JPH0287458A - Battery - Google Patents

Battery

Info

Publication number
JPH0287458A
JPH0287458A JP63237613A JP23761388A JPH0287458A JP H0287458 A JPH0287458 A JP H0287458A JP 63237613 A JP63237613 A JP 63237613A JP 23761388 A JP23761388 A JP 23761388A JP H0287458 A JPH0287458 A JP H0287458A
Authority
JP
Japan
Prior art keywords
battery
film
membrane
composite membrane
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63237613A
Other languages
Japanese (ja)
Inventor
Masaaki Yoshino
芳野 公明
Hiroshi Fukuda
浩 福田
Kanji Takada
寛治 高田
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63237613A priority Critical patent/JPH0287458A/en
Publication of JPH0287458A publication Critical patent/JPH0287458A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To prevent vapor and carbon dioxide gas in the atmosphere from intruding into a battery for a long period of time by interposing a film, which is formed from trimethyl-vinyl silane by means of plasma polymerization, and a complex film consisting of porous film supporting this film between the air intake side of a gas diffusion electrode and the internal surface of a battery jar. CONSTITUTION:A complex film 11 obtained by consolidating a fine porous film with a film formed from trimethyl-vinyl silane through plasma polymerization is interposed between a porous film 2 of PTFE and a porous substance 4 making diffusion of oxygen in such a way that the plasma polymerization film side of trimethyl-vinyl silane faces an air intake hole 3. A battery using a complex film in such a constitution excels in both the heavy load and light load characteristics and had good response to varying outside atmosphere. Particularly the plasma polymerization film shall favorably be of 0.3-0.5mum thick, and an alkali resistant porous film be preferably used as a support.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素を活物質に用いるガス拡散電極と、アル
カリ水溶液等の電解液と、亜鉛、マグネシウム、アルミ
ニウム等の金属、もしくはアルコール、ヒドラジン、水
素等の負極活物質とを備えた電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas diffusion electrode using oxygen as an active material, an electrolyte such as an alkaline aqueous solution, and a metal such as zinc, magnesium, or aluminum, or alcohol, hydrazine, or hydrogen. The present invention relates to a battery equipped with a negative electrode active material such as.

従来の技術 ガス拡散電極を備え、酸素を活物質とする電池としては
、空気電池、燃料電池等がある。特にアルカリ水溶液、
中性水溶液を電解質として使用する電池においては、ガ
ス拡散電極(酸素極)から内部の蒸気圧に応じて水蒸気
の出入りがあり、電池内電解液の濃度変化、体積変化が
起こり、これが電池緒特性に影響を与えていた。ボタン
型空気電池を例にとり、第3図を用いてその状況を説明
する。1は酸素極(空気極)、2はガス拡散性はあるが
液体は阻止するポリテトラフルオロエチレン(PTFE
)よりなる酸素極を支持する多孔膜である。3は外部か
らの空気取入れ孔、4は空気の拡散を行う多孔体、5,
6はセパレーター、7は水酸化カリウム水溶液と水化亜
鉛粉末との混合体から成る負極である。一般にアルカリ
電解液は水酸化カリウム水溶液を使用し、その濃度は3
0〜35%である。このため相対湿度が47〜69チよ
り高いと外部の湿気を取り込み電解液濃度の低下と体積
膨張とが起こり、放電性能の低下、電解液の漏液を生じ
ていた。一方、相対湿度が前記以下の場合には電解液の
蒸発が起こり、内部抵抗の増大や放電性能の低下をもた
らしていた。従って、環境雰囲気によって著しい影響を
受は易いため長期間保存後の特性に問題があり、空気電
池や燃料電池はある特定の分野用に設計されるにとどま
シ、汎用化を図る上で大きな課題を有していた。
BACKGROUND OF THE INVENTION BACKGROUND ART Batteries equipped with gas diffusion electrodes and using oxygen as an active material include air cells, fuel cells, and the like. Especially alkaline aqueous solution,
In batteries that use a neutral aqueous solution as the electrolyte, water vapor flows in and out from the gas diffusion electrode (oxygen electrode) depending on the internal vapor pressure, causing changes in the concentration and volume of the electrolyte in the battery, which affect the battery characteristics. was influencing. Taking a button-type air battery as an example, the situation will be explained using FIG. 3. 1 is an oxygen electrode (air electrode), 2 is polytetrafluoroethylene (PTFE) that has gas diffusion properties but blocks liquids.
) is a porous membrane that supports an oxygen electrode. 3 is an air intake hole from the outside, 4 is a porous body that diffuses air, 5,
6 is a separator, and 7 is a negative electrode made of a mixture of potassium hydroxide aqueous solution and zinc hydride powder. Generally, an aqueous potassium hydroxide solution is used as an alkaline electrolyte, and its concentration is 3
It is 0-35%. For this reason, when the relative humidity is higher than 47 to 69 degrees, external moisture is taken in, causing a decrease in the concentration of the electrolyte and volume expansion, resulting in a decrease in discharge performance and leakage of the electrolyte. On the other hand, when the relative humidity is below the above range, evaporation of the electrolytic solution occurs, resulting in an increase in internal resistance and a decrease in discharge performance. Therefore, since they are easily affected by the environmental atmosphere, there are problems with their properties after long-term storage, and since air cells and fuel cells are only designed for use in a specific field, it is a big problem to make them more general-purpose. It had

なお、図中8は負極容器、9は絶縁ガスケット、10は
正極容器である。
In the figure, 8 is a negative electrode container, 9 is an insulating gasket, and 10 is a positive electrode container.

