JPH01267970A - Battery - Google Patents

Battery

Info

Publication number
JPH01267970A
JPH01267970A JP9600188A JP9600188A JPH01267970A JP H01267970 A JPH01267970 A JP H01267970A JP 9600188 A JP9600188 A JP 9600188A JP 9600188 A JP9600188 A JP 9600188A JP H01267970 A JPH01267970 A JP H01267970A
Authority
JP
Japan
Prior art keywords
film
battery
composite membrane
membrane
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9600188A
Other languages
Japanese (ja)
Inventor
Kanji Takada
寛治 高田
Nobuyuki Yanagihara
伸行 柳原
Masaaki Yoshino
芳野 公明
Hiroshi Fukuda
浩 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9600188A priority Critical patent/JPH01267970A/en
Publication of JPH01267970A publication Critical patent/JPH01267970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To improve the storing characteristic of a battery and its performance in long time service and provide a satisfactory discharging characteristic in discharging condition from light to heavy load by interposing an oxygen selective permeative complex film, which consists of a film of polyorgano-siloxane copolymer and a fine porosity film to support this copolymer film, between the air intake side of a gas diffusing electrode of a battery and the inner surface of a battery jar. CONSTITUTION:A complex film of polyorgano-siloxane copolymer is interposed between a porous film 2 of polytetra-fluoroethylene(PTFE) and a porous substance 4 performing diffusion of oxygen, and this complex film 11 is arranged so that the film side of the polyorgano-siloxane copolymer faces the air intake hole 3 side. This film of polyorgano-siloxane copolymer is non-porous, homogenous, and having oxygen selective permeability, and has sufficient oxygen permeating speed and the permeation hindering ability for water vapor and CO2 gas. A fine porosity film supporting this film, on the other hand, allows easy permeation of gas. This permits meeting both the heavy load discharging performance and the performance in the event of long time discharging in a high-temp. or low-humidity atmosphere.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素を活物質に用いるガス拡散電極と、アル
カリ水溶液等の電解液と、亜鉛、マグネシウム、ア!レ
ミニウム等の金属、モジくハアルコ−/し、ヒドラジン
、水素等の負極活物質とを備えた電池に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas diffusion electrode using oxygen as an active material, an electrolyte such as an alkaline aqueous solution, zinc, magnesium, acetic acid, etc. The present invention relates to a battery comprising a metal such as reminium, a metal such as hydrogen, and a negative electrode active material such as hydrazine or hydrogen.

従来の技術 ガス拡散電極を備え、酸素を活物質とする電池としては
、空気電池、燃料電池等がある。特にアルカリ水溶液、
中性水溶液を電解質として使用する電池においては、ガ
ス拡散電極(酸素極)から内部の蒸気圧に応じて水蒸気
の出入シがあシ、電池内電解液の濃度変化9体積変化が
起こり、これが電池諸特性に影響を与えていた。ボタン
型空気電池を例にとシ、第3図を用いてその状況を説明
する。1は酸素極(空気極)、2はガス拡散性はあるが
液体は阻止するポリテトラフルオロエチレン(PTFE
)よりなる酸素極を支持する多孔膜である。3は外部か
らの空気取入れ孔、4は空気の拡散を行う多孔体、6,
6はセパレーター、7は水酸化カリウム水溶液と水化亜
鉛粉末との混合体から成る負極である。一般にアルカリ
電解液は水酸化カリウム水溶液を使用し、その濃度は3
0〜36チである。このため相対湿度が47〜69チよ
シ高いと外部の湿気を取り込み電解液濃度の低下と体積
膨張とが起こり、放電性能の低下、電解液の漏液を生じ
ていた。一方、相対湿度が前記以下の場合には電解液の
蒸発が起こり、内部抵抗の増大や放電性能の低下をもた
らしていた。従って、環境雰囲気によって著しい影響を
受は易いため長期間保存後の特性に問題があり、空気電
池や燃料電池はある特定の分野用に設計されるにとどま
り、汎用化を図る上で大きな課題を有していた。なお、
図中8は負極容器、9は絶縁ガスケット、10は正極容
器である。
BACKGROUND OF THE INVENTION BACKGROUND ART Batteries equipped with gas diffusion electrodes and using oxygen as an active material include air cells, fuel cells, and the like. Especially alkaline aqueous solution,
In batteries that use a neutral aqueous solution as an electrolyte, water vapor enters and exits from the gas diffusion electrode (oxygen electrode) depending on the internal vapor pressure, and the concentration of the electrolyte in the battery changes. It affected various characteristics. Taking a button-type air battery as an example, the situation will be explained using FIG. 3. 1 is an oxygen electrode (air electrode), 2 is polytetrafluoroethylene (PTFE) that has gas diffusion properties but blocks liquids.
) is a porous membrane that supports an oxygen electrode. 3 is an air intake hole from the outside, 4 is a porous body that diffuses air, 6,
6 is a separator, and 7 is a negative electrode made of a mixture of potassium hydroxide aqueous solution and zinc hydride powder. Generally, an aqueous potassium hydroxide solution is used as an alkaline electrolyte, and its concentration is 3
It is 0 to 36chi. For this reason, when the relative humidity is 47 to 69 degrees higher, external moisture is taken in, causing a decrease in the concentration of the electrolyte and volume expansion, resulting in a decrease in discharge performance and leakage of the electrolyte. On the other hand, when the relative humidity is below the above range, evaporation of the electrolytic solution occurs, resulting in an increase in internal resistance and a decrease in discharge performance. Therefore, since they are easily affected by the environmental atmosphere, there are problems with their properties after long-term storage. Air cells and fuel cells are only designed for use in a specific field, and there are major challenges in making them more general-purpose. had. In addition,
In the figure, 8 is a negative electrode container, 9 is an insulating gasket, and 10 is a positive electrode container.

これらの課題を改善するため、従来より種々の対策が検
討されてきた。例えば、空気孔周辺の一部に電解液と反
応する物質を挿入し、電池外部へ電解液漏出を防止する
。あるいは紙または高分子材料より成る不織布等の電解
液吸収材を設けて、ぽ池外部への電解液漏出を防止する
。さらには空気孔を極端に小さくして酸素の供給量を制
限してまでも、水蒸気や炭酸ガスの電池内部への侵入を
防止する等の提案がなされているが、いずれの方法や漏
液防止や放電性能、特に長期間放電での性能に大きな課
題を残していた。これらの主要原因は空気中の水蒸気の
電池内への侵入による電解液の希釈と体積膨張、及び炭
酸ガヌの侵入による炭酸塩の生成に基づく放電反応の阻
害と空気流通経路の閉塞によるもので、外気が低湿の場
合には逆に電解液中の水分の逸散が性能低下の原因とな
っていた。この原因を取り除くため、近年では、水蒸気
や炭酸ガスの透過を抑制し、選択的に酸素を優先して透
過する膜を介して空気を酸素極に供給する方法、愕カボ
リシロキサン系の無孔性の均一な薄膜や金属酸化物、あ
るいは金属原子を含有する有機化合物の薄膜と適宜な多
孔性膜とを一体化させた膜を用いる方法が提案されてい
た。
In order to improve these problems, various countermeasures have been considered in the past. For example, a substance that reacts with the electrolyte is inserted into a portion around the air hole to prevent the electrolyte from leaking to the outside of the battery. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymeric material is provided to prevent leakage of the electrolyte to the outside of the pond. Furthermore, proposals have been made to prevent water vapor and carbon dioxide from entering the battery, even by making the air holes extremely small and limiting the amount of oxygen supplied. However, there remained major issues regarding discharge performance, especially performance during long-term discharge. The main causes of these are dilution and volumetric expansion of the electrolyte due to water vapor in the air entering the battery, and inhibition of the discharge reaction due to carbonate formation due to the intrusion of carbonic acid and blockage of the air circulation path. Conversely, when the outside air is low-humidity, the loss of moisture in the electrolyte causes a decline in performance. In order to eliminate this cause, in recent years, methods have been developed to supply air to the oxygen electrode through a membrane that suppresses the permeation of water vapor and carbon dioxide gas and selectively allows oxygen to pass through. A method has been proposed that uses a film in which a thin film with uniform properties, a thin film of a metal oxide, or a thin film of an organic compound containing metal atoms is integrated with a suitable porous film.

発明が解決しようとする課題 しかしながら、現在までのところ、充分に有効な酸素ガ
ヌ選択透過性が得られないことや水蒸気。
Problems to be Solved by the Invention However, to date, it has not been possible to obtain sufficiently effective permselectivity for oxygen and water vapor.

炭酸ガスの透過阻止能が充分でないことなどから、満足
な放電性能が得られず、長期の使用や貯蔵に耐えないと
いう技術課題をもっていたので、実用化に至っていない
It has not been put into practical use because it has had technical issues such as not being able to obtain satisfactory discharge performance due to insufficient carbon dioxide permeation blocking ability, and not being able to withstand long-term use or storage.

そこで本発明は上記の電池の貯蔵性、長期使用における
性能を改善するとともに軽負荷から重負荷に至る放電条
件で満足な放電性能を得るために、大気中の酸素ガスを
選択的に充分な速度で電池内に取シ入れ、大気中の水蒸
気及び炭酸ガスの電池内への浸入を長期にわたり防止す
る有効な手段を提供することを目的とするものである。
Therefore, the present invention aims to improve the storability and long-term use performance of the above-mentioned battery, as well as to obtain satisfactory discharge performance under discharge conditions ranging from light loads to heavy loads. The purpose of this invention is to provide an effective means for preventing atmospheric water vapor and carbon dioxide from entering the battery over a long period of time.

課題を解決するための手段 本発明は・浚素を活物質とするガス拡散電極と、外気に
通じる空気取入れ孔を有する電池容器を備えた電池のガ
ス拡散電極の空気取入れ側と電池容器の円面との間に、
ポリオルガノシロキサン共重合体の薄膜と、この薄膜を
支持する微多孔膜とから形成される酸素選択透過性複合
膜を介在させるものである。
Means for Solving the Problems The present invention provides an air intake side of the gas diffusion electrode of a battery including a gas diffusion electrode using dredge as an active material and a battery container having an air intake hole communicating with the outside air, and a circle of the battery container. Between the surface,
An oxygen selectively permeable composite membrane formed from a polyorganosiloxane copolymer thin film and a microporous membrane supporting this thin film is interposed.

上記ポリオルガノシロキサン共重合体は、(R1,R2
,R3,R4は水素またはアルキル基)のような構造式
で示され、その薄膜は無孔性の均質な薄膜で酸素の選択
透過性を有し、充分な酸素透過速度と水蒸気、炭酸ガス
の駐阻止能を得るには、通常1.0μm以下、好ましく
は0.2〜0.5μmの厚さが適している。
The polyorganosiloxane copolymer is (R1, R2
, R3, and R4 are hydrogen or alkyl groups), and the thin film is a non-porous, homogeneous thin film that has selective permeability for oxygen, and has a sufficient oxygen permeation rate and a high rate of water vapor and carbon dioxide. In order to obtain the blocking ability, a thickness of usually 1.0 μm or less, preferably 0.2 to 0.5 μm is suitable.

この薄膜を支持する微多孔膜は気体が容易に透過し、な
おかつ、その表面は上記の薄膜を均一に無孔状態で支持
するに適した平滑性と孔径を備えだ微多孔膜が好ましく
、前記餓多孔膜表面の平均孔径が3〜0.01μmであ
ることが好ましい。
The microporous membrane supporting this thin film is preferably a microporous membrane through which gas can easily permeate, and whose surface has smoothness and pore size suitable for supporting the thin film uniformly and without pores. It is preferable that the average pore diameter on the surface of the porous membrane is 3 to 0.01 μm.

木発明は、選択性酸素透過能の優れた薄膜としてポリオ
ルガノンロキサン共重合体の均質薄膜の特性に着目し、
さらに、この薄膜を支持する微多孔膜には耐アルカリ性
に優れたポリプロピレン。
Ki Invention focused on the characteristics of a homogeneous thin film of polyorganone loxane copolymer as a thin film with excellent selective oxygen permeability.
Furthermore, the microporous membrane that supports this thin membrane is made of polypropylene, which has excellent alkali resistance.

ポリエチレン等のポリオレフィン、フッ素樹脂。Polyolefins such as polyethylene, fluororesins.

ポリスルフォン等を選び検討を深めて完成した。I chose polysulfone, etc., and after careful consideration, I completed the project.

なお、微多孔膜は単層であっても良いが、取り扱いや製
造時、或は使用時の強度を確保するために、必要に応じ
て耐アルカリ性不織布をさらに一体化した二層以上の構
成としても良い。
The microporous membrane may be a single layer, but in order to ensure strength during handling, manufacturing, or use, it may have a two-layer or more structure with an alkali-resistant nonwoven fabric further integrated as necessary. Also good.

シ 上呵のポリオルガノシロキサン共重合体の薄膜を蛾多孔
;摸で支持した複合膜は、特開昭64=56985号な
どに開示されているようなポリジメチルシロキサン、ポ
リシロキサン誘導体などがあるが、高炉送風用、燃焼補
助用1石油蛋白プロセス用、廃液処理曝気用、医療にお
ける呼気用などの用途で実用化が検討されているだけで
、主として酸素富化を目的とし、酸素と窒素の分離係数
や酸素透過速度のみを評価の対象にしている。これらの
膜を重負荷での放電条件でも満足な放電性能を得られる
電池用として適用するためには、酸素A過速度が充分大
きいことと水蒸気及び炭酸ガスの透過阻止能が優れてい
ることが重要な要件であるが、従来、これらの特性は未
知な点が多く、電池への適用を検討された例は少なく、
例えば特開昭59−76582号で開示されているよう
にポリジメチルシロキサン、ポリジメチルシロキサン−
ポリヒドロキシスチレン架橋型共重合体などの膜の適用
が提案されているが、酸素透過速度が充分でなく重負荷
での放電において満足な性能が得られない。本発明は、
種々の酸素透過膜を電池用として鋭意検討の結果、ポリ
オルガノシロキサン共重合体の薄膜を微多孔膜と一体化
した複合膜が電池用としての上述の諸特性を総合的に満
たし、これを適用した電池の性能がきわめて優れている
ことを見出し完成したものである。
Composite membranes in which a thin film of a polyorganosiloxane copolymer is supported by a porous membrane include polydimethylsiloxane and polysiloxane derivatives as disclosed in JP-A-64-56985. , blast furnace ventilation, combustion support, 1 petroleum protein processing, waste liquid treatment aeration, medical exhalation, and other applications. Only the coefficient and oxygen permeation rate are subject to evaluation. In order to apply these membranes to batteries that can obtain satisfactory discharge performance even under heavy load discharge conditions, they must have a sufficiently large oxygen A overrate and excellent water vapor and carbon dioxide permeation blocking ability. Although these are important requirements, until now many aspects of these characteristics were unknown, and there have been few cases where their application to batteries has been considered.
For example, as disclosed in JP-A-59-76582, polydimethylsiloxane, polydimethylsiloxane-
Application of membranes such as polyhydroxystyrene crosslinked copolymers has been proposed, but the oxygen permeation rate is insufficient and satisfactory performance cannot be obtained in discharge under heavy loads. The present invention
As a result of intensive studies on various oxygen permeable membranes for use in batteries, we found that a composite membrane in which a polyorganosiloxane copolymer thin film is integrated with a microporous membrane comprehensively satisfies the above-mentioned characteristics for use in batteries, and we have decided to apply this membrane. This was completed after discovering that the performance of the battery was extremely excellent.

木発明で用いる複合膜の製法は種々あるが、類型的には
特開昭54−146277号で開示されているように、
ポリオルガノンロキサン共重合体を溶解度の大きいトル
エン等の溶媒に溶解した溶液をガラス板などの平面に薄
く塗布して乾燥し、薄膜をガラス面から剥離し、多孔質
膜上に重ね合わせる方法や、上記の溶液を水面上に滴下
し、水面上に延展させて形成された薄膜を水面下の、支
持体としての微多孔1換上にのせてのち乾燥する水上延
展法、さらには、支持体である前記微孔ahに上記の溶
液を直接塗布して乾燥する方法などに分類され、いずれ
の方法をとっても良いが、ピンホールのない薄膜が形成
され、微多孔膜中にポリオルガノシロキサン共重合体が
浸透して孔が閉塞されないことが必要である。
There are various methods of manufacturing composite membranes used in wood inventions, but the typical method is as disclosed in JP-A-54-146277.
A method in which a solution of polyorganonoxane copolymer dissolved in a solvent such as toluene with high solubility is applied thinly to a flat surface such as a glass plate, dried, the thin film is peeled from the glass surface, and superimposed on a porous film. , an above-water spreading method in which the above solution is dropped onto the water surface and the thin film formed by spreading the solution on the water surface is placed on a microporous support below the water surface and then dried; Either method may be used, but a thin film without pinholes is formed, and the polyorganosiloxane copolymer is added to the microporous film. It is necessary that the coalescence penetrate and the pores not be occluded.

作  用 この構成により上述の複合膜は後述の実施例における電
池試験の結果からも明らかなように、電池用としての酸
素透過速度と同時に、水蒸気や炭酸ガスを大気から遮断
する効果も共に満足すべき状態であることにより、実用
的な電池に要求される重負荷放電性能と、高温や低湿の
雰囲気丁゛で長時間放電した場合の性能も共に満足する
こととなる。
Function: With this configuration, the above-mentioned composite membrane satisfies both the oxygen permeation rate for batteries and the effect of blocking water vapor and carbon dioxide from the atmosphere, as is clear from the results of battery tests in Examples described later. Due to this condition, both the heavy load discharge performance required of a practical battery and the performance when discharged for a long time in a high temperature and low humidity atmosphere can be satisfied.

実施例 本発明の効果を一実施例としてポリオルガノシロキサン
共重合体 2R4 において、R1=R2=CH3,R3=R4=C2H6
のものを用いた煩合膜を使用した電池、ポリジメチμシ
ロキサン単独膜を使用した電池、および上記複合膜を使
用しない電池を試作評価して検討した。
Example As an example of the effect of the present invention, in polyorganosiloxane copolymer 2R4, R1=R2=CH3, R3=R4=C2H6
We fabricated and evaluated prototype batteries using a composite membrane made of polydimethylsiloxane, a battery using a polydimethyμ siloxane membrane alone, and a battery that did not use the above-mentioned composite membrane.

まず、上記複合膜を使用してない比較例の場合は第3図
と全く同一に構成した、複合膜を使用した実施例及び比
較例も第3図とほぼ同様であり、第1図に示すようにP
TFEの多孔膜2と酸素の拡散を行う多孔体4との間に
実施例の複合膜11(第2図参照)あるいは比較例の単
独膜が介在し、複合膜11はポリオルガノシロキサン共
重合体の薄膜の側が空気取入れ孔3の側に対向するよう
配設した点が第3図と異なるのみである。
First, in the case of a comparative example that does not use the above-mentioned composite membrane, the structure is exactly the same as that shown in FIG. YoniP
A composite membrane 11 of the example (see Figure 2) or a single membrane of a comparative example is interposed between the porous membrane 2 of TFE and the porous body 4 that diffuses oxygen, and the composite membrane 11 is made of a polyorganosiloxane copolymer. The only difference from FIG. 3 is that the thin film side is arranged to face the air intake hole 3 side.

供試したポリオルガノシロキサン共重合体複合膜はホリ
オμガノシロキサン共重合体ヲトルエンに溶解したポリ
マー溶液を水面上に滴下して得られた極簿膜を水中で多
孔質の支持膜にのせて後、乾燥して作製した。ポリオル
ガノシロキサン共重合体の薄膜層の厚さはポリマー溶液
と、これを滴下する水の/MIJjを変えることにより
調節した。また、比較例として供試したポリジメチルシ
ロキサン薄膜はトル二ンに溶解した溶液をガラス板に薄
く塗布して乾燥する方法で作製した。実施例の支持体膜
はいずれも微多孔膜(孔径5約0.1〜0.06μm、
厚さ;約30μm)の単層、またはこれと不織布(厚さ
;約’150μm)を一体化した複合層を用い、微多孔
膜側に薄膜層を形成させた。
The polyorganosiloxane copolymer composite membrane tested was obtained by dropping a polymer solution of Holio-μganosiloxane copolymer dissolved in toluene onto the water surface, placing the obtained polar membrane on a porous support membrane in water, and then , was prepared by drying. The thickness of the polyorganosiloxane copolymer thin film layer was adjusted by changing the polymer solution and the /MIJj of the water added dropwise. The polydimethylsiloxane thin film used as a comparative example was prepared by applying a thin layer of a solution dissolved in tolurine to a glass plate and drying it. All of the support membranes in the examples were microporous membranes (pore diameter: about 0.1 to 0.06 μm,
A thin film layer was formed on the microporous membrane side using a single layer (thickness: about 30 μm) or a composite layer in which this was integrated with a nonwoven fabric (thickness: about 150 μm).

試作した電池の形状は直径11.611Im、総高6.
4−であり、比較的重負荷(76Ω)で20℃、常湿(
eo%RH)での連続放電により電池内への空気中の酸
素の取シ込み速度の充足性を評価し、比較的軽負荷(3
にΩ)で20℃、高湿(90%RH)。
The prototype battery has a diameter of 11.611 Im and a total height of 6.
4-, with a relatively heavy load (76Ω) at 20℃ and normal humidity (
The sufficiency of the oxygen uptake rate from the air into the battery was evaluated by continuous discharging at a relatively light load (3
20°C, high humidity (90% RH).

及び低湿(20%RH)での長時間連続放電によシ、長
期の放電期間中の雰囲気中の水蒸気の取り込みや電池内
の水分の逸散、及び戻酸ガスの取シ込みなど電池性能へ
の影響度を評価した。
Also, long-term continuous discharge at low humidity (20% RH) can affect battery performance, such as the incorporation of water vapor in the atmosphere during long-term discharge periods, the dissipation of moisture within the battery, and the incorporation of returned acid gas. The degree of influence was evaluated.

試作した電池の内訳は第1表に示す通りである。The details of the prototype battery are shown in Table 1.

また第2表に試作電池の性能試験結果を示す。Table 2 also shows the performance test results of the prototype batteries.

@2表において放電終止電圧はいずれも0.9Vであシ
、重量変化は放電試験前後の増減を示しておシ、主とし
て放電中の水分の取り込み、あるいは逸散の多少を示唆
する数値である。
In Table 2, the end-of-discharge voltage is 0.9V in all cases, and the change in weight indicates the increase or decrease before and after the discharge test, and is primarily a value that suggests the amount of moisture taken in or dissipated during discharge. .

実施例の1〜5はピンホールがない均一性薄膜が得られ
る範囲の膜厚のうち、比較的薄い均一性の?4膜を形成
したもので、実施例の6〜9は均一性の薄膜を若干厚く
形成しており、前者は酸素の透過速度を大きくすること
を第一義に考え、後者は水蒸気や炭酸ガスの透過を阻止
することを第一義に考え電池を構成し7ている。これら
の場合、複合膜の支持体は耐アルカリ性の材料で構成さ
れている。これらの電池の特性をイ合膜を使用していな
い比較例3と対比すると最も端的に本発明の詳細な説明
できる。まず20℃、常湿での重負荷試験では放電期間
が短く、水分の取り込みや逸散の影響や炭酸ガスの影響
が少ないので、電池の性能は酸素の供給速度が充分であ
れば水分や炭酸ガスの透過阻止はあまり考慮する必要が
ない。従って、このような条件では比較例3でも優れた
特性が得られる。これに対し、前述の実施例のうち、1
〜6は比較例3と同等の放電特性が得られており、複合
膜を酸素が透過する速度が放電反応で酸素が消費される
速度に充分追従していることを示している。実施例6〜
9の場合は若干放電電圧、持続時間とも劣っているかあ
まシ遜色のない良好な特性を示し、はぼ酸素の供給が満
足な状態で行われている。一方、軽負荷放電の場合は放
電期間が長く、しかも外気が高湿あるいは低湿の場合に
は酸素の供給速度よりも水分や炭酸ガス、特に水分の透
過防止が優れた性能を得るために重要となり、水分や炭
酸ガスの透過阻止機構をもたない比較例3の電池は水分
の枯渇、あるいは逆に水分の過剰取入れによる漏液によ
る空気孔の閉塞などにより、放電の途中で電圧が低下し
、重負荷試験で得られた放電容量の一部分に相当する容
量が得られるにすぎない。また、放電途中での漏液は実
用面で致命的な問題であることはいうまでもない。これ
に対し実施例はきわめて優れた性能を示し、これらは重
負荷試験の放電容量とほぼ等しい容量か得られ、中でも
均一薄膜層が比較的厚い実施例6〜9がより優れている
。これらの傾向は試験算囲気が高湿、低湿いずれの場合
とも同様である。このことは、実施例の場合、複合膜の
水分や炭酸ガスの透過阻止効果が充分に発揮されている
ことを示している。また、比較例1.2は膜厚が厚いた
めに均一薄膜の水蒸気及び炭酸ガス透過阻止能は充分で
あるが、酸素透過速度が充分ではないために軽負荷の場
合の放電特性は実施例と対比してあまり遜色ないが、重
負荷特性は実施例よシ著しく劣る。
Examples 1 to 5 are comparatively thin and uniform film thicknesses within the range in which a uniform thin film without pinholes can be obtained. In Examples 6 to 9, a uniform thin film is formed with a slightly thicker thickness. The battery is constructed with the primary purpose of preventing the transmission of . In these cases, the support of the composite membrane is composed of an alkali-resistant material. The present invention can be most clearly explained in detail by comparing the characteristics of these batteries with Comparative Example 3, which does not use an ionized film. First, in a heavy load test at 20°C and normal humidity, the discharge period is short, and the effects of moisture uptake and dissipation, as well as the effects of carbon dioxide gas, are small. There is no need to give much consideration to gas permeation prevention. Therefore, under such conditions, excellent characteristics can be obtained even in Comparative Example 3. On the other hand, among the above-mentioned embodiments, 1
In Samples 6 to 6, discharge characteristics equivalent to those of Comparative Example 3 were obtained, indicating that the rate at which oxygen permeates through the composite membrane sufficiently follows the rate at which oxygen is consumed in the discharge reaction. Example 6~
In the case of No. 9, the discharge voltage and duration were slightly inferior, but showed comparable good characteristics, and oxygen supply was being carried out satisfactorily. On the other hand, in the case of light load discharge, the discharge period is long, and when the outside air is high or low humidity, preventing the permeation of moisture and carbon dioxide gas, especially moisture, becomes more important than the oxygen supply rate in order to obtain excellent performance. In the battery of Comparative Example 3, which does not have a mechanism for preventing the permeation of moisture and carbon dioxide gas, the voltage decreases during discharge due to depletion of moisture or, conversely, blockage of air holes due to leakage due to excessive intake of moisture. A capacity equivalent to only a portion of the discharge capacity obtained in the heavy load test is obtained. Furthermore, it goes without saying that liquid leakage during discharge is a fatal problem from a practical standpoint. On the other hand, the Examples showed extremely excellent performance, and the discharge capacity was almost equal to the discharge capacity in the heavy load test. Among them, Examples 6 to 9, which had a relatively thick uniform thin film layer, were more excellent. These trends are the same whether the test ambient air is high humidity or low humidity. This shows that, in the case of the example, the composite membrane sufficiently exhibits the permeation blocking effect of moisture and carbon dioxide gas. In addition, in Comparative Example 1.2, the film thickness is thick, so the water vapor and carbon dioxide permeation blocking ability of the uniform thin film is sufficient, but the oxygen permeation rate is not sufficient, so the discharge characteristics under light load are not as good as the examples. Although it is comparable in comparison, the heavy load characteristics are significantly inferior to the examples.

以上を総合して、ボリオルガノンロキサン共重合体の均
一性薄膜と微多孔膜との複合膜を用いた試作電池は重負
荷特性、軽負荷特性ともに優れ、外部雰囲気の変化への
対応性も良好であり、特にポリオルガノシロキサン共重
合体の均一性薄膜の厚さを0.2〜1.O#?Flとし
耐アルカリ性の多孔質膜を支持体に用いた場合に優れた
電池を提供できることが結論できる。
In summary, the prototype battery using a composite film of a homogeneous thin film of polyorganonoxane copolymer and a microporous film has excellent both heavy load characteristics and light load characteristics, and is also responsive to changes in the external atmosphere. The uniformity of the polyorganosiloxane copolymer is particularly good when the thickness of the thin film is 0.2 to 1. O#? It can be concluded that an excellent battery can be provided when an alkali-resistant porous membrane containing Fl is used as a support.

なお、上記の実施例ではポリオルガノシロキサン共重合
体としてR1=R2=CH3,R3=R4=c2H6の
ものを用いた複合膜について説明したが、R1゜R2,
R3,R4の一部または全部がH9C2H3,C2H5
゜C3H7,(cH2)2NH2のポリオルガノシロキ
サン共重合体を用いた複合膜でもほぼ同様の効果が得ら
れることを確認している。
In addition, in the above example, a composite membrane using polyorganosiloxane copolymers of R1=R2=CH3, R3=R4=c2H6 was explained, but R1°R2,
Part or all of R3, R4 is H9C2H3, C2H5
It has been confirmed that almost the same effect can be obtained with a composite membrane using a polyorganosiloxane copolymer of °C3H7, (cH2)2NH2.

また、上記の実施例ではポリオルガノシロキサン共重合
体の薄膜を微多孔性の支持膜あるいは微多孔膜と不織布
を一体化した支持膜の片面につけた複合膜を用いた場合
について説明したが、本発明は薄膜を支持膜の両面に形
成させた複合膜の場合でも、ポリオルガノシロキサン共
重合体の膜厚が総計で0.2〜1.0μmであれば上記
と同様に優れた電池性能が得られる。さらに実施例に示
したポリオ)vガスシロキサン共重合体を支持する微多
孔膜は他の耐アルカリ性を有する微多孔膜(例えばナイ
ロン製微多孔膜)でも同様の効果が得られる。
In addition, in the above example, a case was explained in which a composite membrane was used in which a thin film of polyorganosiloxane copolymer was attached to one side of a microporous support membrane or a support membrane that integrated a microporous membrane and a nonwoven fabric. The present invention provides that even in the case of a composite membrane in which thin films are formed on both sides of a support membrane, if the total film thickness of the polyorganosiloxane copolymer is 0.2 to 1.0 μm, excellent battery performance can be obtained in the same way as described above. It will be done. Furthermore, the microporous membrane supporting the polio)v gas siloxane copolymer shown in the Examples can be used with other microporous membranes having alkali resistance (for example, microporous nylon membranes) to achieve similar effects.

また、実施例では支持体が微多孔膜とポリプロピレン製
の不織布と一体化した複合層とした場合を説明したが、
前記不織布がポリエチレン、ナイロン等の他の耐アルカ
リ性のあるものであれば同様の効果が得られる。
In addition, in the examples, the case where the support was a composite layer that was integrated with a microporous membrane and a nonwoven fabric made of polypropylene was explained.
Similar effects can be obtained if the nonwoven fabric is made of other alkali-resistant materials such as polyethylene or nylon.

なお、実施例では複合膜の薄膜側が空気取入れ孔側に当
接された場合について示したが、逆にガス拡散電極側に
当接させた場合でもほぼ同一の結果となることを確認し
ている。
In addition, although the example shows the case where the thin film side of the composite membrane is brought into contact with the air intake hole side, it has been confirmed that almost the same result will be obtained even if the thin film side of the composite membrane is brought into contact with the gas diffusion electrode side. .

また、本発明の複合膜を上記実施例では電池容器との間
に空気拡散用の多孔体を介して設置したが、本発明の複
合膜は微多孔膜、場合によってはさらに不織布を一体化
した支持体より:ft成されておシ、前記空気拡散用の
多孔体を除いても電池特性の差異はない。但し、複合膜
の強度が充分でなく空気取入れ孔側に変形するような場
合には、多孔体を設置することにより複合膜が安定形状
を保つ。さらに、上記実施例では本発明の複合膜を酸素
極との間に酸素極を支持する多孔膜を介して設置したが
、酸素極の強度が充分であれば前記多孔膜は不用であり
、除いても電池特性は変わらない。
In addition, in the above embodiments, the composite membrane of the present invention was installed between the battery container and the porous body for air diffusion, but the composite membrane of the present invention is a microporous membrane, and in some cases, a nonwoven fabric is further integrated into the composite membrane of the present invention. From the support: ft. There is no difference in battery characteristics even if the porous body for air diffusion is removed. However, if the composite membrane does not have sufficient strength and deforms toward the air intake hole, the composite membrane can maintain a stable shape by installing a porous body. Furthermore, in the above example, the composite membrane of the present invention was installed between the oxygen electrode and the porous membrane that supported the oxygen electrode, but if the oxygen electrode had sufficient strength, the porous membrane was unnecessary and could be removed. However, the battery characteristics remain unchanged.

また、塩化アンモニウム、塩化亜鉛などの中性塩の水溶
液を電解液に用いた空気電池に対しても、実施例で示し
たアルカリ性の電解液に用いた電池と同様の効果がある
ことも確認しており、実施例と同様の理由で本発明の詳
細な説明できる。
We also confirmed that an air battery using an aqueous solution of neutral salts such as ammonium chloride or zinc chloride as an electrolyte has the same effect as the battery using an alkaline electrolyte shown in the example. The present invention can be explained in detail for the same reason as the examples.

発明の効果 以上の説明で明らかなように、本発明による酸素ガス拡
散電極によれば、中性もしくはアルカリ性の水溶液を電
解液とする電池の重負荷から軽負荷にわたる優れた実用
性能と、優れた耐漏液性。
Effects of the Invention As is clear from the above explanation, the oxygen gas diffusion electrode according to the present invention has excellent practical performance across heavy to light loads for batteries using a neutral or alkaline aqueous solution as the electrolyte, and excellent performance. Leak resistant.

長期貯蔵性を具備させることができるという効果が得ら
れる。
The effect is that it can be stored for a long time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例及び比較例の検討に用いたボタ
ン形空気亜鉛電池の半断面図、第2図は第1図の部分拡
大図、第3図は複合膜を使用して” いない従来のボタ
ン形空気亜鉛電池の半断面図である。 1・・・・・・酸素極(空気極)、2・・・・・・撥水
膜、3・・・・・・空気取入れ孔、4・・・・・・多孔
膜、5,6・・・・・・セパレーター、7・・・・・・
負極亜鉛、8・・・・・・負極容器、9・・・・・・絶
縁ガヌケット、1o・・・・・・正極容器、11・・・
・・・複合膜。
Figure 1 is a half-sectional view of a button-type zinc-air battery used to study examples and comparative examples of the present invention, Figure 2 is a partially enlarged view of Figure 1, and Figure 3 is a half-sectional view of a button-type zinc-air battery used to examine examples and comparative examples of the present invention. It is a half-sectional view of a conventional button-type zinc-air battery. 1... Oxygen electrode (air electrode), 2... Water-repellent membrane, 3... Air intake hole. , 4... Porous membrane, 5, 6... Separator, 7...
Negative electrode zinc, 8... Negative electrode container, 9... Insulating ganuket, 1o... Positive electrode container, 11...
...Composite membrane.

Claims (8)

【特許請求の範囲】[Claims] (1)酸素を活物質とするガス拡散電極と、外気に通じ
る空気取入れ孔を有する電池容器を備え、前記ガス拡散
電極の空気取り入れ側と前記電池容器の内面との間に、
ポリオルガノシロキサン共重合体の薄膜と前記薄膜を支
持する一層または二層以上の微多孔膜とから形成された
複合膜を介在させたことを特徴とする電池。
(1) A gas diffusion electrode having oxygen as an active material and a battery container having an air intake hole communicating with the outside air, between the air intake side of the gas diffusion electrode and the inner surface of the battery container,
1. A battery comprising a composite membrane formed from a polyorganosiloxane copolymer thin film and one or more microporous membranes supporting the thin film.
(2)前記複合膜のポリオルガノシロキサン共重合体の
薄膜側が、空気取り入れ孔を有する前記電池容器の内面
に当接され、前記複合膜の微多孔膜側に、直接ガス拡散
電極が接していることを特徴とする特許請求の範囲第1
項記載の電池。
(2) The thin film side of the polyorganosiloxane copolymer of the composite membrane is in contact with the inner surface of the battery container having air intake holes, and the gas diffusion electrode is in direct contact with the microporous membrane side of the composite membrane. Claim 1 characterized in that
Batteries listed in section.
(3)前記複合膜のポリオルガノシロキサン共重合体の
微多孔膜側が、空気取り入れ孔を有する前記電池容器の
内面に当接され、前記複合膜の薄膜側に、直接ガス拡散
電極が接していることを特徴とする特許請求の範囲第1
項記載の電池。
(3) The microporous membrane side of the polyorganosiloxane copolymer of the composite membrane is in contact with the inner surface of the battery container having air intake holes, and the thin film side of the composite membrane is in direct contact with a gas diffusion electrode. Claim 1 characterized in that
Batteries listed in section.
(4)前記複合膜と前記電池容器との間に不織布等の空
気拡散多孔体を介在させたことを特徴とする特許請求の
範囲第2項又は第3項記載の電池。
(4) The battery according to claim 2 or 3, characterized in that an air diffusion porous material such as a nonwoven fabric is interposed between the composite membrane and the battery container.
(5)前記複合膜と前記ガス拡散電極との間にポリテト
ラフルオロエチレン(PTFE)等の多孔性フィルムよ
りなる酸素極を支持する微多孔膜を介在させたことを特
徴とする特許請求の範囲第2項又は第3項記載の電池。
(5) A microporous membrane that supports an oxygen electrode made of a porous film such as polytetrafluoroethylene (PTFE) is interposed between the composite membrane and the gas diffusion electrode. The battery according to item 2 or 3.
(6)前記複合膜と前記電池容器との間に不織布等の空
気拡散多孔体を介在させ、かつ前記複合膜と前記ガス拡
散電極との間にポリテトラフルオロエチレン等の多孔性
フィルムよりなる酸素極を支持する微多孔膜を介在させ
たことを特徴とする特許請求の範囲第2項又は第3項記
載の電池。
(6) An air-diffusion porous material such as a non-woven fabric is interposed between the composite membrane and the battery container, and a porous film such as polytetrafluoroethylene is provided between the composite membrane and the gas diffusion electrode. The battery according to claim 2 or 3, characterized in that a microporous membrane supporting the electrode is interposed.
(7)前記複合膜を形成する微多孔膜がポリプロピレン
、ポリエチレン等のポリオレフィン、フッ素樹脂、ポリ
スルホン等を主成分とする耐アルカリ性微多孔膜である
ことを特徴とする特許請求の範囲第1項から第6項のい
ずれかに記載の電池。
(7) The microporous membrane forming the composite membrane is an alkali-resistant microporous membrane containing polyolefin such as polypropylene, polyethylene, fluororesin, polysulfone, etc. as a main component. The battery according to any of paragraph 6.
(8)前記複合膜を形成する微多孔膜をポリプロピレン
等を主成分とする耐アルカリ性不織布と一体化した複合
層としたものであることを特徴とする特許請求の範囲第
1項から第6項のいずれかに記載の電池。
(8) Claims 1 to 6 are characterized in that the microporous membrane forming the composite membrane is a composite layer integrated with an alkali-resistant nonwoven fabric mainly composed of polypropylene or the like. A battery described in any of the above.
JP9600188A 1988-04-19 1988-04-19 Battery Pending JPH01267970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9600188A JPH01267970A (en) 1988-04-19 1988-04-19 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9600188A JPH01267970A (en) 1988-04-19 1988-04-19 Battery

Publications (1)

Publication Number Publication Date
JPH01267970A true JPH01267970A (en) 1989-10-25

Family

ID=14152874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9600188A Pending JPH01267970A (en) 1988-04-19 1988-04-19 Battery

Country Status (1)

Country Link
JP (1) JPH01267970A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4019855A1 (en) * 1990-06-22 1992-11-19 Mmd Messtechnik M D Gyulai Tec Gas diffusion barrier for electrochemical gas sensors - consists of thin layer of poly-di:methyl-siloxane, pref. applied to working electrode or its supporting film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4019855A1 (en) * 1990-06-22 1992-11-19 Mmd Messtechnik M D Gyulai Tec Gas diffusion barrier for electrochemical gas sensors - consists of thin layer of poly-di:methyl-siloxane, pref. applied to working electrode or its supporting film

Similar Documents

Publication Publication Date Title
JPH0417259A (en) Battery
JPH01267970A (en) Battery
JPH07105991A (en) Oxygen enriched film for battery
JPH04312771A (en) Air battery
JP2782837B2 (en) Battery
JPH0287459A (en) Battery
JPH01267974A (en) Battery
JP2778078B2 (en) Battery
JP2757383B2 (en) Battery
JPH01267971A (en) Battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JPH01195678A (en) Cell
JPH01267973A (en) Battery
JPH01267972A (en) Battery
JPH02109254A (en) Battery
JPH04162374A (en) Battery
JP2817343B2 (en) Battery
JP2782911B2 (en) Battery
JPH042067A (en) Battery
JPH05205784A (en) Oxygen permeable composite film and battery employing said composite film
JPH0287458A (en) Battery
JP2822485B2 (en) Battery
JPH04162373A (en) Battery
JPH02160382A (en) Battery
JPH05326036A (en) Battery