both a and b differ depending on the sample. On the other hand, regarding hemoglobin and bilirubin, it has been experimentally confirmed that the shape of the absorption spectrum does not change even if the sample is different, so by multiplying the absorbance of one wavelength to the absorbance of another wavelength by a previously determined coefficient. It is possible to convert absorbance between wavelengths.

【0008】これらの関係を用い、340nmでの吸光
度に合わせて上記の式を変形すると次のようになる。 A(340)=Ah(340) + Ab(340)+At(340) A(410)=K1・Ah(340)+K2・Ab(340)+At(410) A(450)=K3・Ah(340)+K4・Ab(340)+At(450) A(660)= At(660) ここで、K1はヘモグロビンの吸光度を測定波長340
nmでの吸光度から測定波長410nmでの吸光度に換
算する換算係数、K3はヘモグロビンの吸光度を測定波
長340nmでの吸光度から測定波長450nmでの吸
光度に換算する換算係数、K2はビリルビンの吸光度を
測定波長340nmでの吸光度から測定波長410nm
での吸光度に換算する換算係数、K4はビリルビンの吸
光度を測定波長340nmでの吸光度から測定波長45
0nmでの吸光度に換算する換算係数である。
Using the above relationships, the above equation can be modified according to the absorbance at 340 nm as follows. A (340) = Ah (340) + Ab (340) + At (340) A (410) = K 1 · Ah (340) + K 2 · Ab (340) + At (410) A (450) = K 3 · Ah (340) + K 4 · Ab (340) + At (450) A (660) = At (660) where K 1 is the measurement wavelength of the absorbance of hemoglobin 340
The conversion coefficient for converting the absorbance at nm to the absorbance at the measurement wavelength of 410 nm, K 3 is the conversion coefficient for converting the absorbance of hemoglobin to the absorbance at the measurement wavelength of 450 nm from the absorbance at the measurement wavelength of 340 nm, and K 2 is the absorbance of bilirubin. From absorbance at measurement wavelength 340 nm to measurement wavelength 410 nm
A conversion coefficient for converting the absorbance at 4 to K 4 is the absorbance of bilirubin from the absorbance at the measurement wavelength of 340 nm to the measurement wavelength of 45.
It is a conversion coefficient for converting the absorbance at 0 nm.

【0009】At(λ)=a・λbの関係を用いて上記の
式をまとめると次のようになる。 {(K2・K3-K1・K4)A(340)−(K3-K4)A(410)+(K1-K2)A(450)}/A(660) ={(K2・K3-K1・K4)・340b−(K3-K4)・410b+(K1-K2)・450b}/660b
The above equations can be summarized as follows using the relationship of At (λ) = aλ b . {(K 2・ K 3 -K 1・ K 4 ) A (340)-(K 3 -K 4 ) A (410) + (K 1 -K 2 ) A (450)} / A (660) = { (K 2・ K 3 -K 1・ K 4 ) ・ 340 b − (K 3 -K 4 ) ・ 410 b + (K 1 -K 2 ) ・ 450 b } / 660 b

【0010】この式で、左辺は一定値であり、bを近似
計算により求めることができ、aは a=A(660)/660b で求めることができる。また、 Ah(410)=A(410)−K5・Ab(450)−a410b Ab(450)=A(450)−K6・Ah(410)−a450b となる。ここで、K5はビリルビンの吸光度を測定波長
410nmでの吸光度から測定波長450nmでの吸光
度に換算する換算係数、K6はヘモグロビンの吸光度を
測定波長450nmでの吸光度から測定波長410nm
での吸光度に換算する換算係数である。
In this equation, the left side is a constant value, b can be obtained by approximate calculation, and a can be obtained by a = A (660) / 660 b . Further, Ah (410) = A ( 410) -K 5 · Ab (450) -a410 b Ab (450) = A (450) -K 6 · Ah (410) becomes -a450 b. Here, K 5 is a conversion coefficient for converting the absorbance of bilirubin from the absorbance at the measurement wavelength of 410 nm to the absorbance at the measurement wavelength of 450 nm, and K 6 is the absorbance of hemoglobin from the absorbance at the measurement wavelength of 450 nm to the measurement wavelength of 410 nm.
It is a conversion coefficient for converting the absorbance at.