これらの課題を改善するため、従来よシ種々の対策が検
討されてきた。例えば、空気孔周辺の一部に電解液と反
応する物質を挿入し、電池外部への電解液漏出を防止す
る。あるいは紙または高分子材料より成る不織布等の電
解液吸収材を設けて、電池外部への電解液漏出を防止す
る。さらには空気孔を極端に小さくして酸素の供給量を
制限してまでも、水蒸気や炭酸ガスの電池内部への侵入
を防止する等の提案がなされているが、いずれの方法も
漏液防止や放電性能、特に長期間放電での性能に大きな
課題を残していた。これらの主要原因は空気中の水蒸気
の電池内への侵入による電解液の希釈と体積膨張、及び
炭酸ガスの侵入による炭酸塩の生成に基づく放電反応の
阻害と空気流通経路の閉塞によるもので、外気が低湿の
場合には逆に電解液中の水分の逸散が性能低下の原因と
なっていた。この原因を取り除くため、近年では、水蒸
気や炭酸ガスの透過を抑制し、選択的に酸素を優先して
透過する膜を介して空気を酸素極に供給する方法、例え
ばポリシロキサン系の無孔性の均一な薄膜や金属酸化物
、あるいは金属原子を含有する有機化合物の薄膜と適宜
な多孔性膜とを一体化させた膜を用いる方法が提案され
ていた。
In order to improve these problems, various countermeasures have been considered in the past. For example, a substance that reacts with the electrolyte is inserted into a portion around the air hole to prevent the electrolyte from leaking to the outside of the battery. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymeric material is provided to prevent leakage of the electrolyte to the outside of the battery. Furthermore, proposals have been made to prevent water vapor and carbon dioxide from entering the battery by making the air holes extremely small and limiting the amount of oxygen supplied, but neither method prevents leakage. However, there remained major issues regarding discharge performance, especially performance during long-term discharge. The main causes of these are the dilution and volumetric expansion of the electrolytic solution due to the intrusion of water vapor from the air into the battery, and the inhibition of the discharge reaction due to the formation of carbonates due to the intrusion of carbon dioxide gas and the blockage of the air circulation path. Conversely, when the outside air is low-humidity, the loss of moisture in the electrolyte causes a decline in performance. In order to eliminate this cause, in recent years, methods have been developed to supply air to the oxygen electrode through a membrane that suppresses the permeation of water vapor and carbon dioxide gas and selectively allows oxygen to permeate. A method using a film that integrates a uniform thin film of , a thin film of a metal oxide, or a thin film of an organic compound containing metal atoms with a suitable porous film has been proposed.

発明が解決しようとする課題 しかしながら、現在までのところ、充分に有効な酸素ガ
ス選択透過性が得られないことや水蒸気、炭酸ガスの透
過阻止能が充分でないことからなどから、満足な放電性
能が得られず、長期の使用や貯蔵に耐えないという技術
課題をもっていたので、実用化に至っていない。
Problems to be Solved by the Invention However, to date, satisfactory discharge performance has not been achieved due to the inability to obtain sufficiently effective oxygen gas selective permeability and insufficient permeation blocking ability for water vapor and carbon dioxide gas. However, it has not been put into practical use because it has had the technical problem of not being able to withstand long-term use or storage.

そこで本発明は上記の電池の貯蔵性、長期使用における
性能を改善するとともに軽負荷から重負荷に至る放電条
件で満足な放電性能を得るために、大気中の酸素ガスを
選択的に充分な速度で電池内に取り入れ、大気中の水蒸
気及び炭酸ガスの電池内への侵入を長期にわたシ防止す
る有効な手段を提供することを目的とするものである。
Therefore, the present invention aims to improve the storability and long-term use performance of the above-mentioned battery, as well as to obtain satisfactory discharge performance under discharge conditions ranging from light loads to heavy loads. The purpose of this invention is to provide an effective means for preventing atmospheric water vapor and carbon dioxide from entering the battery over a long period of time.

課題を解決するための手段 本発明は酸素を活物質とするガス拡散電極と、外気に通
じる空気取入れ孔を有する電池容器を備えた電池のガス
拡散電極の空気取入れ側と電池容器の内面との間に、ト
リメチルビニルシランt−i料としプラズマ重合によっ
て形成した薄膜とこの薄膜を支持する微多孔膜から形成
される酸素選択透過性複合膜を介在させるものである。
Means for Solving the Problems The present invention provides a battery that includes a gas diffusion electrode containing oxygen as an active material and a battery container having an air intake hole communicating with the outside air, in which the air intake side of the gas diffusion electrode and the inner surface of the battery container are connected to each other. In between, there is interposed an oxygen selectively permeable composite membrane formed from a thin film formed by plasma polymerization of trimethylvinylsilane t-i material and a microporous membrane supporting this thin film.

