JPS61209901A - Hydrogen storage material and its preparation - Google Patents

Hydrogen storage material and its preparation

Info

Publication number
JPS61209901A
JPS61209901A JP60049868A JP4986885A JPS61209901A JP S61209901 A JPS61209901 A JP S61209901A JP 60049868 A JP60049868 A JP 60049868A JP 4986885 A JP4986885 A JP 4986885A JP S61209901 A JPS61209901 A JP S61209901A
Authority
JP
Japan
Prior art keywords
hydrogen storage
metal particles
hydrogen
metal
calcium silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60049868A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
敬 鈴木
Hiroshi Hagiwara
浩 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOIN KK
Original Assignee
NIPPON KOIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOIN KK filed Critical NIPPON KOIN KK
Priority to JP60049868A priority Critical patent/JPS61209901A/en
Publication of JPS61209901A publication Critical patent/JPS61209901A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To prevent deterioration of hydrogen storing characteristic of a hydrogen storage metal due to pulverization of hydrogen storage metal and to prevent deformation of a vessel for the hydrogen storage metal due to expansion of the metal during occlusion of hydrogen by supporting metal particles having hydrogen storage capacity on a carrier comprising porous calcium silicate and moulding the metal particles together with the carrier. CONSTITUTION:(I) Metal particles capable of having hydrogen storage capacity are dispersed in a slurry somprising slaked line and diatomaceous earth in a vessel main body. (II) Then, a supporting body comprising porous solid calcium silicate is formed by allowing CaO to react with SiO2. Further, (III) the metal particles dispersed in the supporting body is treated to acquire hydrogen storage capacity to prepare thus a moulded body of the hydrogen storage material. When the slurry (I) is prepd., slaked line is mixed with diatomaceous earth to 0.6-1.0 proportion of CaO/SiO2. It is preferred to mix 10-20wt% (basing on the whole solid component) asbestos, glass fiber, or heat resistant fiber with the above described slurry.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素吸蔵体とその製造方法にかかり、金属水素
化物の粉粒体を担体としての珪酸カルシウム支持体に分
散させた構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a hydrogen storage material and a method for producing the same, and relates to a structure in which powdery particles of metal hydride are dispersed in a calcium silicate support as a carrier.

〔従来の技術〕[Conventional technology]

近来、金属水素化物を利用して水素の貯蔵や輸送をする
手段が実用化されつつある。しかし、水素吸蔵能を附与
し得る金属にいきなり水素を接触させても水素化せず金
属に活性化作用を施す必要がある。
Recently, methods for storing and transporting hydrogen using metal hydrides have been put into practical use. However, even if a metal capable of imparting hydrogen storage capacity is suddenly brought into contact with hydrogen, hydrogenation does not occur, and it is necessary to activate the metal.

活性化とは、水素吸蔵能を附与し得る金属を高温や低温
で真空排気したり、水素導入や放出をさせたりして、金
属の水素化反応速度を促進する操作をいう。貯蔵容器に
入れた金属水素化物は、水素化に際して膨張する。そし
て水素の吸蔵、放出を繰り返しているうちに金属水素化
物は微粉化し粉末は次第に容器内で圧密の状態となる。
Activation refers to an operation that accelerates the hydrogenation reaction rate of a metal by evacuating the metal capable of imparting hydrogen storage ability at high or low temperatures, or by introducing or releasing hydrogen. The metal hydride placed in the storage container expands during hydrogenation. As hydrogen is absorbed and released repeatedly, the metal hydride becomes finely powdered, and the powder gradually becomes compacted inside the container.

