JPH02193749A - Integrated control device for suspension and brake - Google Patents

Integrated control device for suspension and brake

Info

Publication number
JPH02193749A
JPH02193749A JP1270089A JP1270089A JPH02193749A JP H02193749 A JPH02193749 A JP H02193749A JP 1270089 A JP1270089 A JP 1270089A JP 1270089 A JP1270089 A JP 1270089A JP H02193749 A JPH02193749 A JP H02193749A
Authority
JP
Japan
Prior art keywords
vehicle
brake
control
hydraulic pressure
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1270089A
Other languages
Japanese (ja)
Other versions
JP2662284B2 (en
Inventor
Shin Takehara
伸 竹原
Toshiki Morita
俊樹 森田
Shigefumi Hirabayashi
繁文 平林
Toshio Nakajima
敏夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1270089A priority Critical patent/JP2662284B2/en
Publication of JPH02193749A publication Critical patent/JPH02193749A/en
Application granted granted Critical
Publication of JP2662284B2 publication Critical patent/JP2662284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0195Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Regulating Braking Force (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To contrive the improvement in the stability of a vehicle at the time of braking by increasing the decrement of hydraulic pressure in the brake of a rear wheel, when the suspension characteristic is changed so as to decrease the roll rigidity ratio of the front wheel to the rear wheel. CONSTITUTION:If a controller 17 changes the suspension characteristics of respective wheels each of which comprises a fluid cylinder 3 and a gas spring 5 via proportional flow control valves 9 so as to decrease the roll rigidity ratio of the front wheel 2F to the rear wheel 2R, the steering characteristic of a vehicle tends to have an under-steer decreasing tendency. In this case, if the rear wheels have a lock tendency at the time of braking, the under-steer tendency is enhanced, and sometimes they have an over-steer tendency, therefore the decrement of hydraulic pressure in the brake of the rear wheel 2R is controlled so as to be increased via a controller 87 and a brake hydraulic pressure control means 88, so that the braking force of the rear wheel 2R can be decreased. Thus, the improvement in the stability of the vehicle at the time of braking can be contrived.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、車両におけるサスペンションとブレーキの総
合制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a comprehensive control system for suspension and brakes in a vehicle.

(従来の技術) 従来、車両のサスペンション装置として、サスペンショ
ン特性を可変にできるものがある。例えば実公昭58−
45129号公報に開示されるものでは、車両の高速走
行時に前輪側のダンパーの減衰力を後輪側よりも高める
ようサスペンション特性を変え、このことにより前輪側
のロール剛性を後輪側より高めてステアリング特性をア
ンダーステアの増大傾向とし、車両の走行安定性を高め
るようにしている。
(Prior Art) Conventionally, some vehicle suspension devices are capable of varying suspension characteristics. For example, Jikko 58-
In the system disclosed in Publication No. 45129, the suspension characteristics are changed so that the damping force of the damper on the front wheel side is higher than that on the rear wheel side when the vehicle is running at high speed, thereby increasing the roll rigidity of the front wheel side compared to the rear wheel side. The steering characteristics tend to increase understeer, thereby increasing the running stability of the vehicle.

また、車両のブレーキ装置として、例えば実開昭62−
122765号公報に開示されるように、ブレーキ油圧
を制御して各車輪の制動力を調整することにより、車輪
のロックを防止して、車両を安定性良く停車させる。ア
ンチロックブレーキ装置(ABS装置)が知られている
In addition, as a brake device for vehicles, for example,
As disclosed in Japanese Patent No. 122765, by controlling the brake oil pressure and adjusting the braking force of each wheel, locking of the wheels is prevented and the vehicle is stopped with good stability. Anti-lock brake systems (ABS systems) are known.

(発明が解決しようとする課題) 而して、上記ABS装置又は通常のブレーキ装置のみを
備えた車両に対してサスペンション特性を可変に制御す
る場合、サスペンション特性の可変制御と前後輪の制動
力の作用とは無関係に行われるのが一般的である。
(Problem to be Solved by the Invention) Therefore, when variably controlling the suspension characteristics of a vehicle equipped with only the ABS device or a normal brake device, it is necessary to variably control the suspension characteristics and control the braking force of the front and rear wheels. It is generally carried out independently of the action.

本発明は、サスペンション特性と車輪の制動力との間を
特殊に関連付けることにより、車両の安定性の一層の向
上を図ることを目的とする。
An object of the present invention is to further improve vehicle stability by specifically associating suspension characteristics with wheel braking force.

つまり、サスペンション特性がステアリングのアンダー
ステアの減少傾向に変更された場合には、車両の回頭性
は良くなるものの、車両の制動時に後輪がロック傾向に
なれば、アンダーステアの減少傾向が助長されたり、顕
著な場合にはオーバーステアに転じるから、本発明では
、後輪の制動力を小さく制御して後輪のロック傾向を抑
制し、車両の安定性の一層の向上を図ることとする。
In other words, if the suspension characteristics are changed to reduce steering understeer, the turning performance of the vehicle will improve, but if the rear wheels tend to lock when the vehicle is braking, the tendency to reduce understeer will be exacerbated. In such a case, oversteer may occur, so in the present invention, the braking force of the rear wheels is controlled to be small to suppress the tendency of the rear wheels to lock, thereby further improving the stability of the vehicle.

(課題を解決するための手段) つまり、本発明の具体的な解決手段は、車両の前輪の後
輪に対するロール剛性比を変化させるようサスペンショ
ン特性を可変にできるサスペンション特性可変手段を備
えると共に、後輪のブレーキの油圧を調整するブレーキ
油圧調整手段を備えたものを対象とする。そして、上記
サスペンション特性可変手段により、前輪の後輪に対す
るロール剛性比を小さく変化させるようサスペンション
特性が変更されたとき、後輪のブレーキの油圧の低減量
を大きくするよう上記ブレーキ油圧調整手段を制御する
ブレーキ油圧制御手段を設ける構成としている。
(Means for Solving the Problem) In other words, the specific solution of the present invention includes a suspension characteristic variable means that can vary the suspension characteristic so as to change the roll stiffness ratio of the front wheels to the rear wheels of the vehicle. The target vehicle is equipped with a brake hydraulic pressure adjustment means for adjusting the hydraulic pressure of the wheel brakes. When the suspension characteristics are changed by the suspension characteristics variable means to reduce the roll stiffness ratio of the front wheels to the rear wheels, the brake oil pressure adjustment means is controlled to increase the reduction amount of the brake oil pressure of the rear wheels. The structure is such that a brake hydraulic pressure control means is provided.