上記トリメチルビニルシランを原料としプラズマ重合に
よって形成した薄膜は、無孔性の均質な薄膜で酸素の選
択透過性を有し、充分な酸素透過速度と水蒸気、炭酸ガ
スの透過阻止能を得るには、通常1.0μm以下、好ま
しくは0.2〜0.6μmの厚さが適している。この薄
膜を支持する微多孔膜は気体が容易に透過し、なおかつ
、その表面は上記の薄膜を均一に無孔状態で支持するに
適した平滑性と孔径を備えた微多孔膜が好ましく、前記
微多孔膜表面の平均孔径が3〜0.01μmであること
が好ましい。
The thin film formed by plasma polymerization using trimethylvinylsilane as a raw material is a non-porous, homogeneous thin film with selective oxygen permeability, and in order to obtain a sufficient oxygen permeation rate and water vapor and carbon dioxide permeation blocking ability A suitable thickness is usually 1.0 μm or less, preferably 0.2 to 0.6 μm. The microporous membrane supporting this thin film is preferably a microporous membrane through which gas can easily permeate, and whose surface has smoothness and pore size suitable for supporting the above-mentioned thin film in a uniform and non-porous state. It is preferable that the average pore diameter on the surface of the microporous membrane is 3 to 0.01 μm.

本発明は、選択性酸素透過能の優れた薄膜としてトリメ
チルビニルシランを原料としプラズマ重合によって形成
した薄膜の特性に着目し、さらにこの薄膜を支持する微
多孔膜には耐アルカリ性に優れたポリプロピレン、ポリ
エチレン等のポリオレフィン、フッ素樹脂、ポリスルフ
ォン等を選び完成した。なお、微多孔膜は単層であって
も良いが、取り扱いや製造時、あるいは使用時の強度を
確保するために、必要に応じて耐アルカリ性不織布をさ
らに一体化した二層以上の構成としても良い。
The present invention focuses on the characteristics of a thin film formed by plasma polymerization using trimethylvinylsilane as a raw material as a thin film with excellent selective oxygen permeability.Furthermore, the microporous membrane supporting this thin film is made of polypropylene, polyethylene with excellent alkali resistance. We selected polyolefins, fluororesins, polysulfones, etc., and completed the process. Note that the microporous membrane may be a single layer, but in order to ensure strength during handling, manufacturing, or use, it may have a structure of two or more layers further integrated with an alkali-resistant nonwoven fabric as necessary. good.

従来、トリメチルビニルシランの薄膜を微多孔膜で支持
した複合膜は、燃焼補助用、医療における呼気用などの
用途で実用化が検討されているだけで、主として酸素富
化を目的とし、酸素と窒素の分離係数や酸素透過速度の
みを評価の対象にしている。これらの膜を重負荷での放
電条件でも満足な放電性能を得られる電池用として適用
するためには、酸素透過速度が充分大きいことと水蒸気
及び炭酸ガスの透過阻止能が優れていることが重要な要
件であるが、これらの特性は未知な点が多い。電池への
適用を検討された例は少なく、例えば特開昭59−76
582で開示されているように、ポリジメチル・ンロキ
サン、ポリジメチルシロキサン−ポリヒドロキシスチレ
ン架橋型共重合体などの膜の適用が提案されているが、
酸素透過速度が充分でな、く重負荷での放電において満
足な性能が掛られない。本発明は、種々の酸素透過膜を
電池用として鋭意検討の結果、トリメチルビニルシラン
を原料としプラズマ重合によって形成した薄膜を微多孔
膜と一体化した複合膜が電池用としての上述の緒特性を
総合的に満たし、これを適用した電池の性能がきわめて
優れていることを見い出し完成したものである。
Up until now, composite membranes in which a thin film of trimethylvinylsilane is supported by a microporous membrane have only been considered for practical use in applications such as combustion aids and exhalation in medical care. Only the separation coefficient and oxygen permeation rate are subject to evaluation. In order to apply these membranes to batteries that can obtain satisfactory discharge performance even under heavy load discharge conditions, it is important that the oxygen permeation rate be sufficiently high and that the permeation blocking ability of water vapor and carbon dioxide gas be excellent. However, many aspects of these characteristics are unknown. There are few examples where application to batteries has been considered;
As disclosed in No. 582, the application of membranes such as polydimethylsiloxane and polydimethylsiloxane-polyhydroxystyrene crosslinked copolymers has been proposed;
The oxygen permeation rate is not sufficient, and satisfactory performance cannot be achieved during discharge under heavy loads. As a result of intensive studies on various oxygen permeable membranes for batteries, the present invention has developed a composite membrane in which a thin film made from trimethylvinylsilane as a raw material and formed by plasma polymerization is integrated with a microporous membrane, which has the above-mentioned characteristics for use in batteries. It was discovered and completed that the performance of the battery to which this technology was applied was extremely excellent.

作用 この構成により上述の複合膜は後述の実施例における電
池試験の結果からも明らかなように、電池用としての酸
素透過速度と同時K、水蒸気や炭酸ガスを大気から遮断
する効果も共に満足すべき状態であることにより、実用
的な電池に要求される重負荷放電性能と、高温や低湿の
雰囲気下で長時間放電した場合の性能も共に満足するこ
ととなる。
Function: With this configuration, the above-mentioned composite membrane satisfies both the oxygen permeation rate and the effect of blocking water vapor and carbon dioxide from the atmosphere for use in batteries, as is clear from the results of the battery tests in the examples described below. Due to this condition, both the heavy load discharge performance required for a practical battery and the performance when discharged for a long time in a high temperature and low humidity atmosphere are satisfied.

