JPH02145761A - 薄膜超電導体の製造方法 - Google Patents

薄膜超電導体の製造方法

Info

Publication number
JPH02145761A
JPH02145761A JP63299854A JP29985488A JPH02145761A JP H02145761 A JPH02145761 A JP H02145761A JP 63299854 A JP63299854 A JP 63299854A JP 29985488 A JP29985488 A JP 29985488A JP H02145761 A JPH02145761 A JP H02145761A
Authority
JP
Japan
Prior art keywords
sputtering
thin film
temperature
nitrous oxide
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63299854A
Other languages
English (en)
Inventor
Kentaro Setsune
瀬恒 謙太郎
Michihiro Miyauchi
美智博 宮内
Hideaki Adachi
秀明 足立
Tsuneo Mitsuyu
常男 三露
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63299854A priority Critical patent/JPH02145761A/ja
Publication of JPH02145761A publication Critical patent/JPH02145761A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、100に以上の高臨界温度が期待されるビス
マスを含む酸化物超電導体の薄膜の製造方法に関するも
のである。
従来の技術 高温超電導体とし7て、A15型2元系化合物として窒
化ニオブ(NbN)やゲルマニウムニオブ(Nb3Ge
)などが知られていたが、これらの材料の超電導転移温
度はたかだか24゛にであった。
一方、ペロブスカイト系3元化合物は、さらに高い転移
温度が期待され、Ba〜L a −Cu−0系の高温超
電導体が提案された( J 、 G、 Bendorz
and K、A、Mulle乙ツァイト シュリフト 
フェア フィジーク(Zetshrift、  Fur
physik  B)−Condensed  Mat
ter 64.189−193(1986))。
さらに、B 1−5r−Ca−Cu−0系の材料が10
0に以上の転移温度を示すことも発見された。 (H,
Maeda、  Y、Tanaka、  M、Fuku
toa+i  andT、Asano、ジャパニーズ・
ジャーナル・オブ・アプライド−フィジックス(Jap
anese Journai cfApplied  
Physics) Vol、 27. L、209−L
 21.0この種の材料の超電導機構の詳細は明らかで
はないが、転移温度が室温以上に高くなる可能性があり
、高温超電導体として従来の2元系化合物より、より有
望な特性が期待される。
発明が解決しようとする課題 この種の材料を実用化する場合、薄膜状に加工すること
が強く要望されている。従来、スパッタリング法等で薄
膜化が行なわれているが、作製時の基板温度が高いため
、実用化には問題がある。
このため、基板温度の低l易化が望まれている。
課題を解決するための手段 本発明の薄膜超電導体の製造方法は、850℃以下に加
熱した基体上に、スパッタリング法で、スパッタリング
ガスとして少なくとも亜酸化窒素ガスを含むガスを用い
て、少なくともビスマスを含む物質と、少なくとも銅お
よびアルカリ土類を含む物質とを、周期的に積層させて
作製するというものである。
作用 亜酸化窒素は酸素に比べて解離エネルギーが小さく活性
な酸素ラジカルやイオンが十分得られやすいため、結晶
成長に必要な運動エネルギーや化合エネルギーが供給さ
れ、膜中に酸素がとりこまれやすい。したがって、スパ
ッタリングガスとして亜酸化窒素を用いることにより、
形成時の基板温度を低温化することが可能となる。
実施例 Y−Ba−Cu−0系等の酸化物超電導体の超電導特性
は、酸素濃度に非常に敏感であり、これらの薄膜形成に
おいては、膜−\の酸素導入が非常に重要な要素である
。このため、スパッタリング法にて、薄膜を作製する場
合、スパッタガスとし7てアルゴンと酸素の混合ガスが
用いられていた。
今回、本発明者等は、種々のスパッタリングガスを用い
て、B i −8r−Ca−Cu−0超電導薄膜を作製
した。スパッタリングガスとして、アルゴンガス(Ar
)と酸素原子を含むガスの混合ガスを用いて、Biター
ゲットとS r2Ca2Cu3ターゲットを酸素中で交
互にスパッタリングし、種々の温度のMg0(100)
基体上に周期的に積層さゼだ。その結果、スパッタリン
グガスとして、Ar(!1−02の1昆合ガスを用いる
よりも、Arと亜酸化窒素(N20)の混合ガスを用い
る方が、低い基板温度で、100K以上の臨界温度を持
つ相が、X線回折パターンにより観測された。
第1図はArとN20の混合ガスを用いて作製した薄膜
のX線回折パターンである。基体温度が300℃以下の
際は積層周期構造に対応するビークく)が認められるが
、300℃〜500℃と高くすると周期構造が弱くなり
、他の相(×)の出現が認められる。ところがさらに温
度を高(すると、500℃〜850℃の範囲の基体温度
では、意外にも100に以上の臨界温度を持つ相(○)
が作製し得ることを発見した。この場合、F記温度範囲
でBiと5r2Ca2Cu3のスパッタリングレートを
適宜に調整すると、積層周期に対応して100に以上の
相が出現することが分かった。また積層を周期的ではな
く同時に行なっt、−場合には80にの臨界温度を持つ
相しか作製出来なかった。基体温度が特に550℃〜8
50℃の場合には、100に以上の臨界温度の相の結晶
性が非常に良好なものが作製し得ることも合わせて発見
した。基体温度が900℃以上の際は薄膜が蒸発して堆
積しなかった。500℃〜850℃で作製した薄膜は、
そのままの状態でも超電導転移を示すが、酸素中850
℃程度で熱処理を行うとより確実に100に以上の臨界
温度を示した。
550℃〜850℃で積層した薄膜は、特に再現性に優
れていることも発見した。
このように、アルゴンと亜酸化窒素の混合ガスをスパッ
タリングガスとして用いると、アルゴンと酸素の混合ガ
スを用いたときと比べて、基板温度を50℃〜100℃
低い温度でも100 K、以上の臨界温度をもつ、Bi
系超電導膜を得ることができる。そして、亜酸化窒素ガ
スを用いると、低温化が可能となるのは、亜酸化窒素は
酸素に比べて解離エネルギーが小さいので、活性な酸素
ラジカルやイオンを得やすく、超電導薄膜を得るのに必
要な活性な酸素が十分得られるためである。ずなわち、
本発明では低い基板温度でも、超電導特性が得られる。
二次イオン質量分析法で膜中の窒素を調べたが、膜中の
窒素は観測されなかった。
スパッタ蒸着で異なる物質を積層させる方法きしては、
組成分布を設けた1ケのスパッタリングターゲットの放
電位置を周期的に制御するという方法があるが、組成の
異なる複数個のターゲットのスパッタリングという方法
を用いると比較的簡単に達成することができる。この場
合、複数個のターゲットの各ケのスパッタ量を周期的に
制御したり、あるいはターゲットの前にシャッターを設
けて周期的に開閉したりして、周期的積層膜を作製する
ことができる。また基板を周期的運動させて各々のター
ゲットの上を移動させる方法でも作製が可能である。レ
ーザースパッタあるいはイオンビームスパッタを用いた
場合には、複数個のターゲットを周期運動させてビーム
の照射するターゲットを周期的に変えれば、周期的積層
膜が実現される。このように複数個のターゲットを用い
たスパッタリングにより比較釣部#LIこBi系酸化物
の周期的積層膜が作製可能となる。
以下本発明の内容をさらに深く理解されるために、具体
的な実施例をいくつか示す。
(実施例1) Bi、CaCu、Sr2 Cu2個の計・1個のターゲ
ット1−4を用い、第2図に示すように配置させた。
すなわち、MgO基体21に焦点を結ぶように各ターゲ
ットが約30°傾いて設置されている。
ターゲットの前方には回転するシャッター22があり、
その中に設けられたスリット23の回転により、B i
→S r2Cu→CaCu−8r2(::u−”Biの
サイクルでスパッタ蒸着が行なわれる。基体21をヒー
ター24で約650℃に加熱し、アルボ〕/・亜酸化窒
素(5:1)混合雰囲気3Paのガス中でターゲットの
スパッタリングを行なった。各ターゲットのスパッタ電
流を、Bi・30mA、S r2 Cu : 50mA
、CaCu : 250mAとし、シャッタの回転周期
を10分間として周期的積層を行なったところ、100
に以上の臨界温度を持つ相を作製する、二とが出来た。
約10時間の蒸着により100OA程度の薄膜が作製さ
れ、組成はBi :Sr:Ca:Cu=2:2:2;3
となっていた。このままの状態でもこの薄膜は100 
K 以上の超電導転移を示したが、さらに、酸素中で8
55℃、1時間の熱処理を行なうと非常に再現性良<1
00K以−Fの臨界温度を達成することができた。Bi
系物質の100に以との臨界温度を持つ相の結晶構造は
まだよ(解かっていないが、金属元素がB i −S 
r−Cu−Ca−Cu−Ca−Cu−3r−B iの順
序で並んだ酸化物の層から成り立っているとも]われで
おり、本発明の製造方法がこの構造を作るのに非常に役
立っているのではないかと考えられる。
(実施例2) Bi、Sr2個、Ca2個、Cu3個計8個のターゲッ
トを第3図に示すように真空容器31の内側周辺に配置
した。λ□1 g O基体21およびヒーター24は、
容器の中心32の回りを回転できる機構となっている。
このように基体を回転させつつスパッタ蒸着を行なうと
、B i−3r −CIJCa−Cu−Ca−Cu−8
r−B iの順序で積層構造が作製される。アルゴン・
亜酸化窒素(5:1)3Paのガス中でスパッタリング
を行ない、各ターゲットの蒸発量を適宜に設定したとこ
ろ、基板温度550℃〜850℃で再現性良く、100
に以上の臨界温度を持つ相が作製できた。
この方法は基体の数を円周上で増やすことができ、大量
の薄膜超電導体の作製に非常に有効であると考えられる
発明の効果 以上のように本発明の薄膜超電導体の製造方法は、10
0K以上の超電導臨界温度を持つBi系酸化物超電導薄
膜を低温で再現性良く作製する方法を提供するものであ
り、エレクトロニクス素子等への応用など本発明の工業
的価値は高い。
【図面の簡単な説明】
第1図は本発明の基の発見となった基体温度と薄膜のX
線回折パターンの関係を示1図、第2図、第3図は本発
明の実施例におけるl1嗅の製苛の概略図である。 21・・・・・・MgO基体、22・・・・・・シャッ
ター23・・・・・・スリット、24・・・・・・ヒー
ター代理人の氏名 弁理士 粟野重孝 はが1名w  
    JO 2θ  (度つ

Claims (2)

    【特許請求の範囲】
  1. (1)850℃以下に設定した基体上に、スパッタリン
    グ法で、スパッタリングガスとして少なくとも亜酸化窒
    素ガスを含むガスを用いて、少なくともビスマスを含む
    物質と、少なくとも銅およびアルカリ土類(IIa族)を
    含む物質とを、周期的に積層させて超電導薄膜を形成す
    ることを特徴とする薄膜超電導体の製造方法。 ここでアルカリ土類は、IIa族元素のうちの少なくとも
    一種あるいは二種以上の元素を示す。
  2. (2)積層超電導薄膜の形成を、少なくとも2種以上の
    組成の複数個のターゲットのスパッタリングで行なうこ
    とを特徴とする特許請求の範囲第1項記載の薄膜超電導
    体の製造方法。
JP63299854A 1988-11-28 1988-11-28 薄膜超電導体の製造方法 Pending JPH02145761A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63299854A JPH02145761A (ja) 1988-11-28 1988-11-28 薄膜超電導体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63299854A JPH02145761A (ja) 1988-11-28 1988-11-28 薄膜超電導体の製造方法

Publications (1)

Publication Number Publication Date
JPH02145761A true JPH02145761A (ja) 1990-06-05

Family

ID=17877750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63299854A Pending JPH02145761A (ja) 1988-11-28 1988-11-28 薄膜超電導体の製造方法

Country Status (1)

Country Link
JP (1) JPH02145761A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217461A (ja) * 1989-02-17 1990-08-30 Matsushita Electric Ind Co Ltd 酸化物薄膜の製造方法
WO2004058638A1 (de) * 2002-12-23 2004-07-15 Universität Tübingen Verfahren zur herstellung von nitrathaltigen precursoren für metalloxide und oxocuprat-supraleiter
EP2244298A2 (en) 2009-04-20 2010-10-27 Unisantis Electronics (Japan) Ltd. Semiconductor device and manufacturing method thereof
US8697511B2 (en) 2012-05-18 2014-04-15 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US8759178B2 (en) 2011-11-09 2014-06-24 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US8829601B2 (en) 2012-05-17 2014-09-09 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8877578B2 (en) 2012-05-18 2014-11-04 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9012981B2 (en) 2012-05-17 2015-04-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9166043B2 (en) 2012-05-17 2015-10-20 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US10438836B2 (en) 2011-11-09 2019-10-08 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing a semiconductor device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217461A (ja) * 1989-02-17 1990-08-30 Matsushita Electric Ind Co Ltd 酸化物薄膜の製造方法
WO2004058638A1 (de) * 2002-12-23 2004-07-15 Universität Tübingen Verfahren zur herstellung von nitrathaltigen precursoren für metalloxide und oxocuprat-supraleiter
EP2244298A2 (en) 2009-04-20 2010-10-27 Unisantis Electronics (Japan) Ltd. Semiconductor device and manufacturing method thereof
US8080458B2 (en) 2009-04-20 2011-12-20 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device and manufacturing method thereof
US8519475B2 (en) 2009-04-20 2013-08-27 Unisantis Electronics Singapore Pte Ltd. Semiconductor device
US9614075B2 (en) 2011-11-09 2017-04-04 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US10438836B2 (en) 2011-11-09 2019-10-08 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing a semiconductor device
US8759178B2 (en) 2011-11-09 2014-06-24 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9691896B2 (en) 2011-11-09 2017-06-27 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8829601B2 (en) 2012-05-17 2014-09-09 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8890236B1 (en) 2012-05-17 2014-11-18 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9012981B2 (en) 2012-05-17 2015-04-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9299786B2 (en) 2012-05-17 2016-03-29 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9048315B2 (en) 2012-05-17 2015-06-02 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9166043B2 (en) 2012-05-17 2015-10-20 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9153660B2 (en) 2012-05-17 2015-10-06 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9054085B2 (en) 2012-05-18 2015-06-09 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9202922B2 (en) 2012-05-18 2015-12-01 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9246001B2 (en) 2012-05-18 2016-01-26 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9252276B2 (en) 2012-05-18 2016-02-02 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9029923B2 (en) 2012-05-18 2015-05-12 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9406768B2 (en) 2012-05-18 2016-08-02 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9437732B2 (en) 2012-05-18 2016-09-06 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9466683B2 (en) 2012-05-18 2016-10-11 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9601618B2 (en) 2012-05-18 2017-03-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8877578B2 (en) 2012-05-18 2014-11-04 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9666728B2 (en) 2012-05-18 2017-05-30 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9666712B2 (en) 2012-05-18 2017-05-30 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8823066B2 (en) 2012-05-18 2014-09-02 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US8697511B2 (en) 2012-05-18 2014-04-15 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device

Similar Documents

Publication Publication Date Title
JPH02145761A (ja) 薄膜超電導体の製造方法
JP3037514B2 (ja) 薄膜超伝導体及びその製造方法
JP2669052B2 (ja) 酸化物超電導薄膜およびその製造方法
JP2741277B2 (ja) 薄膜超電導体およびその製造方法
JPH02122065A (ja) 薄膜超電導体の製造方法
JP2502744B2 (ja) 薄膜超電動体の製造方法
JP2558880B2 (ja) 銅酸化物薄膜の製造方法
JP2733368B2 (ja) 超電導薄膜およびその製造方法
JP2502743B2 (ja) 薄膜超電導体の製造方法
EP0640994B1 (en) Superconductor thin film and manufacturing method
JPH05170448A (ja) セラミックス薄膜の製造方法
JP3478543B2 (ja) 酸化物超伝導薄膜およびその製造方法
JPH0316920A (ja) 酸化物超電導薄膜およびその製造方法
JP3025891B2 (ja) 薄膜超電導体およびその製造方法
JPH02310361A (ja) 薄膜超電導体の製造方法
JPH02122066A (ja) 薄膜超電導体の製造方法
JPH0238313A (ja) 薄膜超電導体の製造方法
JPH0822740B2 (ja) 酸化物超電導薄膜およびその製造方法
JPH01105416A (ja) 薄膜超電導体の製造方法
JPH042617A (ja) 酸化物超電導薄膜およびその製造方法
JPH0316919A (ja) 超電導薄膜およびその製造方法
JPH03170333A (ja) 薄膜超電導体およびその製造方法
JPH04362016A (ja) セラミックス薄膜の製造方法
JPH01307283A (ja) 超伝導薄膜の製造方法
JPH05194095A (ja) 薄膜電気伝導体の製造方法