(作用) 従って、本発明では、車両のサスペンション特性が変更
されて前輪の後輪に対するロール剛性比が小さく変化す
れば、車両のステアリング特性はアンダーステアの減少
傾向となる。この場合、車両の制動時に後輪がロック傾
向となる時にはアンダーステアの減少傾向が助長され、
オーバーステア傾向になる場合もある。しかし、この場
合には、後輪のブレーキの油圧の低減量が大きく制御さ
れて、後輪の制動力が小さくなる。その結果、後輪のロ
ック傾向が抑制されて、アンダーステアの減少傾向が助
長されたり、オーバーステアに転じることが確実に防止
されるので、制動時の車両の安定性の向上が図られる。
(Operation) Therefore, in the present invention, if the suspension characteristics of the vehicle are changed and the roll stiffness ratio of the front wheels to the rear wheels changes to a small value, the steering characteristics of the vehicle tend to decrease understeer. In this case, when the rear wheels tend to lock when the vehicle is braking, the tendency to reduce understeer is promoted,
There may be a tendency to oversteer. However, in this case, the amount of reduction in the hydraulic pressure of the rear wheel brake is controlled to be large, and the braking force of the rear wheel becomes small. As a result, the tendency of the rear wheels to lock is suppressed, the tendency to reduce understeer is promoted, and oversteer is reliably prevented, thereby improving the stability of the vehicle during braking.

(発明の効果) 以上説明したように、本発明に係るサスペンションとブ
レーキの総合制御装置によれば、サスペンション特性が
ステアリングのアンダーステアの減少傾向に変更される
のに同期して後輪の制動力を小さく補正したので、後輪
のロック傾向に起因するステアリングのオーバーステア
傾向への変化を防止して、制動時の車両の安定性の向上
を図ることができる。
(Effects of the Invention) As explained above, according to the integrated suspension and brake control device according to the present invention, the braking force of the rear wheels is adjusted in synchronization with the suspension characteristics being changed to reduce steering understeer. Since the correction is made small, it is possible to prevent a change in steering tendency toward oversteer due to the tendency of the rear wheels to lock, thereby improving the stability of the vehicle during braking.

(実施例) 以下、本発明の実施例を図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は車両のサスペンション装置の全体概略構成を示
す。同図において、1は車体、2Fは前輪、2Rは後輪
であって、車体1と前輪2Fとの間、車体1と後輪2R
との間には、各々流体シリンダ3が配置されている。該
各法体シリンダ3内は、シリンダ本体3a内に嵌挿した
ピストン3bにより液圧室3cが画成されている。上記
ピストン3bに連結したロッド3dの上端部は車体1に
連結され、シリンダ本体3aは各々対応する車輪2F、
2Rに連結されている。
FIG. 1 shows the overall schematic structure of a vehicle suspension system. In the same figure, 1 is the vehicle body, 2F is the front wheel, and 2R is the rear wheel, between the vehicle body 1 and the front wheel 2F, and between the vehicle body 1 and the rear wheel 2R.
A fluid cylinder 3 is arranged between the two. A hydraulic chamber 3c is defined within each body cylinder 3 by a piston 3b fitted into the cylinder body 3a. The upper end of the rod 3d connected to the piston 3b is connected to the vehicle body 1, and the cylinder body 3a is connected to the corresponding wheels 2F,
Connected to 2R.

また、上記各流体シリンダ3の液圧室3cには、各々、
連通路4を介してガスばね5が連通接続されている。該
各ガスばね5は、ダイヤフラム5eによりガス室5fと
液圧室5gとに区画され、該液圧室5gが流体シリンダ
3の液圧室3cに連通する。
In addition, the hydraulic pressure chamber 3c of each of the fluid cylinders 3 includes the following:
A gas spring 5 is connected through the communication path 4 . Each gas spring 5 is divided into a gas chamber 5f and a hydraulic chamber 5g by a diaphragm 5e, and the hydraulic chamber 5g communicates with the hydraulic chamber 3c of the fluid cylinder 3.

また、8は油圧ポンプ、9,9は該油圧ポンプ8に液圧
管路10を介して接続された比例流量制御弁であって、
各流体シリンダ3F、3Rの液圧室3cへの流体の供給
、排出を行って液圧室3cの流量を調整する機能を有す
る。
Further, 8 is a hydraulic pump, and 9, 9 are proportional flow control valves connected to the hydraulic pump 8 via a hydraulic pipe line 10,
It has a function of supplying and discharging fluid to and from the hydraulic pressure chambers 3c of each fluid cylinder 3F and 3R to adjust the flow rate of the hydraulic pressure chambers 3c.

さらに、12は油圧ポンプ8の油吐出圧を検出する吐出
圧針、13は各流体シリンダ3の液圧室3cの液圧を検
出する液圧センサ、14は対応する車輪2F、2Hの車
高くシリンダストロークff1)を検出する車高セ、ン
サ、15は車両の上下加速度(車輪2 F、 2 Hの
ばね上の上下加速度)を検出する上下加速度センサであ
って、車両の略水平面上で左右の前輪2Fの上方に各々
1個及び後輪2R間の車体左右方向の中央部に1個の合
計3個配置されている。また、16は車速を検出する車
速センサである。而して、上記各計器及びセンサの検出
信号は各々内部にCPU等を有するサスペンション特性
の可変制御用のコントローラ17に入力されて、サスペ
ンション特性の可変制御に供される。
Furthermore, 12 is a discharge pressure needle that detects the oil discharge pressure of the hydraulic pump 8, 13 is a hydraulic pressure sensor that detects the hydraulic pressure in the hydraulic chamber 3c of each fluid cylinder 3, and 14 is a cylinder that is high on the vehicle of the corresponding wheels 2F and 2H. The vehicle height sensor 15 that detects the stroke ff1) is a vertical acceleration sensor that detects the vertical acceleration of the vehicle (the vertical acceleration on the springs of the wheels 2F, 2H), Three in total are arranged, one each above the front wheels 2F and one in the center in the left-right direction of the vehicle body between the rear wheels 2R. Further, 16 is a vehicle speed sensor that detects vehicle speed. The detection signals from each of the instruments and sensors described above are input to a controller 17 for variable control of suspension characteristics each having a CPU or the like therein, and are used for variable control of suspension characteristics.