実施例 厚さ100μmのポリテトラフルオロエチレンの多孔性
フィルムをプラズマ発生装置内に置き、装置内・を10
rrvnHfまで減圧した後、トリメチルビニルシラン
の蒸気をs cc / winの流速でこの装置に導入
し、0.2rraHfの圧力に調整保持し、13.56
 MHz 、 100Wの高周波電力を1時間与えて、
トリメチルビニル7ランの低温プラズマを発生させて前
記多孔性フィルム上にプラズマ重合膜を形成させる。
Example A porous film of polytetrafluoroethylene with a thickness of 100 μm was placed in a plasma generator, and the inside of the device was heated to 10 μm.
After reducing the pressure to rrvnHf, trimethylvinylsilane vapor was introduced into this apparatus at a flow rate of scc/win, adjusted and held at a pressure of 0.2rraHf, and 13.56
Apply high frequency power of MHz, 100W for 1 hour,
A low temperature plasma of trimethylvinyl 7 run is generated to form a plasma polymerized film on the porous film.

本発明の効果の一実施例としてトリメチルビニルシラン
のプラズマ重合膜を用いた複合膜を使用した電池、比較
例としてポリジメチルシロキサン単独膜を使用した電池
および上記複合膜を使用しない電池を試作評価して検討
した。まず、上記複合膜を使用していない比較例の場合
は第3図と全く同一に構成した。複合膜を使用した実施
例及び比較例も@3図とほぼ同様であり、第1図に示す
ようにPTFICの多孔膜2と酸素の拡散を行う多孔体
4との間に実施例の複合膜あるいは比較例の単独膜が介
在し、複合膜はトリメチルビニルシランのプラズマ重合
膜の側が空気取り入れ孔3の側に対向するよう配置した
点が第3図と異なるのみである。
As an example of the effects of the present invention, a battery using a composite film using a plasma polymerized film of trimethylvinylsilane, and as a comparative example, a battery using a single polydimethylsiloxane film and a battery not using the above composite film were prototyped and evaluated. investigated. First, in the case of a comparative example in which the above-mentioned composite membrane was not used, the structure was exactly the same as that shown in FIG. 3. Examples and comparative examples using composite membranes are almost the same as those shown in Figure @3, and as shown in Figure 1, the composite membrane of the example is placed between the porous membrane 2 of PTFIC and the porous body 4 that diffuses oxygen. Alternatively, the only difference from FIG. 3 is that the single membrane of the comparative example was interposed, and the composite membrane was arranged so that the side of the plasma polymerized membrane of trimethylvinylsilane faced the side of the air intake hole 3.

供試したトリメチルビニルシランのプラズマ重合膜との
複合膜は、トリメチルビニルシランを支持膜である微多
孔膜上にプラズマ重合によって薄膜を形成させたもので
ある。まだ、比較例として供試したポリジメチルシロキ
サン薄膜はトルエンに溶解した溶液をガラス板に薄く塗
布して乾燥する方法で作製した。実施例の支持体膜はい
ずれも微多孔膜(孔径:約0.1〜0.05μm、厚さ
:約30μm)の単層、またはこれと不織布(厚さ:約
150μm)を一体化した複合層を用い、微多孔膜側に
薄膜層を形成させた。
The composite membrane of trimethylvinylsilane and a plasma polymerized membrane tested was a thin film formed by plasma polymerization of trimethylvinylsilane on a microporous membrane serving as a support membrane. The polydimethylsiloxane thin film used as a comparative example was prepared by applying a thin layer of a solution dissolved in toluene to a glass plate and drying it. All of the support membranes in the Examples are a single layer of a microporous membrane (pore diameter: approximately 0.1 to 0.05 μm, thickness: approximately 30 μm), or a composite of this and a nonwoven fabric (thickness: approximately 150 μm). A thin film layer was formed on the microporous membrane side.

試作した電池の形状は直径11.6mm、総高5.4団
であり、比較的重負荷(76Ω)で20℃、常湿(60
qbRH)での連続放電により電池内への空電中の酸素
の取り込み速度の充足性を評価し、比較的軽負荷(3に
Ω)で20’C1高湿(9oq6RH)、及び低湿(2
01RH)での長期間連続放電により、長期の放電期間
中の、雰囲気中の水蒸気の取り込みや電池内の水分の逸
散、及び炭酸ガスの取り込みなど電池性能への影響度を
評価した。
The prototype battery has a diameter of 11.6 mm and a total height of 5.4 units, and is rated at 20°C and normal humidity (60°C) under a relatively heavy load (76Ω).
The sufficiency of the rate of oxygen uptake in the static electricity into the battery was evaluated by continuous discharge at
By conducting a long-term continuous discharge at 01RH), the degree of influence on the battery performance, such as the uptake of water vapor in the atmosphere, the dissipation of moisture within the battery, and the uptake of carbon dioxide during the long-term discharge period, was evaluated.

試作した電池の内訳は第1表に示す通りである。The details of the prototype battery are shown in Table 1.