圧密の状態が進むと水素吸蔵特性が低下するばかりでな
くこのような状態で金属水素化物が膨張すると容器を変
形させる。また微粉化した金属水素化物は水素吸蔵、放
出を繰り返すうちに、容器外に導出されパイプやバルブ
を詰らせることになる。このためフィルターが必要にな
るがフィルターは高価である。また、金属水素化物の水
素吸蔵、放出の速度は充分早くなければならないが実際
の化学反応の速度よりも装置の伝熱で支配される場合が
多いので、金属水素化物容器の設計には、この点が重要
である。
As the state of compaction progresses, not only does the hydrogen storage property deteriorate, but when the metal hydride expands under such conditions, it deforms the container. Further, as the pulverized metal hydride repeatedly absorbs and releases hydrogen, it is drawn out of the container and clogs pipes and valves. For this reason, filters are required, but filters are expensive. In addition, the rate of hydrogen absorption and desorption of metal hydrides must be sufficiently fast, but in many cases it is controlled by the heat transfer of the equipment rather than the rate of the actual chemical reaction, so this is important when designing a metal hydride container. The point is important.

微粉化した水素吸蔵金属が容器外部へ放出されるのを防
止する手段として特開昭59−73401号公報には、
セラミック微粉末を水素吸蔵能を有する合金の微粉末と
混合して高圧で焼結して多孔質体とした水素吸蔵体が記
載されている。しかしながらこのものは、合金とセラミ
ックとの焼結に高圧、高温を必要とする。また、水素吸
蔵金属の粉末化を防止する手段として特開昭5s−14
6439号公報には粉末状の水素吸収剤が記載されてい
る。このものは水素吸蔵能力を有する金属に粘度鉱物を
添加して焼成したものをさらに粉砕して微粉末化したも
のであるため製造に手間がかかるという問題がある。
As a means to prevent the pulverized hydrogen storage metal from being released to the outside of the container, JP-A-59-73401 discloses
A hydrogen storage body is described in which fine ceramic powder is mixed with fine powder of an alloy having hydrogen storage ability and sintered under high pressure to form a porous body. However, this method requires high pressure and high temperature for sintering the alloy and ceramic. In addition, as a means to prevent hydrogen-absorbing metals from turning into powder, JP-A-5S-14
Publication No. 6439 describes a powdered hydrogen absorbent. This product is made by adding a clay mineral to a metal having hydrogen storage capacity, firing it, and then pulverizing it into a fine powder, so there is a problem in that it takes time and effort to manufacture.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上述の問題に鑑み従来から溶解アセチレンボン
ベの内部にアセチレン分解伝播防止用として充填使用さ
れている多孔質珪酸カルシウムの連続気泡・高多孔度に
よるガス流通性の良さ、機械的・化学的安定性等に着目
し水素吸蔵能力を有する金属の微粉化による水素吸蔵特
性の低下を防止し、微粉化した金属が容器内で圧密化す
るのを防止し水素吸蔵時の膨張によって容器が変形する
ようなことがないようにし、さらに、微粉化した水素吸
蔵金属が外部に放出されてパイプやバルブを閉塞させる
のを防止しようとするものである。
In view of the above-mentioned problems, the present invention has been developed using porous calcium silicate, which has been conventionally used to prevent acetylene decomposition and propagation inside dissolved acetylene cylinders. Focusing on stability, etc., we prevent the deterioration of hydrogen storage properties due to pulverization of metals with hydrogen storage capacity, and prevent the pulverized metal from becoming compacted inside the container, which causes the container to deform due to expansion during hydrogen storage. The aim is to prevent this from happening, and also to prevent the pulverized hydrogen storage metal from being released to the outside and clogging pipes and valves.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、多孔質珪酸カルシウムよりなる支持体に、水
素吸蔵能をもつ金属の粒子を担持させた成型物よりなり
、多孔質珪酸カルシウムの高い多孔度と孔径が小さいこ
とのためにフィルター効果を高くし微細化した金属の容
器外へ放出防止効果を大にし、さらに珪酸カルシウムの
カサ比重の少いことから全体の経世化をはかり、また珪
酸カルシウムの高い多孔度によって金属粒子の膨張を吸
収するとともに金属粒子表面への水素ガスのパスを確保
させ、局部的な容器膨張等の障害を防止しようとするも
のである。
The present invention consists of a molded product in which metal particles with hydrogen storage capacity are supported on a support made of porous calcium silicate, and the filter effect is achieved due to the high porosity and small pore size of porous calcium silicate. The height and fineness of the metal increases its effectiveness in preventing release from the container, and the low bulk specific gravity of calcium silicate helps the overall aging process, and the high porosity of calcium silicate absorbs the expansion of metal particles. At the same time, it is intended to ensure a path for hydrogen gas to the surface of the metal particles and prevent problems such as local expansion of the container.