次に、流体シリンダ3の液圧室3cへの油の給排制御用
の油圧回路を第2図に示す。同図において、油圧ポンプ
8は、駆動源20により駆動されるパワーステアリング
装置用の油圧ポンプ21と二連に接続されている。油圧
ポンプ8の吐出管8aには、アキュムレータ22が連通
接続され、その下流側は前輪側配管23F及び後輪側配
管23Rが並列接続され、前輪側配管23Fには左輪側
配管23PL及び右輪側配管23PRが並列接続され、
該各配管23FL、23PRには対応する車輪の流体シ
リンダ3FL、  3FRの液圧室3Cが連通接続され
る。同様に、後輪側配管23Rには左輪側及び右輪側の
配管23RL、 23RRが並列接続され、該各配管2
3RL、23RRには対応する車輪の流体シリンダ3R
L、  3RRの液圧室3cが連通接続されている。
Next, a hydraulic circuit for controlling supply and discharge of oil to the hydraulic pressure chamber 3c of the fluid cylinder 3 is shown in FIG. In the figure, a hydraulic pump 8 is connected in two series to a hydraulic pump 21 for a power steering device driven by a drive source 20. An accumulator 22 is connected to the discharge pipe 8a of the hydraulic pump 8, and a front wheel side pipe 23F and a rear wheel side pipe 23R are connected in parallel on the downstream side thereof, and a left wheel side pipe 23PL and a right wheel side pipe are connected to the front wheel side pipe 23F. Piping 23PR is connected in parallel,
The hydraulic pressure chambers 3C of the corresponding wheel fluid cylinders 3FL and 3FR are connected to each of the pipes 23FL and 23PR. Similarly, left wheel side and right wheel side piping 23RL and 23RR are connected in parallel to the rear wheel side piping 23R, and each piping 23R is connected in parallel to the rear wheel side piping 23R.
For 3RL and 23RR, the corresponding wheel fluid cylinder 3R
The hydraulic pressure chambers 3c of L and 3RR are connected in communication.

上記各流体シリンダ3FL〜3RRに接続するガスばね
5PL〜5RRは、各々、具体的には複数個(4個)づ
つ備えられ、これ等は対応する流体シリンダ3の液圧室
3cに連通する共通連通路4に対して分岐連通路4a〜
4dを介して互いに並列に接続されている。また、上記
各車輪毎の複数個(第1〜第4)のガスばね5a〜5d
は、その分岐連通路48〜4dに介設したオリフィス2
5a〜25dを備えていて、その各々の減衰作用と、ガ
ス室5rに封入されたガスの緩衝作用の双方により、サ
スペンション装置として基本的な機能を発揮する。
The gas springs 5PL to 5RR connected to each of the fluid cylinders 3FL to 3RR are each provided in a plurality (four pieces), and these are commonly connected to the hydraulic pressure chamber 3c of the corresponding fluid cylinder 3. Branch communication path 4a to communication path 4
They are connected in parallel to each other via 4d. Also, a plurality of (first to fourth) gas springs 5a to 5d for each of the wheels.
is the orifice 2 interposed in the branch communication path 48 to 4d.
5a to 25d, and exhibits a basic function as a suspension device by both the damping effect of each of them and the buffering effect of the gas sealed in the gas chamber 5r.

而して、各車輪のガスばね5Pl’〜51?Rでは、各
々、第1ばね5aと第2ばね5bとの間の連通路に該連
通路の通路面積を調整する減衰力切換バルブ26が介設
されている。該切換バルブ26は、連通路を開く開位置
と、その通路面積を絞る絞位置との二位置を有する。而
して、車両の旋回走行時には絞位置に切換えて、第2及
び第3バネ5b。
So, the gas springs 5Pl' to 51 for each wheel? In each case R, a damping force switching valve 26 is provided in the communication path between the first spring 5a and the second spring 5b to adjust the passage area of the communication path. The switching valve 26 has two positions: an open position where the communicating passage is opened, and a throttle position where the area of the passage is narrowed. When the vehicle is turning, the second and third springs 5b are switched to the throttle position.

5cの各液圧室5gに対する油の流入、流出を抑制し、
このことにより車両旋回時での流体シリンダ3の液圧室
3cに対する油の必要給排量を少なく制限して、その制
御の応答性の向上を図るようにしている。
Suppressing the inflow and outflow of oil to each hydraulic pressure chamber 5g of 5c,
As a result, the amount of oil required to be supplied to and discharged from the hydraulic pressure chamber 3c of the fluid cylinder 3 when the vehicle turns is limited to a small amount, thereby improving the responsiveness of the control.

また、油圧ポンプ8の吐出管8aには、ア午ユムレータ
22近傍にてアンロードリリーフ弁28が接続される。
Further, an unload relief valve 28 is connected to the discharge pipe 8a of the hydraulic pump 8 near the oil pump 22.

該リリーフ弁28は、開位置と閉位置とを有し、吐出圧
計12で計測した油吐出圧が上限設定値以上の場合に開
位置に切換制御されて油圧ポンプ8の油をリザーブタン
ク29に戻し、アキュムレータ22の油の蓄圧値を設定
値に保持制御する機能を有する。而して、各流体シリン
ダ3への油の供給はアキュムレータ22の蓄池でもって
行う。
The relief valve 28 has an open position and a closed position, and is controlled to be switched to the open position when the oil discharge pressure measured by the discharge pressure gauge 12 is equal to or higher than the upper limit setting value, and the oil from the hydraulic pump 8 is transferred to the reserve tank 29. It has a function of controlling and maintaining the oil pressure value of the accumulator 22 at a set value. Thus, oil is supplied to each fluid cylinder 3 by the storage reservoir of the accumulator 22.

以下、左前輪、右前輪、左後輪、右後輪の構成は同一で
あるので、左前輪側のみを説明し、他はその説明を省略
する。つまり、左前輪側配管23PLには上記比例流量
制御弁9が介設される。該比例流量制御弁9は、全ポー
トを閉じる停止位置と、左前輪側配管23PLを開く供
給位置と、左前輪側配管23PLの流体シリンダ3側を
リターン配管32に連通ずる排出位置との三位置を有す
ると共に、圧力補償弁9aを内蔵し、該圧力補償弁9a
により上記供給位置及び排出位置の二位置にて流体シリ
ンダ3の液圧室3c内の液圧を所定値に保持する。
Hereinafter, since the configurations of the left front wheel, right front wheel, left rear wheel, and right rear wheel are the same, only the left front wheel will be described, and the description of the others will be omitted. That is, the proportional flow rate control valve 9 is interposed in the left front wheel side pipe 23PL. The proportional flow control valve 9 has three positions: a stop position where all ports are closed, a supply position where the left front wheel side pipe 23PL is opened, and a discharge position where the fluid cylinder 3 side of the left front wheel side pipe 23PL is communicated with the return pipe 32. and has a built-in pressure compensation valve 9a, and the pressure compensation valve 9a
As a result, the hydraulic pressure in the hydraulic pressure chamber 3c of the fluid cylinder 3 is maintained at a predetermined value at the two positions, the supply position and the discharge position.