【0011】これにより、 Ah(410)={A(410)-K5・A(450)-a・410b+K5・a・450b}/(1-K5・K6) Ab(450)={K6・A(410)-A(450)-K6・a・410b+a・450b}/(K5・K6-1) となり、ヘモグロビンとビリルビンの最大吸収波長に近
い波長におけるそれぞれの成分単独の吸光度が求められ
る。求められた吸光度に濃度換算係数及び希釈倍率を乗
ずることによりヘモグロビンとビリルビンを定量するこ
とができる。
As a result, Ah (410) = {A (410) -K 5 .A (450) -a.410 b + K 5 .a.450 b } / (1-K 5 .K 6 ) Ab ( 450) = {K 6 · A (410) -A (450) -K 6 · a · 410 b + a · 450 b } / (K 5 · K 6 -1), which is the maximum absorption wavelength of hemoglobin and bilirubin. The absorbance of each component alone at near wavelengths is determined. Hemoglobin and bilirubin can be quantified by multiplying the obtained absorbance by the concentration conversion coefficient and the dilution rate.

【0012】[0012]

【実施例】ヘモグロビンと乳びを含む実検体を生理食塩
水で31倍に希釈したものを測定した例を図2に示す。
10nmごとに吸収を測定し、その測定点(黒丸)を結
んだものが図中の Sample として示した吸収スペクトル
である。その測定点のうち、測定波長340,410,
450,660nmでの吸光度を用いて上記の演算を適
用して、乳びによる濁りのスペクトルとして示したのが
tであり、実測吸光度から濁りの予想吸光度を差し引い
て示したスペクトルがHである。算出されたa=6.2
68×108、b=−2.693、ヘモグロビンの濃度は
52mg/dlとなった。
[Examples] FIG. 2 shows an example of measurement of a real sample containing hemoglobin and chyle diluted 31 times with physiological saline.
Absorption was measured every 10 nm and the measurement points (black circles) were connected to each other to form the absorption spectrum shown as Sample in the figure. Of the measurement points, the measurement wavelengths 340, 410,
By applying the above calculation using the absorbances at 450 and 660 nm, t is shown as a spectrum of turbidity due to chyle, and H is the spectrum obtained by subtracting the expected absorbance of turbidity from the measured absorbance. Calculated a = 6.2
68 × 10 8 , b = −2.693, and hemoglobin concentration was 52 mg / dl.

【0013】ヘモグロビン、ビリルビン及び乳びを含む
実検体を生理食塩水で31倍に希釈したものを測定した
例を図3に示す。測定は図2と同じであり、10nmご
とに吸収を測定し、その測定点(黒丸)を結んだものが
図中の Sample として示した吸収スペクトルである。こ
の場合もその測定点のうち、測定波長340,410,
450,660nmでの吸光度を用いて上記の演算を適
用して、乳びによる濁りのスペクトルとして示したのが
tであり、実測吸光度から濁りの予想吸光度を差し引い
て示したスペクトルがH+Bである。算出されたa=
4.184×107、b=−2.089、ヘモグロビンの
濃度は11mg/dl、ビリルビンの濃度は19mg/
dlとなった。別に反応試薬を加えて吸光度を測定する
分析において、ヘモグロビンとビリルビンに関しては各
波長間における吸光度換算係数を求めておけば、乳びに
関してはA=aλbの関係からその測定波長におけるこ
れらクロモゲンに関しての吸光度が予想できるので、試
料量/試薬量比を考慮に入れて実測吸光度から差し引く
ことにより、反応のみによる真の吸光度が分かるので、
定量値の補正や限界吸光度の補正などを行なうことがで
きる。
FIG. 3 shows an example in which an actual sample containing hemoglobin, bilirubin and chyle was diluted 31 times with physiological saline and measured. The measurement is the same as in FIG. 2, and absorption is measured every 10 nm and the measurement points (black circles) are connected to each other to form an absorption spectrum shown as Sample in the figure. Also in this case, among the measurement points, the measurement wavelengths 340, 410,
By applying the above calculation using the absorbances at 450 and 660 nm, t is shown as the spectrum of turbidity due to chyle, and the spectrum obtained by subtracting the expected absorbance of turbidity from the measured absorbance is H + B. Calculated a =
4.184 × 10 7 , b = −2.089, hemoglobin concentration 11 mg / dl, bilirubin concentration 19 mg /
It became dl. Separately, in an analysis in which a reaction reagent is added to measure the absorbance, if the absorbance conversion coefficient between each wavelength is obtained for hemoglobin and bilirubin, for chyle, the relation between these chromogens at the measurement wavelength is determined from the relation of A = aλ b . Since the absorbance can be predicted, the true absorbance due to the reaction alone can be found by subtracting it from the measured absorbance taking into account the sample amount / reagent amount ratio.
It is possible to correct the quantitative value and the limit absorbance.

【0014】[0014]

【発明の効果】本発明では乳びに関しては吸光度が波長
の指数関数で表されると仮定して波長−吸光度の回帰関
数を求めるので、乳び度の測定を検体中の粒子径に左右
されることなく実行することができる。そして、乳び度
が正しく求まるので、それから導かれるヘモグロビンや
ビリルビンの算出値も正確になる。各クロモゲンを正確
に求めることができるので、分析項目に対しての吸光度
補正を正確に行なうことができる。
In the present invention, regarding the chyle, the wavelength-absorbance regression function is obtained on the assumption that the absorbance is represented by the exponential function of the wavelength. Therefore, the measurement of the chyle depends on the particle size in the sample. Can be done without. Then, the degree of chyle is accurately obtained, and the calculated values of hemoglobin and bilirubin derived therefrom are also accurate. Since each chromogen can be accurately obtained, the absorbance correction for the analysis item can be accurately performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】各クロモゲンの吸光度を示す図である。FIG. 1 is a diagram showing the absorbance of each chromogen.

【図2】ヘモグロビンと乳びを含む検体を測定した実施
例における検体とクロモゲンの吸収スペクトルを示す図
である。
FIG. 2 is a diagram showing absorption spectra of a sample and chromogen in an example in which a sample containing hemoglobin and chyle was measured.

【図3】ヘモグロビン、ビリルビン及び乳びを含む検体
を測定した実施例における検体とクロモゲンの吸収スペ
クトルを示す図である。
FIG. 3 is a diagram showing absorption spectra of a sample and chromogen in an example in which a sample containing hemoglobin, bilirubin, and chyle was measured.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 懸濁物質が混在する検体にブランク反応
用試薬を混合して検体ブランク液を調製し、この検体ブ
ランク液の吸光度を乳びの吸収がありヘモグロビンとビ
リルビンの吸収が実質的にない波長を含む少なくとも4
種の波長により吸光度を測定し、乳びに関しては吸光度
が波長の指数関数で表されると仮定して波長−吸光度の
回帰関数を求め、ヘモグロビンとビリルビンに関しては
異なる波長での吸光度間に予め求められた一定の関係が
あると仮定して、前記測定波長における吸光度に関する
連立一次方程式を作り、それを解いて乳び、ヘモグロビ
ンおよびビリルビンの程度を算出するクロモゲンの測定
方法。
1. A sample blank solution is prepared by mixing a blank reaction reagent with a sample in which suspended substances are mixed, and the absorbance of this sample blank solution has absorption of chyle and absorption of hemoglobin and bilirubin is substantially At least 4 including no wavelength
Absorbance is measured by the wavelength of the seed, and for chyle, the wavelength-absorbance regression function is obtained assuming that the absorbance is represented by an exponential function of wavelength, and for hemoglobin and bilirubin, it is determined in advance between the absorbances at different wavelengths. A method for measuring chromogen in which simultaneous linear equations regarding the absorbance at the measurement wavelength are created, and are solved to calculate the degrees of chyle, hemoglobin and bilirubin on the assumption that there is a certain relationship.
JP24119892A 1992-08-17 1992-08-17 How to measure chromogen Expired - Fee Related JP3203798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24119892A JP3203798B2 (en) 1992-08-17 1992-08-17 How to measure chromogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24119892A JP3203798B2 (en) 1992-08-17 1992-08-17 How to measure chromogen

Publications (2)

Publication Number Publication Date
JPH0666808A true JPH0666808A (en) 1994-03-11
JP3203798B2 JP3203798B2 (en) 2001-08-27

Family

ID=17070670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24119892A Expired - Fee Related JP3203798B2 (en) 1992-08-17 1992-08-17 How to measure chromogen

Country Status (1)

Country Link
JP (1) JP3203798B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100343753B1 (en) * 2000-02-17 2002-07-20 강건 Instrument for determining Bilirubin concentration and Hemoglobin content
JP2003004753A (en) * 2001-06-18 2003-01-08 Aloka Co Ltd Dispensing conformity-determining apparatus
JP2007263907A (en) * 2006-03-30 2007-10-11 Sysmex Corp Blood coagulation time measuring device
JP2007315942A (en) * 2006-05-26 2007-12-06 Sekisui Chem Co Ltd Method of measuring hemoglobin types
WO2009057659A1 (en) * 2007-10-30 2009-05-07 Arkray, Inc. Method for analyzing sample and its device
US7760340B2 (en) 2006-03-16 2010-07-20 Sysmex Corporation Sample analyzer
US7842509B2 (en) 2006-03-30 2010-11-30 Sysmex Corporation Blood analyzer and blood analyzing method
JP2014521095A (en) * 2011-07-18 2014-08-25 シーメンス ヘルスケア ダイアグノスティクス プロダクツ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and system for measuring the concentration of a substance in a body fluid
JP2016138886A (en) * 2015-01-27 2016-08-04 シーメンス ヘルスケア ダイアグノスティクス プロダクツ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method of determining lipids and other interfering substances in body fluid samples
WO2019171703A1 (en) * 2018-03-05 2019-09-12 オリンパス株式会社 Endoscope system
JP2020008578A (en) * 2018-07-03 2020-01-16 シーメンス ヘルスケア ダイアグノスティクス プロダクツ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for determining lipids, hemoglobin and bilirubin in body fluid samples
WO2020229957A1 (en) * 2019-05-10 2020-11-19 Inpeco Holding Ltd. Device and process for screening of a biological sample
CN112710620A (en) * 2021-01-05 2021-04-27 广州睿贝医学科技有限公司 Method, device, equipment, medium and application for detecting accurate DNA concentration
CN112834440A (en) * 2021-01-05 2021-05-25 广州睿贝医学科技有限公司 Method, device, equipment, medium and application for detecting concentration of precise RNA

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100343753B1 (en) * 2000-02-17 2002-07-20 강건 Instrument for determining Bilirubin concentration and Hemoglobin content
JP2003004753A (en) * 2001-06-18 2003-01-08 Aloka Co Ltd Dispensing conformity-determining apparatus
US7760340B2 (en) 2006-03-16 2010-07-20 Sysmex Corporation Sample analyzer
EP1845363A3 (en) * 2006-03-16 2012-03-28 Sysmex Corporation Sample analyzer
EP2645086A2 (en) 2006-03-16 2013-10-02 Sysmex Corporation Sample analyzer
JP2007263907A (en) * 2006-03-30 2007-10-11 Sysmex Corp Blood coagulation time measuring device
US7842509B2 (en) 2006-03-30 2010-11-30 Sysmex Corporation Blood analyzer and blood analyzing method
JP2007315942A (en) * 2006-05-26 2007-12-06 Sekisui Chem Co Ltd Method of measuring hemoglobin types
US9176049B2 (en) 2007-10-30 2015-11-03 Arkray Inc Method of optical analysis using reference cell and base plate correction and apparatus thereof
WO2009057659A1 (en) * 2007-10-30 2009-05-07 Arkray, Inc. Method for analyzing sample and its device
JP5442447B2 (en) * 2007-10-30 2014-03-12 アークレイ株式会社 Sample analysis method and apparatus
JP2014521095A (en) * 2011-07-18 2014-08-25 シーメンス ヘルスケア ダイアグノスティクス プロダクツ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and system for measuring the concentration of a substance in a body fluid
JP2016138886A (en) * 2015-01-27 2016-08-04 シーメンス ヘルスケア ダイアグノスティクス プロダクツ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method of determining lipids and other interfering substances in body fluid samples
WO2019171703A1 (en) * 2018-03-05 2019-09-12 オリンパス株式会社 Endoscope system
US11723513B2 (en) 2018-03-05 2023-08-15 Olympus Corporation Endoscope system and image processing method
JP2020008578A (en) * 2018-07-03 2020-01-16 シーメンス ヘルスケア ダイアグノスティクス プロダクツ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for determining lipids, hemoglobin and bilirubin in body fluid samples
WO2020229957A1 (en) * 2019-05-10 2020-11-19 Inpeco Holding Ltd. Device and process for screening of a biological sample
CN113950620A (en) * 2019-05-10 2022-01-18 英派克股份有限公司 Apparatus and process for screening biological samples
US11965824B2 (en) 2019-05-10 2024-04-23 Inpeco SA Device and process for screening of a biological sample
CN113950620B (en) * 2019-05-10 2024-05-28 英派克股份有限公司 Apparatus and process for screening biological samples
CN112710620A (en) * 2021-01-05 2021-04-27 广州睿贝医学科技有限公司 Method, device, equipment, medium and application for detecting accurate DNA concentration
CN112834440A (en) * 2021-01-05 2021-05-25 广州睿贝医学科技有限公司 Method, device, equipment, medium and application for detecting concentration of precise RNA

Also Published As

Publication number Publication date
JP3203798B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
EP2016390B1 (en) A method and a system for quantitative hemoglobin determination
EP1698883B1 (en) Method of determining total hemoglobin concentration in undiluted and unhemolyzed whole blood
US4013417A (en) Analyzer for the determination of hemoglobin and other related compounds in whole blood and hemoglobin solutions
JP5006441B2 (en) Whole blood analysis
US4157871A (en) System for rate immunonephelometric analysis
JP3203798B2 (en) How to measure chromogen
EP1023583B1 (en) Method for measurement of blood substitutes
US20070190637A1 (en) Apparatus for handling fluids
CN102854177B (en) Method for determining methemoglobin content MetHb% in sample to be tested through Raman spectroscopy
Parks et al. Carboxyhemoglobin determination by second-derivative spectroscopy.
JPS6332132B2 (en)
BRPI0822570B1 (en) IN VITRO PROCESS FOR DETERMINING HEMOGLOBIN CONCENTRATION IN A SAMPLE OF DILUTED BLOOD
JP3780599B2 (en) Method for measuring antigen-antibody reaction substance
JPS6118982B2 (en)
JPH0514855B2 (en)
JPH0593725A (en) Prozone adjustment and analysis method in antigen-antibody reaction
Liedtke et al. Centrifugal analysis with automated sequential reagent addition: measurement of serum calcium.
EP0433629B1 (en) A method for the qualitative and quantitative determination of antibodies against bacterial antigens by means of the photometric measurement of agglutination
JPH0359461A (en) Automatic biochemical analysis apparatus
JPS62179639A (en) Multi-item biochemical analysis
JPS61272637A (en) Measuring instrument for polarized fluorescent light
JPH07218507A (en) Immuno nephelometry
JP3204697B2 (en) Automatic analysis method
JPS6229016B2 (en)
JPS63103945A (en) Method for measuring information in serum

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080629

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090629

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100629

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110629

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120629

LAPS Cancellation because of no payment of annual fees