KR100453554B1 - Producing method for cobalt ultrafine particles by the gas phase reduction - Google Patents

Producing method for cobalt ultrafine particles by the gas phase reduction Download PDF

Info

Publication number
KR100453554B1
KR100453554B1 KR10-2002-0016843A KR20020016843A KR100453554B1 KR 100453554 B1 KR100453554 B1 KR 100453554B1 KR 20020016843 A KR20020016843 A KR 20020016843A KR 100453554 B1 KR100453554 B1 KR 100453554B1
Authority
KR
South Korea
Prior art keywords
cobalt
sample
gas
gas phase
cobalt chloride
Prior art date
Application number
KR10-2002-0016843A
Other languages
Korean (ko)
Other versions
KR20020029888A (en
Inventor
장희동
정인범
이병윤
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR10-2002-0016843A priority Critical patent/KR100453554B1/en
Publication of KR20020029888A publication Critical patent/KR20020029888A/en
Application granted granted Critical
Publication of KR100453554B1 publication Critical patent/KR100453554B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/28Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from gaseous metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt

Abstract

본 발명은 기상 환원반응에 의한 코발트 초미분체의 제조방법에 관한 것이다.The present invention relates to a method for producing cobalt ultrafine powder by gas phase reduction reaction.

이는특히, 초미분체를 제조하는 화학적 방법중 수소가 투입되는 기상 환원반응을 이용하여 코발트염화물(CoCl2)로부터 입자크기가 0.5 미크론 이하의 코발트 초미분체를 제조하는 것이다.In particular, the cobalt ultrafine powder having a particle size of 0.5 micron or less is prepared from cobalt chloride (CoCl 2 ) by using a gas phase reduction reaction in which hydrogen is introduced in a chemical method of preparing the ultrafine powder.

이에따라서, 일차입자의 평균크기가 0.5 미크론 이하인 코발트 초미분체를 제조함은 물론 그 크기의 조절이 가능하도록 하는 것이다.Accordingly, cobalt ultrafine powder having an average size of primary particles of 0.5 microns or less is of course to be able to control the size thereof.

Description

기상 환원반응에 의한 코발트 초미분체 제조방법{Producing method for cobalt ultrafine particles by the gas phase reduction}Producing method for cobalt ultrafine particles by the gas phase reduction}

본 발명은 기상 환원반응에 의한 코발트 초미분체의 제조방법에 관한 것으로, 이는특히 화학적 방법 중 전기로를 사용하여 고온으로 유지한 상태에서 기체상태의 코발트염화물(CoCl2)과 수소와의 기상 환원반응을 사용하여 입자크기가 0.5㎛(이하 "미크론" 이라함) 이하의 코발트를 제조하는 기상 환원반응에 의한 코발트 초미분체의 제조방법에 관한 것이다.The present invention relates to a method for producing cobalt ultra fine powder by gas phase reduction reaction, which is particularly characterized in that the gas phase reduction reaction between cobalt chloride (CoCl 2 ) and hydrogen in gaseous state is maintained at high temperature using an electric furnace. The present invention relates to a method for producing cobalt ultrafine powder by a gas phase reduction reaction for producing cobalt having a particle size of 0.5 μm (hereinafter referred to as “micron”).

일반적으로 초미분체란, 금속의 경우 입자크기가 1 미크론 이하의 분말을 지칭하며, 이중 코발트(Co) 초미분체는 다이아몬드 공구, 전기재료, 고강도 합급 공구 등에 사용되는 신소재로서 활용되고 있다.Generally, the ultra fine powder refers to a powder having a particle size of 1 micron or less in the case of metal, and the double cobalt (Co) ultra fine powder is used as a new material used in diamond tools, electric materials, high strength alloy tools, and the like.

상기 코발트(Co) 초미분체의 경우 입자크기 0.5 미크론 이상의 분말이 현재 생산되고 있으나 입자크기 0.5 미크론 이하의 분말은 개발 중에 있는 바, 상기와 같이 코발트 초미분체의 입자크기가 0.5 미크론 이하로 제조되면 고밀도 자기기록재료, 초강공구의 바인더 및 합금의 소결 촉진제 등으로 사용될 수 있다.In the case of the cobalt (Co) ultrafine powder, a particle size of 0.5 micron or more is currently produced, but a powder having a particle size of 0.5 micron or less is under development. As described above, when the particle size of the cobalt ultrafine powder is manufactured to be 0.5 micron or less, It can be used as a magnetic recording material, a binder of a super steel tool, an sintering accelerator of an alloy, and the like.