加えて、上記比例流量制御弁9の流体シリンダ3側には
、左前輪側配管23FLを開閉するパイロット圧応動型
の開閉弁33が介設される。該開閉弁33は、比例流量
制御弁9の油ポンプ8側の左前輪側配管23FLの液圧
を導く電磁弁34の開時にその液圧がパイロット圧とし
て導入され、このパイロット圧が所定値以上の時に開作
動して左前輪側配管23PLを開き、比例流量制御弁9
による流体シリンダ3への流量の制御を可能とすると共
に、その閉時に前輪側配管23FLを液密的に閉じて、
液圧シリンダ3の液圧室3cの油の漏れを確実に防止す
る機能を有する。
Additionally, on the fluid cylinder 3 side of the proportional flow rate control valve 9, a pilot pressure-responsive opening/closing valve 33 for opening and closing the left front wheel side piping 23FL is interposed. The on-off valve 33 receives hydraulic pressure as a pilot pressure when the electromagnetic valve 34 that guides the hydraulic pressure of the left front wheel side piping 23FL on the oil pump 8 side of the proportional flow control valve 9 is opened, and when this pilot pressure exceeds a predetermined value. When the valve is opened, the left front wheel side piping 23PL is opened, and the proportional flow control valve 9 is opened.
The flow rate to the fluid cylinder 3 can be controlled by the fluid cylinder 3, and when the front wheel side pipe 23FL is closed, the front wheel side pipe 23FL is liquid-tightly closed.
It has a function of reliably preventing oil leakage from the hydraulic chamber 3c of the hydraulic cylinder 3.

尚、図中、35は流体シリンダ3の液圧室3Cの液圧の
異常上昇時に開作動してその油をリターン配管32に戻
すリリーフ弁である。また、36は油圧ポンプ8の吐出
管8aのアキュムレータ22近傍に接続されたイグニッ
ションキ一連動弁であって、イグニッションオフ後に開
制御されてアキュムレータ22の蓄油をタンク29に戻
し、高圧状態を解除する機能を有する。37は油ポンプ
8の油吐出圧の異常上昇時にその油をタンク29に戻し
て降圧するポンプ内リリーフ弁、38はリターン配管3
2に接続されたリターンアキュムレータであって、流体
シリンダ3からの油の排圧時に蓄圧作用を行うものであ
る。
In the drawing, reference numeral 35 denotes a relief valve that opens when the hydraulic pressure in the hydraulic pressure chamber 3C of the fluid cylinder 3 increases abnormally and returns the oil to the return pipe 32. Further, 36 is an ignition key linked valve connected to the vicinity of the accumulator 22 of the discharge pipe 8a of the hydraulic pump 8, and is controlled to open after the ignition is turned off to return the oil stored in the accumulator 22 to the tank 29 and release the high pressure state. It has the function of 37 is a relief valve in the pump that returns the oil to the tank 29 to lower the pressure when the oil discharge pressure of the oil pump 8 rises abnormally; 38 is a return pipe 3
A return accumulator connected to the fluid cylinder 2 performs a pressure accumulating function when the oil pressure from the fluid cylinder 3 is discharged.

次に、コントローラ17によるサスペンション特性の可
変制御、つまり各流体シリンダ3の流量制御を第3図に
基いて説明する。
Next, variable control of the suspension characteristics by the controller 17, that is, flow rate control of each fluid cylinder 3 will be explained with reference to FIG.

同図では、基本的に、各車輪の車高センサ14の検出信
号に基いて車高を目標車高に(シリンダストローク量を
目標量に)制御する制御系Aと、3個の上下加速度セン
サ15の検出信号に基いて車両の上下振動の低減を図る
制御系Bと、各車輪の液圧センサ13の検出信号に基い
て前輪側及び後輪側で各々左右の車輪間の支持荷重の均
一化を図る制御系Cとを有する。
The figure basically shows a control system A that controls the vehicle height to the target vehicle height (cylinder stroke amount to the target amount) based on the detection signal of the vehicle height sensor 14 of each wheel, and three vertical acceleration sensors. Control system B aims to reduce the vertical vibration of the vehicle based on the detection signal of 15, and equalizes the support load between the left and right wheels on the front wheel side and the rear wheel side, respectively, based on the detection signal of the hydraulic pressure sensor 13 of each wheel. It has a control system C that aims to achieve

而して、制御系Aにおいて、40は車高センサ14のう
ち、左右の前輪2F側の出力XPR,XPLを合計する
と共に左右の後輪2R側の出力XRR。
In the control system A, 40 is the sum of the outputs XPR and XPL of the left and right front wheels 2F of the vehicle height sensor 14, and the output XRR of the left and right rear wheels 2R.

XRLを合計して、車両のバウンス成分を演算するバウ
ンス成分演算部である。また、41は左右の前輪2F側
の出力XPR,XPLの合計値から、左右の後輪2R側
の出力XRR,XRLの合計値を減算して、車両のピッ
チ成分を演算するピッチ成分演算部、42は左右の前輪
2F側の出力の差分XFI?−XFLと、左右の後輪2
R側の出力の差分XI?l?−XRLを加算して、車両
のロール成分を演算するロール成分演算部である。
This is a bounce component calculation unit that totals the XRL and calculates the bounce component of the vehicle. Further, 41 is a pitch component calculation unit that calculates the pitch component of the vehicle by subtracting the total value of the outputs XRR and XRL on the left and right rear wheels 2R side from the total value of the outputs XPR and XPL on the left and right front wheels 2F side; 42 is the difference in output between the left and right front wheels 2F side XFI? -XFL and left and right rear wheels 2
R side output difference XI? l? - This is a roll component calculation unit that adds XRL and calculates the roll component of the vehicle.

また、43は上記バウンス成分演算部40で演算した車
両のバウンス成分を入力して下記のPD副制御比例−微
分制御)式 %式% に基いてバウンス制御での各車輪の流量制御弁9に対す
る制御量を演算するバウンス制御部である。
Reference numeral 43 inputs the bounce component of the vehicle calculated by the bounce component calculation unit 40 and applies the flow rate control valve 9 of each wheel in bounce control based on the following PD sub-control proportional-derivative control) formula % formula %. This is a bounce control unit that calculates a control amount.

また、44はピッチ成分演算部41で演算した車両のピ
ッチ成分を入力して上記と同様の比例−微分制御式に基
いてピッチ制御での各流量制御弁9の制御量を演算する
ピッチ制御部、同様に45はロール成分演算部42で演
算した車両のロール成分、及び車両の目標ロール角TR
0LL(後述)を入力して上記と同様の比例−微分制御
式に基いて、目標ロール角T ROLLに傾斜した車高
にするよう、ロール制御での各流量制御弁9の制御量を
演算するロール制御部である。
Further, 44 is a pitch control unit that inputs the pitch component of the vehicle calculated by the pitch component calculation unit 41 and calculates the control amount of each flow rate control valve 9 in pitch control based on the proportional-differential control equation similar to the above. Similarly, 45 indicates the roll component of the vehicle calculated by the roll component calculation unit 42 and the target roll angle TR of the vehicle.
0LL (described later) is input, and based on the same proportional-differential control equation as above, the control amount of each flow rate control valve 9 in roll control is calculated so as to make the vehicle height inclined to the target roll angle TROLL. This is the roll control section.