また第2表に試作電池の性能試験結果を示す。Table 2 also shows the performance test results of the prototype batteries.

(以下余白) 第2表において放電終止電圧はいずれも0.9 Vであ
り、重合変化は放電試験前後の増減を示しており、主と
して放電中の水分の取り込み、あるいは逸散の多少を示
唆する数値である。
(Margins below) In Table 2, the end-of-discharge voltage is 0.9 V, and the polymerization change shows an increase or decrease before and after the discharge test, which mainly suggests the amount of moisture taken in or dissipated during discharge. It is a numerical value.

実施例の1〜5はピンホールがない均一性薄膜が得られ
る範囲の膜厚のうち、比較的薄い均一性の薄膜を形成し
たもので、実施例の6〜9は均一性の薄膜を若干厚く形
成しており、前者は酸素の透過速度を大きくすることを
第一義に考え、後者は水蒸気や炭酸ガスの透過を阻止す
ることを第一義に考え電池を構成している。これらの場
合、複合膜の支持体は耐アルカリ性の材料で構成されて
いる。これらの電池の特性を複合膜を使用していない比
較例3と対比すると最も端的に本発明の詳細な説明でき
る。まず20℃、常湿での重負荷試験では放電期間が短
く、水分の取り込みや逸散の影響や炭酸ガスの影響が少
ないので、電池の性能は酸素の供給速度が充分であれば
水分や炭酸ガスの透過阻止はあまり考慮する必要がない
。従って、このような条件では比較例3でも優れた特性
が得られる。これに対し、前述の実施例のうち、1〜5
は比較例3と同等の放電特性が得られており、複合膜を
酸素が透過する速度が放電反応で酸素が消費される速度
に充分追従していることを示している。実施例6〜9の
場合は若干放電電圧、持続時間とも劣っているがあまり
遜色のない良好な特性を示し、はぼ酸素の供給が満足な
状態で行われている。一方、軽負荷放電の場合は放電期
間が長く、しかも外気が高湿あるいは低湿の場合には酸
素の供給速度よりも水分や炭酸ガス、特に水分の透過防
止が優れた性能を得るために重要となり、水分や炭酸ガ
スの透過阻止機構をもたない比較例3の電池は水分の枯
渇、あるいは逆に水分の過剰取入れによる□漏液による
空気孔の閉塞などにより、放電の途中で電圧が低下し、
重負荷試験で得られた放電容量の一部分に相当する容量
が得られるにすぎない。また、放電途中での漏液は実用
面で致命的な問題であることはいうまでもない。これに
対し実施例はきわめて優れた性能を示し、これらは重負
荷試験の放電容量とほぼ等しい容量が得られ、中でも均
一薄膜層が比較的厚い実施例6〜9がより優れている。
In Examples 1 to 5, relatively thin uniform thin films were formed within the range in which a uniform thin film without pinholes could be obtained, and in Examples 6 to 9, uniform thin films were formed with a slightly higher uniformity. The former is designed to increase the permeation rate of oxygen, while the latter is designed to prevent the permeation of water vapor and carbon dioxide. In these cases, the support of the composite membrane is composed of an alkali-resistant material. The present invention can be most clearly explained in detail by comparing the characteristics of these batteries with Comparative Example 3 in which no composite membrane was used. First, in a heavy load test at 20°C and normal humidity, the discharge period is short, and the effects of moisture uptake and dissipation, as well as the effects of carbon dioxide gas, are small. There is no need to give much consideration to gas permeation prevention. Therefore, under such conditions, excellent characteristics can be obtained even in Comparative Example 3. On the other hand, among the above-mentioned examples, 1 to 5
Discharge characteristics equivalent to those of Comparative Example 3 were obtained, indicating that the rate at which oxygen permeates through the composite membrane sufficiently follows the rate at which oxygen is consumed in the discharge reaction. In Examples 6 to 9, although the discharge voltage and duration were slightly inferior, they exhibited comparable good characteristics, and the supply of oxygen was carried out in a satisfactory manner. On the other hand, in the case of light load discharge, the discharge period is long, and when the outside air is high or low humidity, preventing the permeation of moisture and carbon dioxide gas, especially moisture, becomes more important than the oxygen supply rate in order to obtain excellent performance. In the battery of Comparative Example 3, which does not have a mechanism to prevent moisture and carbon dioxide permeation, the voltage decreases during discharge due to depletion of moisture or, conversely, due to the blockage of air holes due to liquid leakage caused by excessive intake of moisture. ,
A capacity equivalent to only a portion of the discharge capacity obtained in the heavy load test is obtained. Furthermore, it goes without saying that liquid leakage during discharge is a fatal problem from a practical standpoint. On the other hand, the Examples showed extremely excellent performance, with a capacity almost equal to the discharge capacity in the heavy load test being obtained, and among them, Examples 6 to 9, in which the uniform thin film layer was relatively thick, were more excellent.

これらの傾向は試験雰囲気が高湿、低湿、いずれの場合
とも同様である。このことは、実施例の場合、複合膜の
水分や炭酸ガスの透過阻止効果が充分に発揮されている
ことを示している。また、比較例1,2は膜厚が厚いた
めに均一薄膜の水蒸気及び炭酸ガス透過阻止能は充分で
あるが、酸素透過速度が充分ではないだめに軽負荷の場
合の放電特性は実施例と対比してあまり遜色ないが、重
負荷特性は実施例より著しく劣る。
These trends are the same whether the test atmosphere is high humidity or low humidity. This shows that, in the case of the example, the composite membrane sufficiently exhibits the permeation blocking effect of moisture and carbon dioxide gas. In addition, in Comparative Examples 1 and 2, the film thickness is thick, so the water vapor and carbon dioxide permeation blocking ability of the uniform thin film is sufficient, but the oxygen permeation rate is not sufficient and the discharge characteristics under light load are not as good as the examples. Although it is comparable in comparison, the heavy load characteristics are significantly inferior to the examples.

以上を総合して、トリメチルビニルシランヲ原料としプ
ラズマ重合によって形成させた薄膜と微多孔膜との複合
膜を用いた試作電池は重負荷特性、軽負荷特性ともに優
れ、外部雰囲気の変化への対応も良好であり、特にプラ
ズマ重合膜の厚みを、0.3〜0.5μmとし耐アルカ
リ性の多孔質膜を支持体に用いた場合に優れた電池を提
供できることが結論できる。
In summary, the prototype battery using trimethylvinylsilane as a raw material and a composite film of a thin film and a microporous film formed by plasma polymerization has excellent both heavy load characteristics and light load characteristics, and is also able to respond to changes in the external atmosphere. It can be concluded that an excellent battery can be provided especially when the plasma polymerized membrane has a thickness of 0.3 to 0.5 μm and an alkali-resistant porous membrane is used as the support.

また上記の実施例ではトリメチルビニルシランのプラズ
マ重合膜を微多孔性の支持膜あるいは微多孔膜と不織布
を一体化した支持膜の片面につけた複合膜を用いた場合
について説明したが、本発明は薄膜を支持膜の両面に形
成させた複合膜の場合テモ、トリメチルビニルシランの
プラズマ重合膜の膜厚が総計で0.3〜0.5μmであ
れば上記と同様に優れた電池性能が得られる。さらに実
施例に示シタトリメチルビニルシランのプラズマ重合膜
を支持する微多孔膜は他の耐アルカリ性を有する微多孔
膜(例えばナイロン製微多孔膜)でも同様の効果が得ら
れる。また、実施例では支持体が微多孔膜とポリエチレ
ン製の不織布と一体化した複合層とした場合を説明した
が、前記不織布がポリエチレン、ナイロン等の他の耐ア
ルカリ性のあるものであれば同様の効果が得られる。
Furthermore, in the above embodiments, a composite film in which a plasma polymerized film of trimethylvinylsilane is attached to one side of a microporous support film or a support film that integrates a microporous film and a nonwoven fabric is used. In the case of a composite membrane formed on both sides of a support membrane, if the total thickness of the plasma-polymerized membrane of trimethylvinylsilane is 0.3 to 0.5 μm, excellent battery performance can be obtained in the same way as described above. Furthermore, the microporous membrane supporting the plasma-polymerized membrane of sitatrimethylvinylsilane shown in the examples can also be used with other microporous membranes having alkali resistance (for example, microporous nylon membranes) to achieve similar effects. In addition, in the examples, a case where the support is a composite layer in which a microporous membrane and a nonwoven fabric made of polyethylene are integrated is explained, but if the nonwoven fabric is made of other alkali-resistant material such as polyethylene or nylon, a similar method may be used. Effects can be obtained.

なお、実施例では複合膜の薄膜側が空気取入れ孔側に当
接された場合について示したが、逆にガス拡散電極側に
当接させた場合でもほぼ同一の結果となることを確認し
ている。
In addition, although the example shows the case where the thin film side of the composite membrane is brought into contact with the air intake hole side, it has been confirmed that almost the same result will be obtained even if the thin film side of the composite membrane is brought into contact with the gas diffusion electrode side. .

また、本発明の複合膜を上記実施例では電池容器との間
に空気拡散用の多孔体を介して設置したが、本発明の複
合膜は微多孔膜、場合によってはさらに不織布を一体化
した支持体より構成されており、前記空気拡散用の多孔
体を除いても電池特性の差異はない。但し、複合膜の強
度が充分でなく空気取入れ孔側に変形するような場合に
は、多孔体を設置することによシ複合膜が安定形状を保
つ。さらに、上記実施例では本発明の複合膜を酸素極と
の間に酸素極を支持する多孔膜を介して設置したが、酸
素極の強度が充分であれば前記多孔膜は不用であり、除
いても電池特性は変わらない。
In addition, in the above embodiments, the composite membrane of the present invention was installed between the battery container and the porous body for air diffusion, but the composite membrane of the present invention is a microporous membrane, and in some cases, a nonwoven fabric is further integrated into the composite membrane of the present invention. The battery is composed of a support body, and there is no difference in battery characteristics even if the porous body for air diffusion is removed. However, if the composite membrane does not have sufficient strength and deforms toward the air intake hole, the composite membrane can maintain a stable shape by installing a porous body. Furthermore, in the above example, the composite membrane of the present invention was installed between the oxygen electrode and the porous membrane that supported the oxygen electrode, but if the oxygen electrode had sufficient strength, the porous membrane was unnecessary and could be removed. However, the battery characteristics remain unchanged.

また、塩化アンモニウム、塩化亜鉛などの中性塩の水溶
液を電解液に用いた空気電池に対しても、実施例で示し
たアルカリ性の電解液に用いた電池と同様の効果がある
ことも確認しており、実施例と同様の理由で本発明の詳
細な説明できる。
We also confirmed that an air battery using an aqueous solution of neutral salts such as ammonium chloride or zinc chloride as an electrolyte has the same effect as the battery using an alkaline electrolyte shown in the example. The present invention can be explained in detail for the same reason as the examples.

発明の効果 以上の説明で明らかなように、本発明による酸素ガス拡
散電極によれば、中性もしくはアルカリ性の水溶液を電
解液とする電池の重負荷から軽負荷にわたる優れた実用
性能と、優れた耐漏液性、長期貯蔵性を具備させること
ができるという効果が得られる。
Effects of the Invention As is clear from the above explanation, the oxygen gas diffusion electrode according to the present invention has excellent practical performance across heavy to light loads for batteries using a neutral or alkaline aqueous solution as the electrolyte, and excellent performance. The effects of being able to provide leakage resistance and long-term storage properties are obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における複合膜を備えたボタン
型空気亜鉛電池の各々の断面構造図、第2図は第1図の
部分拡大図、第3図は複合膜を使用していない従来のボ
タン形空気亜鉛電池の断面構造図である。 1・・・・・・酸素極(空気極)、2・・・・・・撥水
膜、3・・・・・・空気取入れ孔、4・・・・・・多孔
膜、5.6・・・・・・セパレーター、7・・・・・・
負極亜鉛、8・・・・・・負極容器、9・・・・・・絶
縁ガスケット、10・・・・・・正極容器、11・・・
・・・複合膜。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名−m
− 3・・・ 5.6−−− 9−・ IO・− N 常!(空 電極〕 FM−2KII! 空気放入れ籠 ル 孔 展 ℃ノfレータ IIl砒亜鉛 亜鉛!容器 II!曙がスケット 正黴雰6 第 2 藺 手続補装置 第 図 1事件の表示 昭和63年特許願第 発明の名称 電池 補正をする者 事件との関係 住  所 名   称 代表者 4代理人 住  所 特  許  出  願  人 大阪府門真市太字門真1006番地 (582)松下電器産業株式会社 谷   井   昭   雄 〒 571 大阪府門真市太字門真1006番地 松下電器産業株式会社内 6、補正の内容 に補正します。 (2)同第14頁第2表の「常温・重負荷試験」を「常
湿・重負荷試験」に補正します。
Figure 1 is a cross-sectional structural diagram of a button-type zinc-air battery equipped with a composite membrane according to an embodiment of the present invention, Figure 2 is a partially enlarged view of Figure 1, and Figure 3 is a diagram in which no composite membrane is used. 1 is a cross-sectional structural diagram of a conventional button-type zinc-air battery. 1... Oxygen electrode (air electrode), 2... Water repellent membrane, 3... Air intake hole, 4... Porous membrane, 5.6. ...Separator, 7...
Negative electrode zinc, 8... Negative electrode container, 9... Insulating gasket, 10... Positive electrode container, 11...
...Composite membrane. Name of agent: Patent attorney Shigetaka Awano and 1 other person-m
- 3... 5.6--- 9-・IO・- N Always! (Empty electrode) FM-2KII! Air venting basket hole Expansion °C noflator IIl Arsenic zinc zinc! Container II! Akebono is Sketto positive mold atmosphere 6 No. 2 Procedural assistance device No. 1 Display of case 1985 Patent Person who amends the name of the invention as claimed in the application Relation to the case Address Name Representative 4 Agent address Patent applicant Akio Tanii 1006 Kadoma, Kadoma City, Osaka Prefecture (582) Bold Aza Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Address: 6, Matsushita Electric Industrial Co., Ltd., 1006 Bold Kadoma, Kadoma City, Osaka Prefecture, 571. The contents of the amendment have been revised. Correct to "Load test".

Claims (8)

【特許請求の範囲】[Claims] (1)酸素を活物質とするガス拡散電極と、外気に通じ
る空気取り入れ孔を有する電池容器を備え、前記ガス拡
散電極の空気取り入れ側と前記電池容器の内面との間に
トリメチルビニルシランを原料としプラズマ重合によっ
て形成させた薄膜と前記薄膜を支持する多孔性膜からな
る複合膜を介在させたことを特徴とする電池。
(1) A gas diffusion electrode containing oxygen as an active material and a battery container having an air intake hole communicating with the outside air; 1. A battery comprising a composite membrane comprising a thin film formed by plasma polymerization and a porous membrane supporting the thin film.
(2)前記複合膜のプラズマ重合によって形成した薄膜
側が、空気取り入れ孔を有する前記電池容器の内面に当
接され、前記複合膜の微多孔膜側に直接ガス拡散電極が
接していることを特徴とする特許請求の範囲第1項記載
の電池。
(2) The thin film side of the composite membrane formed by plasma polymerization is in contact with the inner surface of the battery container having an air intake hole, and the gas diffusion electrode is in direct contact with the microporous membrane side of the composite membrane. A battery according to claim 1.
(3)前記複合膜のプラズマ重合によって形成した薄膜
側が、直接ガス拡散電極に接し、前記複合膜の微多孔膜
が空気取り入れ孔を有する前記電池容器の内面に当接し
ていることを特徴とする特許請求の範囲第1項記載の電
池。
(3) The thin film side of the composite membrane formed by plasma polymerization is in direct contact with the gas diffusion electrode, and the microporous membrane of the composite membrane is in contact with the inner surface of the battery container having air intake holes. A battery according to claim 1.
(4)前記複合膜と前記電池容器との間に不織布等の空
気拡散多孔体を介在させたことを特徴とする特許請求の
範囲第2項又は第3項記載の電池。
(4) The battery according to claim 2 or 3, characterized in that an air diffusion porous material such as a nonwoven fabric is interposed between the composite membrane and the battery container.
(5)前記複合膜と前記ガス拡散電極との間にポリテト
ラフルオロエチレン等の多孔性フィルムよりなる酸素極
を支持する微多孔膜を介在させたことを特徴とする特許
請求の範囲第2項又は第3項記載の電池。
(5) Claim 2, characterized in that a microporous membrane supporting an oxygen electrode made of a porous film such as polytetrafluoroethylene is interposed between the composite membrane and the gas diffusion electrode. Or the battery described in paragraph 3.
(6)前記複合膜と前記電池容器との間に不織布等の空
気拡散多孔体を介在させ、かつ前記複合膜と前記ガス拡
散電極との間にポリテトラフルオロエチレン等の多孔性
フィルムよりなる酸素極を支持する微多孔膜を介在させ
たことを特徴とする特許請求の範囲第2項又は第3項記
載の電池。
(6) An air-diffusion porous material such as a non-woven fabric is interposed between the composite membrane and the battery container, and a porous film such as polytetrafluoroethylene is provided between the composite membrane and the gas diffusion electrode. The battery according to claim 2 or 3, characterized in that a microporous membrane supporting the electrode is interposed.
(7)前記複合膜を形成する微多孔膜がポリプロピレン
、ポリエチレン等のポリオレフイン、フッ素樹脂、ポリ
スルホン等を主成分とする耐アルカリ性微多孔膜である
ことを特徴とする特許請求の範囲第1項から第6項のい
ずれかに記載の電池。
(7) The microporous membrane forming the composite membrane is an alkali-resistant microporous membrane containing polyolefin such as polypropylene, polyethylene, fluororesin, polysulfone, etc. as a main component. The battery according to any of paragraph 6.
(8)前記複合膜を形成する微多孔膜をポリプロピレン
等を主成分とする耐アルカリ性不織布と一体化した複合
層としたものであることを特徴とする特許請求の範囲第
1項から第6項のいずれかに記載の電池。
(8) Claims 1 to 6 are characterized in that the microporous membrane forming the composite membrane is a composite layer integrated with an alkali-resistant nonwoven fabric mainly composed of polypropylene or the like. A battery described in any of the above.
JP63237613A 1988-09-22 1988-09-22 Battery Pending JPH0287458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63237613A JPH0287458A (en) 1988-09-22 1988-09-22 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63237613A JPH0287458A (en) 1988-09-22 1988-09-22 Battery

Publications (1)

Publication Number Publication Date
JPH0287458A true JPH0287458A (en) 1990-03-28

Family

ID=17017911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63237613A Pending JPH0287458A (en) 1988-09-22 1988-09-22 Battery

Country Status (1)

Country Link
JP (1) JPH0287458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058061A1 (en) * 2011-10-20 2013-04-25 東レバッテリーセパレータフィルム株式会社 Method for producing porous membrane, porous membrane, battery separator, and battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058061A1 (en) * 2011-10-20 2013-04-25 東レバッテリーセパレータフィルム株式会社 Method for producing porous membrane, porous membrane, battery separator, and battery
CN103748150A (en) * 2011-10-20 2014-04-23 东丽电池隔膜株式会社 Method for producing porous membrane, porous membrane, battery separator, and battery
KR20140081779A (en) * 2011-10-20 2014-07-01 도레이 배터리 세퍼레이터 필름 주식회사 Method for producing porous membrane, porous membrane, battery separator, and battery
JPWO2013058061A1 (en) * 2011-10-20 2015-04-02 東レバッテリーセパレータフィルム株式会社 Porous membrane manufacturing method, porous membrane, battery separator and battery

Similar Documents

Publication Publication Date Title
JPH0417259A (en) Battery
JPH0287458A (en) Battery
JPH0287459A (en) Battery
JPH07105991A (en) Oxygen enriched film for battery
JPH02109254A (en) Battery
JP2782837B2 (en) Battery
JPH04312771A (en) Air battery
JP2757383B2 (en) Battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JP2778078B2 (en) Battery
JPH01195678A (en) Cell
JPH01267974A (en) Battery
JPH01267971A (en) Battery
JPH01267973A (en) Battery
JPS6051505A (en) Gas selective composite membrane
JPH01267972A (en) Battery
JPH04162374A (en) Battery
JPH01267970A (en) Battery
JP2822485B2 (en) Battery
JPH04162373A (en) Battery
JP2817343B2 (en) Battery
JPS5931566A (en) Battery
JPH042067A (en) Battery
JPH0422545Y2 (en)
JP2782911B2 (en) Battery