이와같은 초미분체는, 분쇄에 의해서는 제조가 불가능하며 핵(nuclei)으로부터 성장시키는 방법에 의해서만 제조가 가능하고, 상기 초미분체를 생산하는 방법으로는 크게 나누어 물리적 방법과 화학적 방법이 있다.Such ultrafine powders cannot be manufactured by pulverization and can be produced only by growing from nuclei. The ultrafine powders can be broadly divided into physical and chemical methods.

이중 물리적 방법이란, 금속을 가열하여 증발시킨 후 금속증기를 응축시켜 초미분체를 만드는 방법이며, 화학적 방법은 금속화합물을 산화 및 환원제와 반응시켜 초미분체를 제조하는 것이다.The physical method is a method of making an ultra fine powder by heating and evaporating a metal and then condensing the metal vapor. The chemical method is to prepare an ultra fine powder by reacting a metal compound with an oxidizing and reducing agent.

초미분체를 제조하기 위한 물리적 방법과 화학적 방법은, 반응에 참여하는 금속화합물의 상태에 따라 기상, 액상, 고상 반응법으로 나누어지는데 어느 방법이든지 화학반응을 전제로 하기 때문에 자유에너지 변화가 음(negative)의 값을 가져야 하는 제한성이 있었다.Physical and chemical methods for preparing ultra-fine powders are divided into gas phase, liquid phase, and solid phase reaction methods according to the state of the metal compound participating in the reaction. Since either method assumes a chemical reaction, the change in free energy is negative. There was a limit to having a value of).

그리고, 물리적 방법에 의해 금속 초미분체를 제조하는 공정은, 금속을 증발시키기 위하여 많은 에너지를 필요로 하여서 제조비용이 높고 생산성이 낮은 반면, 고순도의 분말을 제조할 수 있는 장점이 있다.In addition, the process of manufacturing the ultrafine metal powder by a physical method requires a lot of energy in order to evaporate the metal, and the manufacturing cost is high and the productivity is low, while there is an advantage that a high purity powder can be produced.

또한, 화학적 방법에 의해 금속 초미분체를 제조하는 방법은, 반응물질로부터오염되기 쉬운 단점이 있으나, 제조비용이 낮고 생산성이 높은 장점이 있다.In addition, the method of preparing the ultrafine metal powder by the chemical method has a disadvantage in that it is easy to be contaminated from the reactants, but has a low manufacturing cost and high productivity.

이와같이 입자크기가 0.5 미크론 이하의 코발트 미분체를 제조하는 방법은, 액상반응인 경우 미국특허 특허번호 4233063호(명칭:코발트 분말 생산방법)와 국내특허출원 2000-10211호(명칭:초미립 코발트 분말 제조방법)및 국내특허등록 제229917호(명칭:금속코발트 분말의 제조방법)가 공지되어 있다.As such, the method for preparing the cobalt powder having a particle size of 0.5 micron or less is US liquid patent reaction No. 4233063 (name: cobalt powder production method) and domestic patent application 2000-10211 (name: ultra fine cobalt powder) Manufacturing method) and domestic patent registration No. 229917 (name: manufacturing method of metal cobalt powder) is known.

그러나, 기상에서 코발트 입자크기 0.5 미크론 이하의 초미분체를 수소환원 반응에 의해 코발트 염화물(CoCl2)로부터 코발트(Co) 초미분체를 제조하는 기술은 공지된바가 없다.However, there is no known technique for producing cobalt (Co) ultrafine powder from cobalt chloride (CoCl 2 ) by hydrogen reduction of ultrafine powder having a cobalt particle size of 0.5 micron or less in the gas phase.

본 발명은, 기상에서 수소의 환원반응에 의해 코발트 염화물로부터 0.5 미크론 이하인 코발트 초미분체를 제조하도록 하고, 큐빅형의 결정을 갖는 초미분체의 크기를 조절할수 있도록 하는 기상 환원반응에 의한 코발트 초미분체의 제조방법을 제공하는데 있다.The present invention is to prepare a cobalt ultrafine powder of 0.5 micron or less from cobalt chloride by hydrogen reduction in the gas phase, and to control the size of the ultrafine powder having cubic crystals. It is to provide a manufacturing method.

도1은 본 발명에 따른 초미분체 제조장치를 도시한 개략도.1 is a schematic view showing an ultra-fine powder production apparatus according to the present invention.