而して、車高を目標車高に制御すべく、上記各制御部4
3〜45で演算した各制御量を各車輪毎で反転(車高セ
ンサ14の信号入力の正負方向とは逆方向に反転)させ
た後、各車輪に対するバウンス、ピッチ、ロールの各制
御量を加算して対応する比例流量制御弁9の制御量QF
R,Q!’L、 QRR、QRLとする。
In order to control the vehicle height to the target vehicle height, each of the control units 4 described above
After inverting each control amount calculated in steps 3 to 45 for each wheel (reversing in the opposite direction to the positive/negative direction of the signal input to the vehicle height sensor 14), the bounce, pitch, and roll control amounts for each wheel are calculated. Add the corresponding control amount QF of the proportional flow rate control valve 9
R,Q! 'L, QRR, QRL.

また、制御系Bにおいて、50は3個の上下加速度セン
サ15の出力GFR,GFL、 GRを合計して車両の
バウンス成分を演算するバウンス成分演算部、51は3
個の上下加速度センサ15のうち、左右の前輪2F側の
出力GI’!?、 GFLの各半分値の合計値から後輪
2R側の出力Glシを減算して、車両のピッチ成分を演
算するピッチ成分演算部、52は右側前輪2F側の出力
GT’Rから、左側前輪2F側の出力GFLを減算して
、車両のロール成分を演算するロール成分演算部である
In the control system B, 50 is a bounce component calculation unit that calculates the bounce component of the vehicle by summing the outputs GFR, GFL, and GR of the three vertical acceleration sensors 15;
Of the vertical acceleration sensors 15, the output GI' for the left and right front wheels 2F! ? , a pitch component calculation unit that calculates the pitch component of the vehicle by subtracting the output Gl of the rear wheel 2R side from the total value of each half value of GFL; This is a roll component calculation unit that calculates the roll component of the vehicle by subtracting the output GFL from the 2F side.

加えて、53は上記バウンス成分演算部50で演算した
車両のバウンス成分を入力して下記のIPD制御(積分
−比例一徹分制御)式 1式% に基いてバウンス制御での各車輪の流量制御弁9に対す
る制御量を演算するバウンス制御部である。
In addition, 53 inputs the bounce component of the vehicle calculated by the bounce component calculation unit 50 and controls the flow rate of each wheel in bounce control based on the following IPD control (integral-proportional-integral control) formula 1. This is a bounce control section that calculates a control amount for the valve 9.

また、54はピッチ成分演算部51で演算した車両のピ
ッチ成分を入力して上記と同様の積分−比例一徹分制御
式に基いてピッチ制御での各流量制御弁9の制御量を演
算するピッチ制御部、同様に55はロール成分演算部5
2で演算した車両のロール成分を入力して上記と同様の
積分−比例一徹分制御式に基いてロール制御での各流量
制御弁9の制御量を演算するロール制御部である。
In addition, 54 is a pitch for inputting the pitch component of the vehicle calculated by the pitch component calculation unit 51 and calculating the control amount of each flow rate control valve 9 in pitch control based on the integral-proportional thorough control equation similar to the above. Similarly, 55 is a roll component calculation unit 5.
This is a roll control section which inputs the vehicle roll component calculated in step 2 and calculates the control amount of each flow rate control valve 9 in roll control based on the same integral-proportional one-integrity control equation as above.

そして、車両の上下振動をバウンス成分、ピッチ成分、
ロール成分で抑えるべく、上記各制御部53〜55で演
算した各制御量を各車輪毎で上記と同様に反転させた後
、各車輪に対するバウンス、ピッチ、ロールの各制御量
を加算して、対応する流体シリンダ3の制御量QFI?
、 QFL、 QI?R,QI?Lとする。尚、各制御
部53〜55で演算した車輪毎の制御量は、前後輪の分
担荷重が異なる関係上、前輪側の制御量を重み付は係数
k (k、−1,08)で大値に補正している。
Then, the vertical vibration of the vehicle is divided into bounce component, pitch component,
In order to suppress the roll component, each control amount calculated by each of the control units 53 to 55 is reversed for each wheel in the same manner as above, and then the bounce, pitch, and roll control amounts for each wheel are added, Controlled amount QFI of the corresponding fluid cylinder 3?
, QFL, QI? R, QI? Let it be L. Note that the control amount for each wheel calculated by each of the control units 53 to 55 is weighted with a coefficient k (k, -1,08) to give a large value to the control amount for the front wheel because the shared loads of the front and rear wheels are different. It has been corrected.

さらに、制御系Cにおいて、60は、前輪側の2個の液
圧センサ13の液圧PFI?、 PFL信号を入力し、
前輪側の合計液圧に対する左右輪の液圧差(P PP−
P PL)の比(荷重移動比)を演算する前輪側の荷重
移動比演算部60aと、後輪側で同様の荷重移動比を演
算する後輪側の荷重移動比演算部60bとからなるウォ
ープ制御部である。而して、後輪側の荷重移動比を係数
W「で所定倍した後、前輪側の荷重移動比からこれを減
算し、その結果を係数WAで所定倍すると共に前輪側で
重み付けし、その後、各車輪に対する制御量を左右輪間
で均一化すべく反転して、対応する流量制御弁9の制御
量QPR,QPL、 QRI?、 QRLとする。
Further, in the control system C, 60 indicates the hydraulic pressure PFI? of the two hydraulic pressure sensors 13 on the front wheel side. , input the PFL signal,
The difference in hydraulic pressure between the left and right wheels relative to the total hydraulic pressure on the front wheels (PP PP-
A warp consisting of a front wheel side load transfer ratio calculation section 60a that calculates the ratio (load transfer ratio) of PPL) and a rear wheel side load transfer ratio calculation section 60b that calculates a similar load transfer ratio on the rear wheel side. This is the control section. Then, after multiplying the rear wheel side load transfer ratio by a predetermined factor W, subtract this from the front wheel side load transfer ratio, multiplying the result by a predetermined factor WA and weighting it on the front wheel side. , the control amounts for each wheel are reversed to equalize them between the left and right wheels, and the corresponding control amounts of the flow control valves 9 are set as QPR, QPL, QRI?, and QRL.