さらに本発明は、容器本体内で消石灰と珪藻土よりなる
泥しように水素吸蔵能を附与し得る金属粒子を分散させ
、次にCaOと5inzを反応させて多孔質固体珪酸カ
ルシウムよりなる支持体を生成し、次にこの支持体に分
散された前記金属粒子に水素吸蔵能を附与させることに
より水素吸蔵体成型物を得ることよりなり消石灰と珪藻
土の固化反応前の泥しよう時に金属粒子を分散させて支
持体中に均一に金属粒子を分散させるとともに金属粒子
の担持力を大にし、金属粒子の有効表面積を大にして水
素ガスの吸蔵、放出速度を大にし、また容器中で任意の
形状に成型し得るようにしたものである。
Furthermore, in the present invention, metal particles capable of imparting hydrogen storage capacity are dispersed in mud made of slaked lime and diatomaceous earth, and then CaO and 5 inz are reacted to form a support made of porous solid calcium silicate. By imparting hydrogen storage ability to the metal particles generated and then dispersed in this support, a molded hydrogen storage body can be obtained. The metal particles are dispersed uniformly in the support, the supporting force of the metal particles is increased, and the effective surface area of the metal particles is increased to increase the absorption and release rate of hydrogen gas. It is designed so that it can be molded into.

(作用〕 本発明は、多孔質珪酸カルシウムの多孔性と細孔性によ
り微粉化した金属粒子のフィルター効果が高くなり、さ
らに珪酸カルシウムの多孔性によって金属粒子の膨張を
吸収しかつ金属粒子の表面への水素ガスのパスが確保さ
れるものである。
(Function) In the present invention, the porosity and porosity of porous calcium silicate enhance the filtering effect of finely divided metal particles, and furthermore, the porosity of calcium silicate absorbs the expansion of metal particles and the surface of the metal particles. This ensures a path for hydrogen gas to.

また製造に際しては、消石灰と珪藻土よりなる泥しよう
に金属粒子を分散させた後反応固化させることにより支
持体中に金属粒子が均等に分散されるものである。
Further, during production, the metal particles are dispersed in a slurry made of slaked lime and diatomaceous earth, and then reacted and solidified to uniformly disperse the metal particles in the support.

〔発明の構成〕[Structure of the invention]

本発明の構成をその製法について詳述する。 The structure of the present invention and its manufacturing method will be explained in detail.

■ 原料の調製 (1)  珪酸カルシウム支持体 消石灰と珪藻土を重量化でcao/si[12= 0.
6〜1.0になるよう混合し、これに石綿(またはガラ
スlIN等の耐熱性!l維)を全固形分の10〜20重
惜%程度になるよう配合する。
■ Preparation of raw materials (1) Calcium silicate support slaked lime and diatomaceous earth are weighed to give cao/si [12=0.
6 to 1.0, and asbestos (or heat-resistant fibers such as glass lIN) is blended to this so as to account for about 10 to 20% of the total solid content.

更に全固形分が20重量%程度となるように水を加えて
泥しまうAを調製する。
Further, water is added so that the total solid content is about 20% by weight to prepare muddy A.

(2)  水素吸蔵能を附与し得る金属としては、従来
から用いられている全てのものが使用可能であるが例え
ば、V、 Nb、 Pd、 Ti等の金属単体やHm−
Ni系、Ti−Hn系、La−X1系、Fe−Ti系、
V−Nb系等およびそれらの三元素、多元素系の合金が
用いられる。そして、これらの金属単体または合金を、
3,0#程度以下に破砕して金属粒子Bを得る。
(2) As metals capable of imparting hydrogen storage capacity, all conventionally used metals can be used, but for example, simple metals such as V, Nb, Pd, and Ti, and Hm-
Ni series, Ti-Hn series, La-X1 series, Fe-Ti series,
V-Nb systems, etc., and ternary and multi-element alloys thereof are used. Then, these metals or alloys,
Metal particles B are obtained by crushing the particles to about 3.0 # or less.