도2는 본 발명에 의해 제조된 코발트염화물의 농도 변화에 따른 입자크기의 변화를 나타낸 그래프도.Figure 2 is a graph showing the change in particle size according to the change in concentration of cobalt chloride prepared by the present invention.

도3a, b는 각각 본 발명의 코발트염화물의 농도차에 의해 제조된 코발트 초미분체의 전자현미경 사진Figure 3a, b are electron micrographs of the cobalt ultra fine powder prepared by the concentration difference of the cobalt chloride of the present invention, respectively

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

100A...시료증발부 100B...예열부100A ... Sample evaporator 100B ... Preheater

100C...반응부 110...시료100C ... reaction zone 110 ... sample

120...시료주입기 200...전기로120 ... sample injector 200 ... electrically

300...입자포집부300 ... particle collection unit

본 발명은 상기 목적을 달성하기 위해, 코발트 염화물을 가열하여 증기화시킨 후 불활성 기체에 의해 반응영역으로 이송시키고, 반응영역으로 함께 유입된 수소가스와 접촉하게 되어 850℃ 이상의 온도에서 환원반응 시켜 평균입자크기가 0.5미크론 이하인 코발트 초미분체를 제조하는 기상 화학반응에 의한 코발트 초미분체의 제조방법이 제공된다.In order to achieve the above object, the present invention, the cobalt chloride is heated and vaporized and then transferred to the reaction zone by an inert gas, and contacted with hydrogen gas introduced into the reaction zone to reduce the reaction at a temperature above 850 ℃ Provided is a method for preparing cobalt ultrafine powder by vapor phase chemical reaction for producing cobalt ultrafine powder having a particle size of 0.5 micron or less.

이하, 첨부된 도면에 의하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도1 내지 도3에서와 같이, 코발트 염화물로부터 기상수소환원 반응에 의해 생성되는 입자의 크기가 0.5 미크론 이하인 코발트 초미분체를 전기로와 석영관으로 제작된 반응기를 이용하여 달성할 수 있다.As shown in Figs. 1 to 3, cobalt ultrafine powder having a particle size of 0.5 micron or less from cobalt chloride can be achieved by using a reactor made of an electric furnace and a quartz tube.

기상에서 코발트염화물(CoCl2)로부터 코발트 초미분체 제조하는 것은 반응식과 같다.Preparation of cobalt ultrafine powder from cobalt chloride (CoCl 2 ) in the gas phase is shown in the scheme.

〈반응식〉<Scheme>

CoCl2(g) + H2(g) → Co (s) + 2HCl (g)CoCl 2 (g) + H 2 (g) → Co (s) + 2HCl (g)

상기 반응식과 같은 기상 환원반응에 의해 코발트 초미분체 제조시에는 800℃이상의 높은 온도가 요구되는데 이는 전기로(200)를 이용하여 고온의 온도를 유지할 수 있으며, 전기로의 온도및 유입되는 가스의 유량과 시료(110)의 농도 및 가스조성 등의 반응변수를 조절하여 코발트 초미분체를 제조한다.When the cobalt ultrafine powder is prepared by the gas phase reduction reaction as in the above reaction formula, a high temperature of 800 ° C. or higher is required, which can maintain a high temperature using the electric furnace 200, and the temperature of the electric furnace and the flow rate of the gas introduced therein. Cobalt ultra-fine powder is prepared by adjusting reaction variables such as the concentration of the sample 110 and gas composition.

이하에서, 코발트 초미분체를 제조함에 있어서 원료물질을 CoCl2를 이용하고, 전기로의 온도조절에 의한 반응기의 온도제어와 반응기에 주입되는 수소 및 아르곤의 유량을 조절하여 코발트 초미분체를 제조하는 방법을 더욱 상세하게 설명한다.Hereinafter, in preparing cobalt ultrafine powder, a method of preparing cobalt ultrafine powder by using CoCl 2 as a raw material and controlling the temperature of the reactor by controlling the temperature of the electric furnace and adjusting the flow rates of hydrogen and argon injected into the reactor It demonstrates in more detail.

도1은, 본 발명에 따른 코발트 초미분체 제조장치를 개략적으로 나타낸 것으로서, 전기로(200)의 내측에 위치하는 반응기에 반응물질인 고체상의 시료(CoCl2:코발트 염화물)(110)를 시료주입기(120)를 통하여 주입하면 시료증발영역(100A)에서 시료가 증기화 된다.1 is a schematic view showing an apparatus for producing cobalt ultrafine powder according to the present invention, wherein a solid phase sample (CoCl 2 : cobalt chloride) 110 as a reactant is placed in a reactor located inside an electric furnace 200. Injecting through 120 causes the sample to vaporize in the sample evaporation region 100A.