而して、上記ウォーブ制御での係数Wrは、車速センサ
16で検出する車速に応じて異なる値に変更され、車速
Vが設定車速Voに対して、V≧Voの高車速時には係
数Wr−1,5に設定され、v<v□の低車速時には係
数Wr−1゜0に設定される。よって、V≧vOの高車
速時には、係数Wr=1.5の設定により前輪側の荷重
移動比を後輪側よりも大きくして前輪側のロール剛性を
後輪側よりも高め、このことによりサスペンション特性
をアンダーステアの増大傾向に変更する一方、V<v□
の低車速時には、係数Wr=1.0の設定により前輪側
の荷重移動比を後輪側と一致させて前輪側のロール剛性
を後輪側と等しくし、サスペンション特性を通常の弱ア
ンダーステア傾向に変更して、前輪の後輪に対するロー
ル剛性比(つまり前輪のロール剛性/後輪のロール剛性
)を変化させるようサスペンション特性を可変にできる
サスペンション特性可変手段62を構成している。
Therefore, the coefficient Wr in the warb control is changed to a different value depending on the vehicle speed detected by the vehicle speed sensor 16, and when the vehicle speed V is high with respect to the set vehicle speed Vo and V≧Vo, the coefficient Wr-1 is changed. , 5, and when the vehicle speed is low (v<v□), the coefficient is set to Wr-1°0. Therefore, at high vehicle speeds where V≧vO, by setting the coefficient Wr=1.5, the load transfer ratio on the front wheel side is made larger than that on the rear wheel side, making the roll rigidity of the front wheel side higher than that of the rear wheel side. While changing the suspension characteristics to increase understeer, V<v□
At low vehicle speeds, the coefficient Wr = 1.0 is set to match the load transfer ratio of the front wheels to the rear wheels, making the roll rigidity of the front wheels equal to that of the rear wheels, and changing the suspension characteristics to the normal slight understeer tendency. The suspension characteristic variable means 62 is configured to change the suspension characteristic so as to change the roll stiffness ratio of the front wheel to the rear wheel (that is, the roll stiffness of the front wheel/roll stiffness of the rear wheel).

加えて、同図においては、車両の旋回時で各流体シリン
ダ3の流量制御の応答性を高めるべく、制御系りで各種
の切換制御が行われる。
In addition, in the figure, various switching controls are performed in the control system in order to improve the responsiveness of the flow rate control of each fluid cylinder 3 when the vehicle turns.

つまり、制御系りでは、ステアリングの舵角速度θ閂と
車速Vとを乗算し、その結果0図・Vから基準値G1を
減算した値S1を旋回判定部65に入力する。また、車
両の現在の横加速度GSから基準値G2を減算した値S
2を旋回判定部65に入力する。そして、旋回判定部6
5にて、入力St又はS2≧0の場合には、車両の旋回
時と判断して、サスペンション特性のハード化信号Sa
を出力して、各流体シリンダ3に対する流量制、御の追
随性を向上すべく、減衰力切換バルブ26をON制御し
て絞り位置に切換えると共に、上記各比例定数Kl(1
=a t〜BS%PI〜Ps SR+〜R5)を各々大
値K11ardに設定し、また目標ロール角TR0II
を予め記憶するマツプG ll1ap(Gs) (横加
速度C8の増大に応じて大値になり、所定値GslでT
R0II=O5Gs1未満で負値、Gslを越える領域
で正値のマツプ)から、その時の横加速度Gsに対応す
る値に設定する。
That is, in the control system, the steering angular velocity θ bar is multiplied by the vehicle speed V, and a value S1 obtained by subtracting the reference value G1 from the resulting 0 figure V is input to the turning determination section 65. Also, the value S obtained by subtracting the reference value G2 from the current lateral acceleration GS of the vehicle
2 is input to the turning determination section 65. Then, the turning determination section 6
In step 5, if the input St or S2≧0, it is determined that the vehicle is turning, and the suspension characteristic hardening signal Sa is
In order to improve the followability of flow rate control and control for each fluid cylinder 3, the damping force switching valve 26 is turned on and switched to the throttle position, and each proportionality constant Kl (1
=a t~BS%PI~Ps SR+~R5) are each set to the large value K11ard, and the target roll angle TR0II
A map that stores in advance G
R0II=O5 A map with a negative value in the region less than Gs1 and a positive value in the region exceeding Gsl) is set to a value corresponding to the lateral acceleration Gs at that time.

一方、旋回判定部65で入力S1及びS2く0の場合に
は、直進時と判断して、サスペンション特性のソフト化
信号sbを出力して、減衰力切換バルブ26をOFF制
御して開位置に切換えると共に、比例定数に1を各々通
常値KSoftに設定し、また目標ロール、角TR0I
I−0に設定する。
On the other hand, when the inputs S1 and S2 are 0, the turning determination unit 65 determines that the vehicle is traveling straight, outputs a suspension characteristic softening signal sb, and turns off the damping force switching valve 26 to set it to the open position. At the same time, the proportional constant is set to 1 to the normal value KSoft, and the target roll and angle TR0I are set to 1.
Set to I-0.

また、第4図はアンチロックブレーキ装置の全体構成を
示す。同図において、80PL及び80PRは前輪2P
L、  2PRのブレーキ油圧を調整するブレーキ装置
、81RL及び81RRは同様に後輪2 RL。
Further, FIG. 4 shows the overall configuration of the anti-lock brake device. In the same figure, 80PL and 80PR are front wheel 2P.
81RL and 81RR are the rear wheel 2RL as well.

2RRのブレーキ油圧を調整するブレーキ油圧調整手段
としてのブレーキ装置である。83・・・は各車輪の回
転速度を検出する車輪速度センサ、84は車体速度を検
出するGセンサであって、これらセンサ83,84の検
出信号は、上記ブレーキ装置80PL〜81RRのブレ
ーキ油圧を制御するコントローラ87に入力される。こ
のコントローラ87によるブレーキ油圧の制御は、前輪
用ブレーキ装置2PL、  2PRのブレーキ油圧を左
右独立的に、後輪用ブレーキ装置2RL、  2RRの
ブレーキ油圧を一体的に制御するいわゆる3チャンネル
制御方式が採られている。また、コントローラ87によ
るブレーキ油圧の制御は、基本的に、各車輪速度センサ
83で検出した車輪速度と、Gセンサ84で検出した車
体速度との偏差から、各車輪のスリップ率λを演算し、
この各車輪のスリップ率λが、第5図に示すスリップ率
λ−制動力特性にて最大制動力を取る目標スリップ率λ
1になるよう、車輪のブレーキ装置2PL〜2RRのブ
レーキ油圧を制御する機能を有する。
This is a brake device as a brake oil pressure adjusting means for adjusting the brake oil pressure of 2RR. 83... is a wheel speed sensor that detects the rotational speed of each wheel, 84 is a G sensor that detects the vehicle body speed, and the detection signals of these sensors 83, 84 are used to control the brake oil pressure of the brake devices 80PL to 81RR. It is input to the controller 87 that controls it. The control of the brake hydraulic pressure by the controller 87 adopts a so-called three-channel control system in which the brake hydraulic pressure of the front wheel brake devices 2PL and 2PR is independently controlled on the left and right sides, and the brake hydraulic pressure of the rear wheel brake devices 2RL and 2RR is integrally controlled. It is being Furthermore, the brake oil pressure is controlled by the controller 87 basically by calculating the slip rate λ of each wheel from the deviation between the wheel speed detected by each wheel speed sensor 83 and the vehicle body speed detected by the G sensor 84.
The slip rate λ of each wheel is the target slip rate λ that takes the maximum braking force in the slip rate λ-braking force characteristic shown in Fig. 5.
It has a function of controlling the brake hydraulic pressure of the wheel brake devices 2PL to 2RR so that the brake pressure is 1.