(3)  泥しようAと金属粒子Bとをよく混合する。(3) Mix slurry A and metal particles B well.

AとBの混合比によって最終的の強度、性能等を調整す
ることができるので、それらを考慮して混合比をきめる
The final strength, performance, etc. can be adjusted by the mixing ratio of A and B, so the mixing ratio is determined taking these into consideration.

混合比の適当な範囲はB/ (A+8)が50〜85重
量%である。この範囲以下では、製品の強度は向上する
が水素吸蔵性が低下し、この範囲以上になると珪酸カル
シウム支持体の強度が低下する。
A suitable range of the mixing ratio is B/(A+8) of 50 to 85% by weight. Below this range, the strength of the product improves, but the hydrogen storage property decreases, and above this range, the strength of the calcium silicate support decreases.

■ 容器 第1図に示すように水素流出入管1.2を取付けること
ができる容器本体3に前述のAとBとの混合物Cを注入
する。次に第2図に示すように混合物C上に前記金属粒
子Bを混合しない泥しようAを注入する。
(2) Container As shown in FIG. 1, the mixture C of A and B is poured into a container body 3 to which a hydrogen inlet/outlet pipe 1.2 can be attached. Next, as shown in FIG. 2, slurry A without the metal particles B mixed therein is poured onto mixture C.

■ 混合物Cと泥しようAを注入した容器本体3をオー
トクレーブ内で200℃以下の温度で飽和水蒸気圧下で
10〜20時間反応させ金属粒子Bが均一に分散した多
孔質固体珪酸カルシウム層とこの上層に金属粒子Bを含
まない多孔質固体珪酸カルシウム層とが形成される。
■ The container body 3 filled with mixture C and slurry A is reacted in an autoclave at a temperature below 200°C under saturated steam pressure for 10 to 20 hours to form a porous solid calcium silicate layer in which metal particles B are uniformly dispersed and an upper layer of this. A porous solid calcium silicate layer containing no metal particles B is formed.

IV  次に固体珪酸カルシウムに耐着した水分を除去
するために200℃以下の温度で恒量になるまで乾燥す
ると、第3図に示すように容器本体3内に石綿またはガ
ラス繊維等よりなる耐熱性mmにより強化された多孔質
固体珪酸カルシウムよりなる支持体5に金属粒子Bが分
散された層と、この層上に耐熱性繊維で強化された多孔
質固体珪酸カルシウムよりなるフィルターWJ6とが形
成される。
IV Next, in order to remove moisture adhering to the solid calcium silicate, the solid calcium silicate is dried at a temperature below 200°C until it reaches a constant weight, and as shown in FIG. A layer in which metal particles B are dispersed in a support 5 made of porous solid calcium silicate reinforced with mm, and a filter WJ6 made of porous solid calcium silicate reinforced with heat-resistant fibers are formed on this layer. Ru.

■ 次に容器本体3に水素流出入口1,2を取付ける。■Next, attach the hydrogen inlets 1 and 2 to the container body 3.

■ 用いた金属に適した方法で金属粒子Bに活性化を施
す。
■ Activate metal particles B using a method suitable for the metal used.

以上のようにして第4図に示すように水素吸蔵容器4内
に耐熱性繊維で強化された多孔質固体珪酸カルシウムよ
りなる支持体5に水素吸蔵能力をもつ金属粒子B′を分
散させて担持させた成型物7と、この成型物7上に多孔
質固体珪酸カルシウムよりなるフィルタ一層6を有する
製品が得られる。得られた製品の多孔質の支持体5は石
綿やガラスIIN等で補強されて機械的強度が大であり
、またフィルタ一層6が一体に形成されているから支持
体5自体のフィルター効果と相まってフィルター効果が
さらに向上される。
As described above, as shown in FIG. 4, metal particles B' having hydrogen storage capacity are dispersed and supported on the support 5 made of porous solid calcium silicate reinforced with heat-resistant fibers in the hydrogen storage container 4. A product having a molded article 7 and a filter layer 6 made of porous solid calcium silicate on the molded article 7 is obtained. The porous support 5 of the obtained product is reinforced with asbestos, glass IIN, etc. and has high mechanical strength, and since the filter layer 6 is integrally formed, the support 5 has a filtering effect. The filter effect is further improved.

■ 活性化終了後容器4内に水素を導入して金属粒子B
′に水素を吸蔵させる。
■ After activation, hydrogen is introduced into the container 4 and the metal particles B
' to absorb hydrogen.

尚、上述の製法では金属粒子Bを含む支持体5とフィル
タ一層6との成型を水素吸蔵容器4内で行ったが、金属
粒子Bを含む支持体5の成型を別の成型容器で行い、成
型、乾燥後成型容器から取出して水素吸蔵容器4に充填
することもできる。
In addition, in the above-mentioned manufacturing method, the support body 5 containing metal particles B and the filter layer 6 were molded in the hydrogen storage container 4, but the support body 5 containing metal particles B was molded in a separate molding container. After molding and drying, it can be taken out from the molded container and filled into the hydrogen storage container 4.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多孔質珪酸カルシウムよりなる支持体
に、水素吸蔵能をもつ金属の粒子を担持させた成型物よ
りなるため、多孔質珪酸カルシウムの多孔度は90%以
上と高く、細孔径は20μ以下であるから、金属粒子の
微粉化によってもガスに伴って容器外部へ流出すること
がなく金属微粉末の流出によるバイブやバルブの閉塞と
いう事故の原因を除くことができる。珪酸カルシウムの
カサ比重は、0.2〜0.38y/1と軽いため他の支
持体(例えばセラミック)を用いたものに比較して全体
・の軽量化をはかることができる。珪酸カルシウムは耐
熱性、化学的安定性にすぐれているから、水素吸蔵、放
出の反復使用に適している。珪酸カルシウムは多孔度が
高いため、金属粒子が水素を吸蔵した際の金属粒子の膨
張を吸収するとともに水素ガスの金属粒子表面へのパス
を確保することができ、容器膨張等の障害の発生を防ぐ
ことができる。
According to the present invention, since the molded product is made of a support made of porous calcium silicate supporting metal particles having hydrogen storage ability, the porosity of the porous calcium silicate is as high as 90% or more, and the pore size is is less than 20 μm, so even if the metal particles are pulverized, they will not flow out of the container along with the gas, thereby eliminating the cause of accidents such as clogging of vibrators and valves due to the flow of fine metal powder. Since calcium silicate has a light bulk specific gravity of 0.2 to 0.38 y/1, the overall weight can be reduced compared to those using other supports (eg, ceramics). Calcium silicate has excellent heat resistance and chemical stability, so it is suitable for repeated use for hydrogen storage and release. Calcium silicate has high porosity, so it can absorb the expansion of metal particles when they absorb hydrogen and also ensure a path for hydrogen gas to reach the surface of the metal particles, preventing problems such as container expansion. It can be prevented.

さらに、製造に際しては容器本体内で消石灰と珪藻土よ
りなる泥しように水素吸蔵能を附与し得る金属の粒子を
分散さゼ、次にCaOと5iQ2を反応させて多孔質固
体珪酸カルシウムよりなる支持体を生成し、次にこの支
持体中に分散された前記金属粒子に水素吸蔵能を附与さ
せることにより水素吸蔵体成型物を得るため珪酸カルシ
ウムの生成反応前のスラリー状の原料中に金属粒子が分
散され、支持体中に金属粒子を均等に分散させることが
でき、かつ金属粒子の担持力も大となる。したがって金
属粒子の表面積が有効に活用されるため、水素ガスの吸
蔵、放出速度を大にすることができる。
Furthermore, during manufacturing, metal particles capable of imparting hydrogen storage capacity are dispersed in a slurry made of slaked lime and diatomaceous earth within the container body, and then CaO and 5iQ2 are reacted to create a support made of porous solid calcium silicate. In order to obtain a molded hydrogen storage body by producing a hydrogen storage body and then imparting hydrogen storage capacity to the metal particles dispersed in this support, metal is added to the slurry-like raw material before the calcium silicate production reaction. The particles are dispersed, the metal particles can be evenly dispersed in the support, and the supporting force of the metal particles is also increased. Therefore, since the surface area of the metal particles is effectively utilized, it is possible to increase the absorption and release rate of hydrogen gas.

またスラリー状の珪酸カルシウム原料に金属粒子を分散
させたものを容器本体内で反応固化させるため、支持体
の形状を任意の形に成型することが出来容器本体を水素
吸蔵容器とすればそのまま水素吸蔵容器として用いるこ
とができて便利である。
In addition, since the slurry-like calcium silicate raw material with metal particles dispersed is reacted and solidified inside the container body, the shape of the support can be molded into any shape, and if the container body is used as a hydrogen storage container, it can be used as a hydrogen storage container. It is convenient because it can be used as a storage container.

〔実施例〕〔Example〕

本発明の詳細な説明する。 The present invention will be described in detail.

実施例1 工 水素の流出入口を取付けることができる内容積10
0CCの蓋を有する容器本体内に次の合金粒子と泥しよ
うを入れる。
Example 1 Internal volume 10 where hydrogen inlet and outlet can be installed
Place the following alloy particles and slurry into a container body with a 0CC lid.

(1)7メツシユ篩を通過したHm+ Ni+Co合金
粒子(Hm:希土類金属の他にFe、 si、  Aj
!、 No、Cu等を微量に含む)を270g充填する
(1) Hm+Ni+Co alloy particles passed through a 7-mesh sieve (Hm: Fe, si, Aj in addition to rare earth metals)
! , No., Cu, etc.).

(2)  消石灰と珪藻土を重量比でCaO/5i02
= 0.8となるように混合し、これに石綿を全固形分
の15重量%となるように配合したものに、固形分20
%となるように水を加えた泥しようを調整し、前記容器
本体に60g注入する。
(2) Slaked lime and diatomaceous earth in weight ratio CaO/5i02
= 0.8, and asbestos was added to this so that the total solid content was 15% by weight, and the solid content was 20% by weight.
% of the slurry, and pour 60g into the container body.

■ 容器本体内で合金粒子と泥しようを充分に混合する
■ Thoroughly mix the alloy particles and slurry in the container body.

■ 容器本体の残りの空間に前記(2)の泥しようを入
れる。
■ Fill the remaining space in the container body with the slurry from (2) above.

■ 容器本体をオートクレーブに入れ185℃、12時
間飽和水蒸気圧下でCaOとS i Q2を反応させる
(2) Place the container body in an autoclave and allow CaO and Si Q2 to react under saturated steam pressure at 185°C for 12 hours.

■ 次に150℃で恒量になるまで乾燥する。■ Next, dry at 150°C until it reaches a constant weight.

vl  容器本体に水素の流出入口をもった蓋をとりつ
け水素吸蔵容器とする。
vl A lid with a hydrogen inlet and outlet is attached to the container body to make it a hydrogen storage container.

■ 容器を真空下100℃で2時間加熱し、合金の活性
化を行う。
■ Heat the container under vacuum at 100°C for 2 hours to activate the alloy.

■ 容器内に水素流出入口より水素ガスを、常温で50
7(g/cdの圧力になるまで充填する。
■ Fill the container with hydrogen gas from the hydrogen inlet/outlet at room temperature for 50 minutes.
Fill until the pressure reaches 7 (g/cd).

■ 容器内の圧力が安定したとき水素流出口よりガスメ
ータを通して水素ガスを放出し、放出水素量を測定する
。放出終点は、容器を100℃に加熱し水素の放出が見
られなくなった時点とする。
■ When the pressure inside the container becomes stable, release hydrogen gas from the hydrogen outlet through a gas meter and measure the amount of released hydrogen. The release end point is defined as the time when the container is heated to 100° C. and no hydrogen release is observed.

X 上記■、■の操作を繰返し100回行い試料aを得
た。
X The above operations (1) and (2) were repeated 100 times to obtain sample a.

実施例2 合金として■;+ Fe+Hnを用いて合金の活性化(
第■工程)を300℃で2時間行う他は実施例1と同様
に操作し、試料すを得た。
Example 2 Activation of alloy (
A sample was obtained in the same manner as in Example 1, except that Step (1) was carried out at 300° C. for 2 hours.

比較例1 実施例1と同様な容器に同じ合金粒子のみを2709充
填しく泥しよう入れず)活性生後同様な操作を施して試
料Cを得た。
Comparative Example 1 Sample C was obtained by filling the same container as in Example 1 with only the same alloy particles (without adding slurry) and performing the same operation after activation.

比較例2 実施例2と同様な容器に実施例2と同じ合金粒子のみを
270g充填しく泥しよう入れず)活性生後同様な操作
を施し試料dを得た。
Comparative Example 2 A container similar to that of Example 2 was filled with 270 g of the same alloy particles as in Example 2 (without adding slurry), and after activation, the same operation was performed to obtain sample d.

■ 水素放出速度 前述の試料のa、b、c、dに水素ガスを吸蔵させた後
常温下1気圧の雰囲気に吸蔵水素ガスを放出させ放出速
度を測定した。水素放出率と時間との関係を第5図に示
す。この第5図より、実施例1.2が比較例1.2に比
べて明らかに水素放出速度が大であることがわかる。
(2) Hydrogen release rate Hydrogen gas was stored in samples a, b, c, and d of the above, and then the stored hydrogen gas was released into an atmosphere at room temperature and 1 atm, and the release rate was measured. FIG. 5 shows the relationship between hydrogen release rate and time. From FIG. 5, it can be seen that the hydrogen release rate of Example 1.2 is clearly higher than that of Comparative Example 1.2.

■ 金属粒子の変化 水素ガスの吸蔵と放出を100回くり返した実施例1.
2の試料a、bは実験開始前と同じ固型状態を保持して
おり、水素流出入口附近への金属粉の飛散は認められな
かった。
■ Changes in metal particles Example 1 in which hydrogen gas occlusion and release were repeated 100 times.
Samples a and b of No. 2 maintained the same solid state as before the start of the experiment, and no metal powder was observed to be scattered around the hydrogen inlet/outlet.

同様な操作を施した比較例1.2の試料c1dは、合金
粒子が微粉化し、水素流出入口部に金属粉の飛散が認め
られた。
In sample c1d of Comparative Example 1.2, which was subjected to the same operation, the alloy particles were pulverized and scattering of metal powder was observed at the hydrogen inlet/outlet portion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の一実施例を示す製造工程
説明図、第5図は水素放出率と時間との関係を示す図表
である。 3・・容器本体、7・・成型物、5・・支持体、B・・
金属粒子。 昭和60年3月13日 発  明  者    鈴    木        
 敬同          萩   原       
 浩特許出願人  日本コイン株式会社 −酬(剣 手続補正書(師) 昭和60年08月06日
1 to 4 are manufacturing process explanatory diagrams showing an embodiment of the present invention, and FIG. 5 is a chart showing the relationship between hydrogen release rate and time. 3. Container body, 7. Molding, 5. Support, B...
metal particles. March 13, 1985 Inventor Suzuki
Respect Hagiwara
Hiro Patent Applicant Nippon Coin Co., Ltd. - Shu (Ken Proceedings Amendment (Master) August 6, 1985

Claims (3)

【特許請求の範囲】[Claims] (1)多孔質珪酸カルシウムよりなる支持体に、水素吸
蔵能をもつ金属粒子を担持させた成型物よりなることを
特徴とする水素吸蔵体。
(1) A hydrogen storage body characterized in that it is a molded product in which metal particles having hydrogen storage capacity are supported on a support made of porous calcium silicate.
(2)多孔質珪酸カルシウムよりなる支持体が耐熱性繊
維により強化されていることを特徴とする特許請求の範
囲第1項記載の水素吸蔵体。
(2) The hydrogen storage body according to claim 1, wherein the support made of porous calcium silicate is reinforced with heat-resistant fibers.
(3)容器本体内で消石灰と珪藻土よりなる泥しように
水素吸蔵能を附与し得る金属粒子を分散させ、次にCa
OとSiO_2を反応させて多孔質固体珪酸カルシウム
よりなる支持体を生成し、次にこの支持体中に分散され
た前記金属粒子に水素吸蔵能を附与させることにより水
素吸蔵体成型物を得ることを特徴とする水素吸蔵体の製
造方法。
(3) Metal particles that can provide hydrogen storage capacity are dispersed in a slurry made of slaked lime and diatomaceous earth, and then Ca
A support made of porous solid calcium silicate is produced by reacting O and SiO_2, and then a hydrogen storage molded product is obtained by imparting hydrogen storage ability to the metal particles dispersed in this support. A method for producing a hydrogen storage body characterized by the following.
JP60049868A 1985-03-13 1985-03-13 Hydrogen storage material and its preparation Pending JPS61209901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60049868A JPS61209901A (en) 1985-03-13 1985-03-13 Hydrogen storage material and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60049868A JPS61209901A (en) 1985-03-13 1985-03-13 Hydrogen storage material and its preparation

Publications (1)

Publication Number Publication Date
JPS61209901A true JPS61209901A (en) 1986-09-18

Family

ID=12843024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60049868A Pending JPS61209901A (en) 1985-03-13 1985-03-13 Hydrogen storage material and its preparation

Country Status (1)

Country Link
JP (1) JPS61209901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662729A (en) * 1994-10-04 1997-09-02 Sanyo Electric Co., Ltd. Shaped body of hydrogen absorbing alloy and container packed with hydrogen absorbing alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662729A (en) * 1994-10-04 1997-09-02 Sanyo Electric Co., Ltd. Shaped body of hydrogen absorbing alloy and container packed with hydrogen absorbing alloy
US5841043A (en) * 1994-10-04 1998-11-24 Sanyo Electric Co., Ltd. Shaped body of hydrogen absorbing alloy and container packed with hydrogen absorbing alloy
US5908487A (en) * 1994-10-04 1999-06-01 Sanyo Electric Co., Ltd. Shaped body of hydrogen absorbing alloy and container packed with hydrogen absorbing alloy

Similar Documents

Publication Publication Date Title
US5443616A (en) Metal hydride composition and method of making
US4110425A (en) Form retaining hydrogen-storing material
JP3591724B2 (en) Carbon dioxide absorber and carbon dioxide separator
US4532091A (en) Method of producing permeable, porous molded bodies of silicon carbide
US4224302A (en) Process for producing an alumina catalyst carrier
US4880541A (en) Hot filter media
US3668149A (en) Method and equipment for the preparation of catalytically active bodies
CN109097003B (en) Thermochemical heat storage molded particle with optimized permeability and preparation method thereof
US5126103A (en) Process for modifying porous material having open cells
JPS61209901A (en) Hydrogen storage material and its preparation
Abdel Halim et al. Metallic iron whisker formation and growth during iron oxide reduction: basicity effect
US3767367A (en) Individual respirators containing compositions based on potassium superoxide
JP2005281050A (en) Chemical reaction material
CN100423810C (en) Desulphurizing and dust-removing integral gradient porous ceramic filter element preparing method
CN100409922C (en) Desulphurizing and dust-removing integral gradient porous ceramic filter element preparing technology
JP3745374B2 (en) Metal filters for high temperature applications
JPH03275527A (en) Porous silica glass powder
JPS5935001A (en) Preparation of hydrogen storing material
RU2196119C2 (en) Porous glass-crystal material with open porous structure (options) and method of preparation thereof
US5120477A (en) Preparing refractory articles by a freezecast process
JP2657938B2 (en) Activated carbon sintered body and method for producing the same
Balakrishna et al. PARTICLE AGGREGATES IN POWDER PROCESSING- A REVIEW
JPS6158401B2 (en)
González et al. Potato starch: binder and pore former in nanoframes of nanolayered oxides for Pb 2+ and Ni 2+ as pollutants in water and industrial sludge applications
JP2000211979A (en) Production of silica porous body