그리고, 시료증발영역(100A)에 증발될 시료는 2중관 형상으로 이루어진 반응기의 예열영역(100B)을 수소가스와 분리되어 통과한 후 전기로(200)에 의해 정해진 온도로 가열된 반응영역(100C)에서 증기화된 시료(CoCl2)(110)와 수소가스가 접촉하여 환원반응이 시작된다.Then, the sample to be evaporated in the sample evaporation zone (100A) is passed through the preheating zone (100B) of the reactor having a double tube shape separated from the hydrogen gas and then the reaction zone (100C) heated to a predetermined temperature by the electric furnace (200) In the vaporized sample (CoCl 2 ) 110 and the hydrogen gas is in contact with the reduction reaction is started.

여기에서, 시료(110)와 수소가스가 접촉하여 형성되는 환원반응에 의해 코발트핵이 생성되고, 상기 코발트 핵(nuclei)들이 응집(coagulation)과 응축(condensation) 현상을 반복 수행하면서 그 크기가 성장하여 코발트 초미분체가 형성된다.Here, cobalt nuclei are generated by a reduction reaction formed by contacting the sample 110 with hydrogen gas, and the cobalt nuclei are grown in size while repeatedly performing coagulation and condensation. Thus, cobalt ultrafine powder is formed.

상기와 같은 방법으로 생성된 코발트 초미분체는, 반응기와 연결된 입자포집부(300)에서 회수되며, 반응에 의해 배출되는 염산가스는 가스흡수부(400)에서 제거된다.The cobalt ultrafine powder produced in the above manner is recovered from the particle collection unit 300 connected to the reactor, and the hydrochloric acid gas discharged by the reaction is removed from the gas absorption unit 400.

본 발명을 실시예에 따라 설명하면 다음과 같다.Referring to the present invention according to the embodiment as follows.

<실시예 1><Example 1>

고체상태의 시료인 CoCl2(99.9%)를 도1에 나타난 반응기의 증발영역(100A)에장입한 후에 알곤 (2ℓ/min)을 주입함으로써 반응기(100A,B,C) 내부에서 공기를 제거하여 불활성 분위기를 조성한다.CoCl 2 (99.9%), which is a solid state sample, was introduced into the evaporation zone 100A of the reactor shown in FIG. 1 and then argon (2 L / min) was injected to remove air from the reactors 100A, B, and C. Create an inert atmosphere.

이어서, 반응기의 시료증발영역(100A), 예열영역(100B), 및 반응영역(100C)의 온도를 정해진 온도로 각각 유지한 후 수소가스 (2ℓ/min)를 주입하여 기상수소 환원반응을 유발시키게 되고, 이에의하여 코발트 초미분체를 제조한다.Subsequently, the temperature of the sample evaporation zone 100A, the preheating zone 100B, and the reaction zone 100C of the reactor is maintained at a predetermined temperature, and then hydrogen gas (2 L / min) is injected to induce the gas phase hydrogen reduction reaction. Thus, cobalt ultrafine powder is produced.

이때, 반응기의 각 부분(시료증발영역과 예열영역 및 반응영역)의 온도는 750℃, 900℃, 900℃ 이었으며, 반응기의 반응영역(100C)로 주입되는 전체가스의 유량 중 CoCl2의 농도는 2.9 X 10-6∼ 2.5 X 10-3mol/ℓ로 유지하였다.At this time, the temperature of each part (sample evaporation zone, preheating zone and reaction zone) of the reactor was 750 ℃, 900 ℃, 900 ℃, the concentration of CoCl 2 in the flow rate of the total gas injected into the reactor reaction zone (100C) It was maintained at 2.9 × 10 −6 to 2.5 × 10 −3 mol / l.

상기와 같은 조건에 의해 생성된 코발트 입자의 평균크기는 0.050 ∼ 0.250 미크론(㎛) 이었고, CoCl2의 농도 증가에 따라 입자의 크기가 변화하였으며, 이는 반응물질인 시료의 농도가 증가할수록 단위 부피 당 기상반응에 의해 생성되는 핵(nuclei)들의 수가 증가하게 되고, 이에 의하여 응집(coagulation)현상이 활발히 일어나 큰 입자로 성장한 것을 알수 있었다.The average size of cobalt particles produced by the above conditions was 0.050 to 0.250 microns (µm), and the size of the particles changed with increasing concentration of CoCl 2 . As the number of nuclei generated by the gas phase reaction increases, the coagulation phenomenon is actively generated, and the growth of large particles occurs.

상기 기상반응에 의해 생성된 입자의 평균크기는 투과전자현미경을 사용하여 분석한 사진으로부터 각각의 개별입자들의 크기를 목측하여 구하였다.The average size of the particles produced by the gas phase reaction was determined by visually measuring the size of each individual particle from a photograph analyzed using a transmission electron microscope.

도2에는 기상반응에 의해 생성된 입자의 크기변화를 시료(CoCl2)의 농도변화에 관련하여 나타낸 그래프이며, 도3은 상기 기상반응에 의해 제조된 코발트 초미분체를 전자현미경으로 촬영한 사진으로서 (a)는 시료(CoCl2)의 농도가 2.9 X 10-6(mol/ℓ)이고, (b)는 2.5 X 10-3(mol/ℓ) 일때의 코발트 초미분체의 전자현미경 사진이다.Figure 2 is a graph showing the size change of the particles produced by the gas phase reaction in relation to the concentration change of the sample (CoCl 2 ), Figure 3 is a photograph taken by electron microscopy of the ultra-fine cobalt powder prepared by the gas phase reaction (a) has a concentration of 2.9 X 10 samples (CoCl 2) - and 6 (mol / ℓ), ( b) is 2.5 X 10 -3 is an electron micrograph of ultrafine powder of cobalt (mol / ℓ) when.

상기 사진에서 도시된 바와 같이, 일차입자가 구형의 입자임을 알수 있으며, 또한 일차 입자들이 자성에 의해 사슬 형태로 서로 연결되어 있음을 알 수 있고, 상기와 같은 방법에 의해 제조된 코발트 초미분체의 결정형을 분석한 결과 cubic형의 결정임을 알 수 있었다.As shown in the above picture, it can be seen that the primary particles are spherical particles, and also that the primary particles are connected to each other in a chain form by magnetic, and the crystal form of the cobalt ultrafine powder prepared by the above method As a result, it was found that the crystal was cubic type.

<실시예 2><Example 2>

상기의 실시예1에 나타난 조건에서 시료(CoCl2)의 초기농도를 2.0 X 10-5mol/ℓ 유지시키면서 반응기의 반응영역(100C)로 주입되는 수소의 유량을 1 에서 4 (ℓ/min)로 증가시키면서 투입하여 코발트 초미분체를 제조하였다.Under the conditions shown in Example 1 while maintaining the initial concentration of the sample (CoCl 2 ) 2.0 X 10 -5 mol / L flow rate of hydrogen injected into the reaction zone (100C) of the reactor 1 to 4 (ℓ / min) It was added while increasing to prepare a cobalt ultra fine powder.

이때, 상기 수소가스의 유량은 전체가스의 유량보다 최대 2.5부 초과하여 주입되며, 전체가스 유량이 일정한 경우 수소 가스의 조성을 0.125부로 낮게 유지하였다.At this time, the flow rate of the hydrogen gas is injected at a maximum of 2.5 parts more than the flow rate of the total gas, the composition of the hydrogen gas was kept low at 0.125 parts when the total gas flow rate is constant.

그 결과, 상기 조건에 의하여 생성된 입자의 평균크기는 0.079 미크론 에서 0.055 미크론으로 변화하였으며, 이렇게 생성된 입자의 크기가 감소한 것은 가스유량이 증가하면서 반응영역 내에서 반응물질의 체류시간이 감소하여 응집과 소결에 의한 입자의 성장이 억제되는 것을 알수 있었다.As a result, the average size of the particles produced by the above conditions was changed from 0.079 microns to 0.055 microns, and the decrease in the size of the particles thus produced resulted in a decrease in the residence time of the reactants in the reaction zone while increasing the gas flow rate. It was found that the growth of the particles due to excessive sintering was suppressed.

<실시예 3><Example 3>

상기의 실시예1에 나타난 조건에서 시료(CoCl2)의 초기농도를 2.0 X 10-5mol/ℓ 유지시키면서 반응영역(100C)의 온도를 850 ∼ 1000℃범위에서 50℃ 씩 증가시키며 코발트 초미분체를 제조하였다.Sample (CoCl) under the conditions shown in Example 1 above2Initial concentration of 2.0 x 10-5While maintaining mol / L, the temperature of the reaction zone 100C is 850. Cobalt ultra-fine powder was prepared in an increment of 50 ° C. in the range of ˜1000 ° C.

그 결과, 생성되는 입자의 크기는 0.045미크론에서 0.072미크론으로 증가하였으며, 이렇게 입자의 크기가 증가 한 이유는 반응온도가 높아짐에 따라 반응영역에서 생성된 핵들이 응집과 소결에 의한 성장 속도가 증가하게 됨으로써 큰 입자로 성장하게 되는 것을 알수있었다.As a result, the size of the particles produced increased from 0.045 microns to 0.072 microns. The reason why the size of the particles increased was that as the reaction temperature increased, the nuclei generated in the reaction zone increased the growth rate due to aggregation and sintering. As a result, it was found to grow into large particles.

<실시예 4><Example 4>

상기의 실시예1에 나타난 조건에서 시료(CoCl2)의 초기농도를 2.0 X 10-5mol/ℓ유지시키면서 전체 가스 중 수소 가스의 분압을 줄이기 위해 전체 가스 유량이 일정한 상태를 유지하며 수소가스의 유량을 2 ℓ/min 에서 0.5 ℓ/min 가 될때까지 0.5 ℓ/min 씩 감소시키면서 코발트 입자를 제조하였다.In order to reduce the partial pressure of hydrogen gas in the total gas while maintaining the initial concentration of the sample (CoCl 2 ) 2.0 × 10 −5 mol / l under the conditions shown in Example 1, the total gas flow rate was maintained at a constant state. Cobalt particles were prepared while decreasing the flow rate in 0.5 L / min increments from 2 L / min to 0.5 L / min.

그 결과, 생성된 입자의 크기는 0.053미크론에서 0.040미크론으로 감소하였으며, 이는 수소의 유량이 감소할수록 반응영역(100C)에서 시료(CoCl2)와 수소의 접촉되는 부분의 수소농도가 낮아져 반응영역(100C)의 시작점이 아닌 뒷부분에서 반응이 형성되고, 이에 따라 입자들이 성장할 수 있는 체류시간이 작아져 크기가 작아지게 되는 것을 알수 있었다.As a result, the size of the produced particles decreased from 0.053 microns to 0.040 microns. As the flow rate of hydrogen decreased, the concentration of hydrogen in the contact portion of the sample (CoCl 2 ) and hydrogen in the reaction zone (100C) was lowered. The reaction was formed at the back, not at the start of 100C), and thus, the residence time for the particles to grow was reduced, resulting in a smaller size.

<실시예5>Example 5

상기의 실시예1에 나타난 조건에서 코발트 염화물을 장입하지 않고, 반응기의 증발영역(100A) 윗 부분에서 시료주입기(120)를 설치하여 시료(CoCl2)분말을 연속적으로 소량씩 주입한 후 곧바로 증발시키며, 상기 반응영역(100C)에서 동일한 시료(CoCl2)의 농도를 유지하면서 입자를 제조하였다.Under the conditions shown in Example 1 above, the sample injector 120 was installed in the upper portion of the reactor evaporation region 100A without charging cobalt chloride, and the sample (CoCl 2 ) powder was continuously injected in small amounts, and then immediately evaporated. The particles were prepared while maintaining the same concentration of the sample (CoCl 2 ) in the reaction zone (100C).

그 결과, 생성된 입자의 평균크기는 반응영역(100C)에서 시료(CoCl2)의 농도가 2.5 X 10-4(mol/ℓ)인 경우 0.883 미크론로서 실시예 1에서 제조한 분말과 거의 동일한 크기를 나타내었다.As a result, the average size of the particles produced was 0.883 micron when the concentration of the sample (CoCl 2 ) in the reaction zone (100C) is 2.5 X 10 -4 (mol / l), almost the same size as the powder prepared in Example 1 Indicated.

상이와 같이 본 발명은, 코발트염화물을 사용하여 수소가스와 반응시키는 기상 환원반응에 의해 큐빅형의 결정을 갖으면서 그 크기조절이 용이한 코발트 초미분체를 제조하고, 상기의 초미분체를 사용하여 정보기술(IT) 및 나노기술(NT) 분야에의 신소재 및 제품을 개발할 수 있는 효과가 있다.As described above, the present invention provides a cobalt ultrafine powder having a cubic crystal by the vapor phase reduction reaction of reacting with hydrogen gas using cobalt chloride, and easily controlling the size thereof, and using the ultrafine powder described above. It is effective to develop new materials and products in the field of technology (IT) and nanotechnology (NT).

본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 정신이나 분야를 벗어나지 않는 한도내에서 본 발명이 다양하게 개량 및 변화될수 있다는 것을 당업계에서 통상의 지식을 가진자는 용이하게 알 수 있음을 밝혀 두고자 한다.While the invention has been shown and described with respect to specific embodiments thereof, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit or scope of the invention as provided by the following claims. I would like to make it clear that those who have knowledge of E can easily know.

Claims (5)

원료물질을 코발트 염화물(CoCl2)로 하고, 상기 코발트염화물을 가열하여 증기화시킨 후 증발된 코발트염화물에 수소가스를 접촉한후 850℃ 이상의 온도에서 환원반응시켜 평균입자크기가 0.5 미크론 이하인 코발트 초미분체를 제조하는 방법에 있어서,Cobalt chloride (CoCl 2 ) is used as a starting material, and the cobalt chloride is heated and vaporized. Then, the cobalt chloride is contacted with hydrogen gas and reduced to a reaction temperature at a temperature of 850 ° C. or higher. In the method for producing the powder, 상기 수소가스는, 그 유량이 전체가스의 유량보다 최대 2.5부 초과하여 주입되며, 전체가스 유량이 일정한 경우 수소 가스의 조성을 0.125부로 낮게 유지되고,The hydrogen gas is injected at a flow rate of up to 2.5 parts or more than the flow rate of the entire gas, and when the total gas flow rate is constant, the composition of the hydrogen gas is kept low at 0.125 parts, 상기 코발트 염화물은, 반응기의 시료증발영역에서 가열하여 증발시키며, 상기 시료증발영역에 연결되는 예열영역을 통과하여 증기상태로 반응영역에 주입되며, 전체가스 중 코발트 염화물의 농도가 2.9 X 10-6~ 2.5 X 10-3(mol/ℓ)인 것을 특징으로 하는 기상 환원반응에 의한 코발트 초미분체 제조방법.The cobalt chloride is heated and evaporated in the sample evaporation zone of the reactor, and is injected into the reaction zone in a vapor state through a preheating zone connected to the sample evaporation zone, and the concentration of cobalt chloride in the total gas is 2.9 X 10 -6. ~ 2.5 X 10 -3 (mol / ℓ) characterized in that the cobalt ultrafine powder production method by the gas phase reduction reaction. 삭제delete 삭제delete 제1항에 있어서, 상기 코발트 염화물은, 분말 상태로 시료증발영역에 주입시 일정량을 보트에 담아 장입하거나 반응기의 상부에 연결되는 시료주입기를 사용하여 소량씩 연속적으로 주입하는 방법중에 선택된 어느 하나가 사용되는 것을 특징으로 하는 기상 환원반응에 의한 코발트 초미분체 제조방법.The method of claim 1, wherein the cobalt chloride is selected from any one of a method of charging a small amount continuously by injecting a predetermined amount into a boat or injecting a sample into the sample evaporation area by using a sample injector connected to the top of the reactor. Cobalt ultra-fine powder production method by the gas phase reduction reaction, characterized in that it is used. 삭제delete
KR10-2002-0016843A 2002-03-27 2002-03-27 Producing method for cobalt ultrafine particles by the gas phase reduction KR100453554B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0016843A KR100453554B1 (en) 2002-03-27 2002-03-27 Producing method for cobalt ultrafine particles by the gas phase reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0016843A KR100453554B1 (en) 2002-03-27 2002-03-27 Producing method for cobalt ultrafine particles by the gas phase reduction

Publications (2)

Publication Number Publication Date
KR20020029888A KR20020029888A (en) 2002-04-20
KR100453554B1 true KR100453554B1 (en) 2004-10-20

Family

ID=19720063

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0016843A KR100453554B1 (en) 2002-03-27 2002-03-27 Producing method for cobalt ultrafine particles by the gas phase reduction

Country Status (1)

Country Link
KR (1) KR100453554B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240016781A (en) 2022-07-29 2024-02-06 한국과학기술원 Method for preparing catalyst including intermetallic compound using gas phase reduction and catalyst prepared thereform

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101153620B1 (en) * 2012-01-25 2012-06-18 황채익 Porous metal nano-powder and manufacturing method thereof
CN110935886A (en) * 2018-09-21 2020-03-31 荆门市格林美新材料有限公司 Class C60Preparation method of type cobalt powder
KR102564634B1 (en) * 2021-11-10 2023-08-08 한국생산기술연구원 Inorganic powder manufacturing apparatus and manufacturing method
KR102572729B1 (en) * 2021-11-10 2023-08-31 한국생산기술연구원 Inorganic powder manufacturing apparatus and manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383852A (en) * 1980-09-13 1983-05-17 Toho Aen Kabushiki Kaisha Process for producing fine powdery metal
JPS62192507A (en) * 1986-02-20 1987-08-24 Akinobu Yoshizawa Production of pulverized metallic powder
US4948422A (en) * 1987-06-10 1990-08-14 Akinori Yoshizawa Method of manufacturing superfine magnetic metal powder
JPH0445207A (en) * 1990-06-12 1992-02-14 Kawasaki Steel Corp Manufacture of spherical nickel fine particles
JPH06122906A (en) * 1992-10-12 1994-05-06 Nkk Corp Method for supplying chloride and production of magnetic metal powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383852A (en) * 1980-09-13 1983-05-17 Toho Aen Kabushiki Kaisha Process for producing fine powdery metal
JPS62192507A (en) * 1986-02-20 1987-08-24 Akinobu Yoshizawa Production of pulverized metallic powder
US4948422A (en) * 1987-06-10 1990-08-14 Akinori Yoshizawa Method of manufacturing superfine magnetic metal powder
JPH0445207A (en) * 1990-06-12 1992-02-14 Kawasaki Steel Corp Manufacture of spherical nickel fine particles
JPH06122906A (en) * 1992-10-12 1994-05-06 Nkk Corp Method for supplying chloride and production of magnetic metal powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240016781A (en) 2022-07-29 2024-02-06 한국과학기술원 Method for preparing catalyst including intermetallic compound using gas phase reduction and catalyst prepared thereform

Also Published As

Publication number Publication date
KR20020029888A (en) 2002-04-20

Similar Documents

Publication Publication Date Title
Li et al. Revisiting the preparation progress of nano‐structured Si anodes toward industrial application from the perspective of cost and scalability
Xu et al. Effect of heat treatment on the properties of nano-diamond under oxygen and argon ambient
Cvelbar Towards large-scale plasma-assisted synthesis of nanowires
CN100526217C (en) Preparation method of quasi one-dimensional boron nitride nanostructure
JP2009155197A (en) Method for production of lamella-structure nanoparticle
Jia et al. pH value-dependant growth of α-Fe2O3 hierarchical nanostructures
JP4921806B2 (en) Tungsten ultrafine powder and method for producing the same
JPH11350010A (en) Production of metal powder
KR100453554B1 (en) Producing method for cobalt ultrafine particles by the gas phase reduction
Naz et al. Synthesis and processing of nanomaterials
CN113798504B (en) Preparation method of rare earth oxide dispersion-reinforced tungsten powder for 3D printing
Niu et al. A simple solution calcination route to porous MgO nanoplates
KR20230104343A (en) Method for manufacturing tungsten carbide particles and tungsten carbide particles prepared therefrom
KR20040079226A (en) Febrication method of transition metal oxide/carbon nanotube composite
Denholme et al. Growth and characterisation of titanium sulphide nanostructures by surface–assisted vapour transport methods; from trisulphide ribbons to disulphide nanosheets
Wang et al. Synthesis of monodisperse and high-purity α-Si3N4 powder by carbothermal reduction and nitridation
Jiang et al. Catalytic chemical vapor deposition of carbon nanotubes using Ni–La–O precursors
KR0156051B1 (en) Process for preparing fine particle of metal and metal oxide by gaseous chemical reaction and apparatus thereof
Grabis et al. Nanosize NiO/YSZ powders produced by ICP technique
KR101386901B1 (en) A method for manufacturing tapered sns nanorods via a solution process
JPH0411651B2 (en)
Yuan et al. Titanium nitride nanopowders produced via sodium reductionin liquid ammonia
Singh et al. Controlled synthesis and magnetic properties of nickel phosphide and bimetallic iron–nickel phosphide nanorods
KR100503126B1 (en) A method for producing ultrafine spherical particles of nickel metal using gas-phase synthesis
KR910009759B1 (en) Process for producing ultra-fine magnetic metal power

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121005

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141001

Year of fee payment: 18