さらに、上記ブレーキ油圧制御用のコントローラ87は
、サスペンション特性の可変制御用のコントローラ17
から、第3図の制御系Cのウォーブ制御での係数W「の
変更信号を受信して、W「−■、5の変更信号又はWr
ml、0の変更信号の受信に応じて次表の如く目標スリ
ップ率λ1を前輪二二に、目標スリップ率λ2は、第5
図に示す如く、目標スリップ率λ1よりも小値であり、
それ故、後輪をこの目標スリップ率λ2に制御する際に
は、制動力は目標スリップ率λ1の場合よりも小値にな
るとともに、コーナリングフォースは同図に示すスリッ
プ率−コーナリングフォースから判るように、目標スリ
ップ率λ1の場合よりも大値になる。
Furthermore, the controller 87 for controlling the brake hydraulic pressure is a controller 17 for variable control of suspension characteristics.
, a change signal of the coefficient W" in the wob control of the control system C in FIG. 3 is received, and a change signal of W"-■, 5 or Wr
In response to the reception of the change signal of ml, 0, the target slip rate λ1 is changed to the front wheel 22, and the target slip rate λ2 is changed to the 5th wheel as shown in the following table.
As shown in the figure, the value is smaller than the target slip rate λ1,
Therefore, when controlling the rear wheels to this target slip ratio λ2, the braking force will be smaller than when the target slip ratio λ1 is used, and the cornering force will be reduced as seen from the slip ratio - cornering force shown in the figure. In this case, the value becomes larger than that in the case of the target slip ratio λ1.

よって、上記表の制御により、v<Voの低車速時に、
ウォーブ制御の係数Wr−1,5からW「−1,0の小
値への設定に基づいて前輪のロール剛性を低くして、前
輪の後輪に対するロール剛性比を小さく変化させ、この
ことによりサスペンション特性がステアリングのアンダ
ーステアの減少傾向に変更されたときには、後輪の目標
スリップ率を第5図のλ1からλ2に小値に変更して、
後輪の制動力を小値にすることにより、後輪のブレーキ
の油圧の低減量を大きくするよう後輪側のブレーキ油圧
調整手段80RL、80RRを制御するブレーキ油圧制
御手段88を構成している。
Therefore, by the control shown in the table above, at low vehicle speeds where v<Vo,
Based on the setting of the wob control coefficient Wr-1,5 to a small value of W'-1,0, the roll rigidity of the front wheels is lowered, and the roll rigidity ratio of the front wheels to the rear wheels is changed to a small value. When the suspension characteristics are changed to a tendency to reduce steering understeer, the target slip ratio of the rear wheels is changed from λ1 to λ2 in Fig. 5 to a small value.
A brake oil pressure control means 88 is configured to control the brake oil pressure adjustment means 80RL and 80RR on the rear wheel side so as to increase the reduction amount of the rear wheel brake oil pressure by reducing the braking force on the rear wheels to a small value. .

したがって、上記実施例においては、上記表の如<v<
v□の低車速時には、第3図の制御系Cのウォーブ制御
の係数WrがWr−1,5からWr−1,0に変更され
て、前輪側での左右輪間の荷重移動比が後輪側と一致す
る。このことにより、前輪側のロール剛性が低くなって
後輪側のロール剛性と等しくなり、その結果、サスペン
ション特性がステアリングのアンダーステアの減少傾向
に変更されて、車両は旋回時の回頭性が良好になる。
Therefore, in the above embodiment, <v<
At a low vehicle speed of v□, the wob control coefficient Wr of the control system C in Fig. 3 is changed from Wr-1,5 to Wr-1,0, and the load transfer ratio between the left and right wheels on the front wheel side is changed to the rear. Matches the ring side. As a result, the roll stiffness of the front wheels becomes lower and becomes equal to the roll stiffness of the rear wheels, and as a result, the suspension characteristics are changed to a tendency to reduce steering understeer, and the vehicle has good turning performance when turning. Become.

また、その際には、サスペンション特性の変更に同期し
て、後輪の目標スリップ率がλ1からλ2に小値に変更
されるので、後輪の制動力が第5図の如く小さくて済み
、その分、後輪側のブレーキ装置81RL、81RRの
ブレーキ油圧の低減量が増大する。この時、後輪のコー
ナリングフォースは、第5図から判るように目標スリッ
プ率λ1の場合よりも増大するので、ステアリング特性
は所期のアンダーステアの減少傾向に保持されて、その
減少傾向が助長されたり、オーバーステアに転じること
がなく、制動時の車両の安定性の向上を図ることができ
る。
In addition, in this case, the target slip ratio of the rear wheels is changed from λ1 to λ2 in synchronization with the change in suspension characteristics, so the braking force of the rear wheels can be reduced as shown in Fig. 5. The amount of reduction in the brake oil pressure of the brake devices 81RL and 81RR on the rear wheel side increases accordingly. At this time, as can be seen from Fig. 5, the cornering force of the rear wheels increases compared to the case where the target slip ratio is λ1, so the steering characteristics are maintained in the desired decreasing tendency of understeer, and this decreasing tendency is promoted. It is possible to improve the stability of the vehicle during braking without turning into oversteer.

尚、上記実施例では、アンチロックブレーキ装置を備え
た車両に対して適用したが、本発明は、通常のブレーキ
装置のみを備えた車両に対しても同様に適用できる。こ
の場合には、ブレーキ装置において、後輪のブレーキ油
圧の上昇率を前輪に対して減じるプロボーショニングバ
ルブの作動開始点(折れ点)を早目に変更すればよい。
In the above embodiment, the present invention is applied to a vehicle equipped with an anti-lock brake system, but the present invention can be similarly applied to a vehicle equipped only with a normal brake system. In this case, in the brake system, the actuation start point (break point) of the provisioning valve that reduces the rate of increase in the brake oil pressure of the rear wheels relative to the front wheels may be changed early.

また、上記実施例では、ガスばね5を備えたサスペンシ
ョン装置に適用したが、本発明はその他、ガスばねを備
えず、流体シリンダ3のみを備えてサスペンション特性
を可変にするサスペンション装置にも同様に適用できる
のは勿論である。
Further, in the above embodiment, the present invention is applied to a suspension device equipped with a gas spring 5, but the present invention can also be applied to a suspension device that does not include a gas spring and only includes a fluid cylinder 3 to make the suspension characteristics variable. Of course, it can be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図はサスペンション
装置の全体概略構成図、第2図は同油圧回路図、第3図
はコントローラによるサスペンション特性の可変制御を
示す制御ブロック図、第4図はアンチロックブレーキ装
置の全体構成図、第5図は車輪のスリップ率に対する制
動力及びコーナリングフォース特性を示す図である。 3PF〜3RR・・・流体シリンダ、9・・・比例流量
制御弁、17・・・サスペンション特性可変用コントロ
ーラ、62・・・サスペンション特性可変手段、81 
RL。 81Rト・ブレーキ装置(ブレーキ油圧調整手段)、8
7・・・ブレーキ油圧制御用コントローラ、88・・ブ
レーキ油圧制御手段。 第4 又リッツ°早(人) 第5図
The drawings show an embodiment of the present invention, and FIG. 1 is a general schematic diagram of the suspension device, FIG. 2 is a hydraulic circuit diagram thereof, FIG. 3 is a control block diagram showing variable control of suspension characteristics by a controller, and FIG. 5 is a diagram showing the overall configuration of the anti-lock brake system, and FIG. 5 is a diagram showing braking force and cornering force characteristics with respect to wheel slip ratio. 3PF to 3RR...Fluid cylinder, 9...Proportional flow rate control valve, 17...Suspension characteristic variable controller, 62...Suspension characteristic variable means, 81
R.L. 81R brake device (brake hydraulic pressure adjustment means), 8
7... Controller for brake hydraulic pressure control, 88... Brake hydraulic pressure control means. 4th Ritz ° early (person) Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)車両の前輪の後輪に対するロール剛性比を変化さ
せるようサスペンション特性を可変にできるサスペンシ
ョン特性可変手段を備えると共に、後輪のブレーキの油
圧を調整するブレーキ油圧調整手段を備え、さらに上記
サスペンション特性可変手段により前輪の後輪に対する
ロール剛性比を小さく変化させるようサスペンション特
性が変更されたとき、後輪のブレーキの油圧の低減量を
大きくするよう上記ブレーキ油圧調整手段を制御するブ
レーキ油圧制御手段を備えたことを特徴とするサスペン
ションとブレーキの総合制御装置。
(1) It is equipped with a suspension characteristic variable means that can vary the suspension characteristics so as to change the roll stiffness ratio of the front wheels to the rear wheels of the vehicle, and a brake hydraulic pressure adjustment means that adjusts the hydraulic pressure of the brakes of the rear wheels; Brake oil pressure control means for controlling the brake oil pressure adjusting means to increase the amount of reduction in brake oil pressure for the rear wheels when the suspension characteristics are changed by the characteristic variable means to reduce the roll stiffness ratio of the front wheels to the rear wheels. A comprehensive suspension and brake control device featuring:
JP1270089A 1989-01-20 1989-01-20 Suspension and brake integrated control device Expired - Fee Related JP2662284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1270089A JP2662284B2 (en) 1989-01-20 1989-01-20 Suspension and brake integrated control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1270089A JP2662284B2 (en) 1989-01-20 1989-01-20 Suspension and brake integrated control device

Publications (2)

Publication Number Publication Date
JPH02193749A true JPH02193749A (en) 1990-07-31
JP2662284B2 JP2662284B2 (en) 1997-10-08

Family

ID=11812669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1270089A Expired - Fee Related JP2662284B2 (en) 1989-01-20 1989-01-20 Suspension and brake integrated control device

Country Status (1)

Country Link
JP (1) JP2662284B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697726B2 (en) 2000-10-05 2004-02-24 Toyota Jidosha Kabushiki Kaisha Rolling control apparatus and method of vehicle
US7644934B2 (en) 2005-10-07 2010-01-12 Toyota Jidosha Kabushiki Kaisha Vehicle with combined roll angle control and roll rigidity front/rear allotment ratio control, and control method for the same
CN112208500A (en) * 2019-07-09 2021-01-12 罗伯特·博世有限公司 Motor vehicle stability control method, electronic control unit and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697726B2 (en) 2000-10-05 2004-02-24 Toyota Jidosha Kabushiki Kaisha Rolling control apparatus and method of vehicle
US7644934B2 (en) 2005-10-07 2010-01-12 Toyota Jidosha Kabushiki Kaisha Vehicle with combined roll angle control and roll rigidity front/rear allotment ratio control, and control method for the same
DE102006047220B4 (en) * 2005-10-07 2013-03-07 Toyota Jidosha Kabushiki Kaisha A vehicle having a combined roll angle and roll stiffness front-to-back split ratio control and a control method therefor
CN112208500A (en) * 2019-07-09 2021-01-12 罗伯特·博世有限公司 Motor vehicle stability control method, electronic control unit and system

Also Published As

Publication number Publication date
JP2662284B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
JPH02182581A (en) Integrated control device for suspension and steering
JPH03153411A (en) Coordination control device for suspension and steering
JP3015514B2 (en) Vehicle suspension device
JPH01111515A (en) Variable damping force-type suspension controller
JPH02193749A (en) Integrated control device for suspension and brake
JPH02303910A (en) Suspension device for vehicle
JPH05185820A (en) Active suspension system for vehicle
JP3048374B2 (en) Vehicle suspension device
JPH02155817A (en) Suspension device of car
JP2573193B2 (en) Vehicle suspension device
JPH02189216A (en) Integrated control system for suspension and power unit
JP2758012B2 (en) Vehicle suspension device
JP3085694B2 (en) Vehicle suspension device
JPH03114914A (en) Suspension device of automobile
JPH0332914A (en) Suspension device of vehicle
JPH04166407A (en) Active suspension for vehicle
JPH03109139A (en) Comprehensive controller for vehicle
JPH02141317A (en) Suspension device for vehicle
JPH0399920A (en) Integrated controller of suspension and driving force
JPH0314714A (en) Suspension for vehicle
JPH0438212A (en) Car suspension device
JPH02303916A (en) Suspension device for vehicle
JPH0367716A (en) Vehicle suspension device
JPH0439114A (en) Suspension device for vehicle
JPH0399924A (en) Suspension of vehicle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees