JPH042067A - Battery - Google Patents

Battery

Info

Publication number
JPH042067A
JPH042067A JP10198790A JP10198790A JPH042067A JP H042067 A JPH042067 A JP H042067A JP 10198790 A JP10198790 A JP 10198790A JP 10198790 A JP10198790 A JP 10198790A JP H042067 A JPH042067 A JP H042067A
Authority
JP
Japan
Prior art keywords
battery
oxygen
air
gas diffusion
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10198790A
Other languages
Japanese (ja)
Inventor
Masaaki Yoshino
芳野 公明
Shigeto Noya
重人 野矢
Akira Hanabusa
花房 彰
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10198790A priority Critical patent/JPH042067A/en
Publication of JPH042067A publication Critical patent/JPH042067A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/128

Landscapes

  • Hybrid Cells (AREA)

Abstract

PURPOSE:To enhance the storing property of a battery and its performance in long time service by furnishing a film consisting of specific compound between the air take-in side of a gas diffusion electrode and the inner surface of battery vessel. CONSTITUTION:A battery according to the present invention equipped with a battery vessel 8 having an air intake hole 3 leading to the outside air is provided with a gas diffusion electrode 1, which uses oxygen as active substance. An oxygen selective penetration film 4 consisting of polyglutamate containing fluorine or a mixture thereof with polytrimethylsilylpropyne is interposed between the air take in side of this gas diffusion electrode 1 and the inner surface of the vessel 8. This constitution allows meeting the requirements for the oxygen penetration speed as battery and also the effect of shutting water vapor and CO gas from the atmospheric air, and the high load discharging performance required of a practical battery and the performance in long time discharging in the atmosphere with high humidity or low humidity are both provided satisfactorily.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素を活物質に用いるガス拡散電極と、アル
カリ水溶液等の電解液と、亜鉛、マグネシウム、アルミ
ニウム等の金属、もしくはアルコール、ヒドラジン、水
素等の負極活物質とを備えた電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas diffusion electrode using oxygen as an active material, an electrolyte such as an alkaline aqueous solution, and a metal such as zinc, magnesium, or aluminum, or alcohol, hydrazine, or hydrogen. The present invention relates to a battery equipped with a negative electrode active material such as.

従来の技術 ガス拡散電極を備え、酸素を活物質とする電池としては
、空気電池、燃料電池等がある。特にアルカリ水溶液、
中性水溶液を電解質として使用する電池においては、ガ
ス拡散電極(酸素極)から内部の蒸気圧に応して水蒸気
の出入りがあり、電池的電解液の濃度変化9体積変化が
起こり、これか電池緒特性に影響を与えていた。ボタン
形空気亜鉛電池を例にとり、第2図を用いてその状況を
説明する。図中1は酸素極(空気極)、2はガス拡散性
はあるが液体は阻止するポリテトラフルオロエチレン(
PTFE)よりなる酸素極を支持する多孔膜である。3
は外部からの空気取り入れ孔、4は酸素極の支持と空気
の拡散を行なう多孔体、5.6はセパレータ、7は水酸
化カリウム水溶液と氷化亜鉛粉末との混合体からなる負
極である。一般にアルカリ電解液には水酸化カリウム水
溶液を使用し、その濃度は30〜35%で用いられてい
る。このため相対湿度が47〜59%より高いと外部の
湿気を取り込んで電解液濃度の低下と体積膨張とが起こ
り、放電性能の低下、電解液の溜液を生じていた。一方
、相対湿度が前記の範囲以下の場合には電解液の蒸発が
起こり、内部抵抗の増大や放電性能の低下をもたらして
いた。
BACKGROUND OF THE INVENTION BACKGROUND ART Batteries equipped with gas diffusion electrodes and using oxygen as an active material include air cells, fuel cells, and the like. Especially alkaline aqueous solution,
In a battery that uses a neutral aqueous solution as the electrolyte, water vapor flows in and out from the gas diffusion electrode (oxygen electrode) depending on the internal vapor pressure, causing a change in the concentration and volume of the electrolyte in the battery. It affected the characteristics of the core. Taking a button-type zinc-air battery as an example, the situation will be explained using FIG. 2. In the figure, 1 is an oxygen electrode (air electrode), and 2 is a polytetrafluoroethylene (polytetrafluoroethylene) that has gas diffusivity but blocks liquids.
This is a porous membrane that supports an oxygen electrode made of (PTFE). 3
4 is a porous body that supports the oxygen electrode and diffuses air; 5 and 6 are separators; and 7 is a negative electrode made of a mixture of an aqueous potassium hydroxide solution and frozen zinc powder. Generally, an aqueous potassium hydroxide solution is used as the alkaline electrolyte at a concentration of 30 to 35%. For this reason, when the relative humidity is higher than 47 to 59%, external moisture is taken in, resulting in a decrease in the concentration of the electrolyte and volume expansion, resulting in a decrease in discharge performance and a stagnation of the electrolyte. On the other hand, when the relative humidity is below the above range, evaporation of the electrolyte occurs, resulting in an increase in internal resistance and a decrease in discharge performance.

従って、環境雰囲気によって著しい影響を受は易いため
長期間保存後の特性に問題があり、空気電池や燃料電池
はある特定の分野用に設計されるにとどまり、汎用化を
図る上で大きな課題を有していた。なお、図中8は負極
容器、9は絶縁ガスケット、10は正極容器である。
Therefore, since they are easily affected by the environmental atmosphere, there are problems with their properties after long-term storage. Air cells and fuel cells are only designed for use in a specific field, and there are major challenges in making them more general-purpose. had. In the figure, 8 is a negative electrode container, 9 is an insulating gasket, and 10 is a positive electrode container.

発明が解決しようとする課題 これらの課題を改善するため、従来より種々の対策が検
討されてきた。例えば空気孔周辺の一部に電解液と反応
する物質を挿入し、電池外部への電解液漏出を防止する
。あるいは紙または高分子材料よりなる不織布等の電解
液吸収材を設けて、電池外部への電解液漏出を防止する
。さらに、空気孔を極端に小さくして酸素の供給量を制
限してまでも、水蒸気や炭酸ガスの電池内部への侵入を
防止する等の提案がなされているが、いずれの方法も漏
液防止や放電性能、特に長期間放電での性能に大きな課
題を残していた。これらの主要原因は空気中の水蒸気の
電池内への侵入による電解液の希釈と体積膨張、および
炭酸ガスの侵入による炭酸塩の生成に基づく放電反応の
阻害と空気流通経路の閉塞によるもので、外気が低湿の
場合には、逆に電解液中の水分の蒸発が性能低下の原因
となっていた。この原因を取り除くため、近年では、水
蒸気や炭酸ガスの透過を制御し、選択的に酸素を優先し
て透過する膜を介して空気を酸素極に供給する方法、例
えばポリシロキサン系の無孔性の均一な薄膜や金属酸化
物あるいは金属原子を含有する有機化合物の薄膜と適宜
な多孔性膜とを一体化させた膜を用いる方法が提案され
ていた。
Problems to be Solved by the Invention In order to improve these problems, various countermeasures have been considered in the past. For example, a substance that reacts with the electrolyte is inserted into a portion around the air hole to prevent the electrolyte from leaking to the outside of the battery. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymeric material is provided to prevent leakage of the electrolyte to the outside of the battery. Furthermore, proposals have been made to prevent water vapor and carbon dioxide from entering the battery, even by making the air holes extremely small and limiting the amount of oxygen supplied, but none of these methods prevent liquid leakage. However, there remained major issues regarding discharge performance, especially performance during long-term discharge. The main causes of these are the dilution and volumetric expansion of the electrolyte due to the intrusion of water vapor from the air into the battery, and the inhibition of the discharge reaction due to the formation of carbonates due to the intrusion of carbon dioxide gas and the blockage of the air circulation path. Conversely, when the outside air is low-humidity, evaporation of water in the electrolyte causes performance to deteriorate. In order to eliminate this cause, in recent years, methods have been developed to control the permeation of water vapor and carbon dioxide gas and to supply air to the oxygen electrode through a membrane that selectively allows oxygen to pass through, such as non-porous polysiloxane membranes. A method using a film that integrates a uniform thin film of , a thin film of a metal oxide or an organic compound containing metal atoms, and a suitable porous film has been proposed.

しかしながら、現在までのところ、充分に有効な酸素ガ
ス選択透過性が得られないことや水蒸気、炭酸ガスの透
過阻止能が充分でないことなどから、満足な放電性能が
得られず、長期の使用や貯蔵に耐えられないという技術
課題を持っていたので、実用化に至っていない。
However, to date, it has not been possible to obtain satisfactory discharge performance due to the inability to obtain sufficiently effective oxygen gas selective permeability and insufficient permeation blocking ability for water vapor and carbon dioxide gas, and it has not been possible to obtain long-term use. It has not been put into practical use because of the technical issue of not being able to withstand storage.

そこで、本発明は上記の電池の貯蔵性、長期使用におけ
る性能を改善するとともに低負荷から高負荷に至る放電
条件で満足な放電性能を得るために、大気中の酸素ガス
を選択的に充分な速度で電池内に取り入れ、大気中の水
蒸気及び炭酸ガスの電池内への侵入を長期にわたり防止
する有効な手段を提供することを目的とするものである
Therefore, the present invention aims to improve the storability and long-term use performance of the above-mentioned battery, and to obtain satisfactory discharge performance under discharge conditions ranging from low to high loads. The purpose of this invention is to provide an effective means for preventing atmospheric water vapor and carbon dioxide from entering the battery over a long period of time.

課題を解決するための手段 本発明は、酸素を活物質とするガス拡散電極と、外気に
通じる空気取り入れ孔を有する電池容器を備えた電池の
ガス拡散電極の空気取り入れ側と電池容器の内面との間
に、フッ素含有ポリグルタメート膜、あるいはフッ素含
有ポリグルタメートとポリトリメチルシリルプロピンと
の混合膜を酸素選択性透過膜として介在させるものであ
る。
Means for Solving the Problems The present invention provides a battery comprising a gas diffusion electrode using oxygen as an active material and a battery container having an air intake hole communicating with the outside air. In between, a fluorine-containing polyglutamate membrane or a mixed membrane of fluorine-containing polyglutamate and polytrimethylsilylpropyne is interposed as an oxygen-selective permeable membrane.

さらにこの膜を支持する多孔質基材として耐アルカリ性
に優れたポリプロピレン、ポリエチレン等のポリオレフ
ィン、フッ素樹脂、ポリスルフォン等を選び検討を深め
て完成した。なお微多孔膜は単層であっても良いが、取
扱いや製造時あるいは使用時の強度を確保するために、
必要に応じて耐アルカリ性不織布をさらに一体化した二
層以上の構成としても良い。
Furthermore, as a porous base material to support this membrane, we selected polyolefins such as polypropylene and polyethylene, fluororesin, polysulfone, etc., which have excellent alkali resistance, and completed the research after further investigation. The microporous membrane may be a single layer, but in order to ensure strength during handling, manufacturing, or use,
If necessary, it may have a structure of two or more layers further integrated with an alkali-resistant nonwoven fabric.

本発明は、フッ素含有ポリグルタメート膜を電池用とし
て鋭意検討の結果、上述の諸特性を総合的に満たし、こ
れを適用した電池の性能が極めて優れていることを見い
出し完成したものである。
The present invention was completed after intensive research into the use of fluorine-containing polyglutamate membranes for batteries, and the discovery that they comprehensively satisfy the above-mentioned characteristics and that the performance of batteries to which they are applied is extremely excellent.

作用 この構成により後述の実施例における電池試験の結果か
らも明らかなように、電池用としての酸素透過速度と同
時に、水蒸気や炭酸ガスを大気から遮断する効果も共に
満足すべき状態にあり、実用的な電池に要求される高負
荷放電性能と、高湿度や低湿度の雰囲気下で長時間放電
した場合の性能も共に満足することとなる。
Function: As is clear from the results of the battery test in the Examples described below, this configuration has a satisfactory oxygen permeation rate for batteries as well as the effect of blocking water vapor and carbon dioxide from the atmosphere, making it suitable for practical use. This satisfies both the high-load discharge performance required of standard batteries and the performance when discharging for a long time in an atmosphere of high or low humidity.

実施例 以下、本発明の一実施例を示す。Example An embodiment of the present invention will be shown below.

フッ素含有ポリグルタメート膜を酸素選択性透過膜とし
て使用した電池、およびさらにフッ素含有ポリグルタメ
ートとポリトリメチルシリルプロピンとの混合膜を酸素
選択性透過膜として使用した電池、比較例として上記膜
を使用しない電池を試作評価して検討した。
A battery using a fluorine-containing polyglutamate membrane as an oxygen-selective permeable membrane, a battery using a mixed membrane of fluorine-containing polyglutamate and polytrimethylsilylpropyne as an oxygen-selective permeable membrane, and a battery not using the above membrane as a comparative example. A prototype was evaluated and studied.

比較例の場合は第2図と全く同一に構成した。In the case of a comparative example, the structure was exactly the same as that shown in FIG.

フッ素含有ポリグルタメート膜を酸素選択性透過膜とし
て使用した電池およびさらにフッ素含有ポリグルタメー
トとポリトリメチルシリルプロピンの混合膜を酸素選択
性透過膜として使用した電池である、実施例1,2も電
池構成の上からは第2図とほぼ同様であり、第1図に示
すようにPTFEの多孔膜2と酸素の拡散を行なう多孔
体4との間にそれぞれの実施例の複合膜が介在し、複合
膜は錯体を含む側が空気取り入れ孔3の側に対向するよ
う配設した点が、第2図と異なるのみである。
Examples 1 and 2, which are batteries using a fluorine-containing polyglutamate membrane as an oxygen-selective permeable membrane, and batteries using a mixed membrane of fluorine-containing polyglutamate and polytrimethylsilylpropyne as an oxygen-selective permeable membrane, also have the same battery configuration. The view from above is almost the same as FIG. 2, and as shown in FIG. 1, the composite membrane of each example is interposed between the porous PTFE membrane 2 and the porous body 4 that diffuses oxygen. The only difference from FIG. 2 is that the membrane is arranged so that the side containing the complex faces the side of the air intake hole 3.

試作した電池の形状は直径11.6mm、総高5.4順
であり、比較的高負荷(75Ω)で20℃、常湿(60
%RH)での連続放電により電池内への空気中の酸素の
取り込み速度の充足性を評価し、比較的低負荷(3にΩ
)で20℃、高湿度(90%RH)及び低湿度(20%
RH)での長期間連続放電により、長期の放電期間中の
、雰囲気中の水蒸気の取り込みや電池内の水分の蒸発、
及び炭酸ガスの取り込みなど電池性能への影響度を評価
した。
The shape of the prototype battery is 11.6 mm in diameter and 5.4 mm in total height, and it can be used under a relatively high load (75Ω) at 20℃ and normal humidity (60℃).
The sufficiency of the oxygen uptake rate from the air into the battery was evaluated by continuous discharge at a relatively low load (3Ω
) at 20℃, high humidity (90% RH) and low humidity (20% RH)
Due to long-term continuous discharge at RH), during the long-term discharge period, water vapor is taken into the atmosphere and water evaporates inside the battery.
We also evaluated the degree of influence on battery performance, such as carbon dioxide uptake.

試作した電池の内訳は第1表に示すとおりである。また
第2表に試作電池の性能試験結果を示す。
The details of the prototype batteries are shown in Table 1. Table 2 also shows the performance test results of the prototype batteries.

第1表:試作電池の内訳 第2表・試作電池の性能試験結果 第2表において放電終止電圧はいずれも0.9■であり
、重量変化は放電試験前後の増減を示しており、主とし
て放電中の水分の取り込み、あるいは蒸発の多少を示唆
する数値である。
Table 1: Breakdown of prototype batteries Table 2 Performance test results of prototype batteries In Table 2, the end-of-discharge voltage is 0.9■, and the weight change shows the increase and decrease before and after the discharge test, mainly due to discharge This value indicates the amount of moisture taken in or evaporated.

本発明の複合膜の支持体は、耐アルカリ性の材料で構成
されている。これらの電池の特性を複合膜を使用してい
ない比較例と対比すると、最も端的に本発明の詳細な説
明できる。
The support of the composite membrane of the present invention is made of an alkali-resistant material. The present invention can be most clearly explained in detail by comparing the characteristics of these batteries with a comparative example that does not use a composite membrane.

まず20℃、常湿での高負荷試験では放電期間が短く、
水分の取り込みや蒸発の影響や炭酸ガスの影響が少ない
ので、電池の性能は酸素の供給速度が充分であれば水分
や炭酸ガスの透過阻止はあまり考慮する必要がない。従
って、このような条件では比較例でも優れた特性が得ら
れる。これに対し前述の実施例1.2は比較例と同等の
放電特性が得られており、複合膜を透過する酸素の速度
が放電反応により消費される酸素の速度に充分追従して
いることを示している。
First, in high-load tests at 20°C and normal humidity, the discharge period was short;
Since the influence of moisture uptake and evaporation and the influence of carbon dioxide gas are small, there is no need to consider blocking the permeation of moisture and carbon dioxide gas as long as the oxygen supply rate is sufficient for battery performance. Therefore, under such conditions, excellent characteristics can be obtained even in the comparative example. On the other hand, in Example 1.2 described above, discharge characteristics equivalent to those of the comparative example were obtained, indicating that the rate of oxygen permeating through the composite membrane sufficiently follows the rate of oxygen consumed by the discharge reaction. It shows.

一方、低負荷放電の場合は放電期間が長く、しかも外気
が高湿度あるいは低湿度の場合には酸素の供給速度より
も水分や炭酸ガス、特に水分の透過防止が優れた電池特
性を得るために重要となる。水分や炭酸ガスの透過阻止
機構を持たない比較例の電池は水分の枯渇、あるいは逆
に水分の過剰取り入れに起因した漏液による空気孔の閉
塞などにより、放電の途中で電圧が低下し、高負荷試験
で得られた放電容量の一部分に相当する容量が得られる
に過ぎない。また放電途中での漏液は実用面で致命的な
問題であることは言うまでもない。これに対し実施例は
極めて優れた性能を示し、これらは高負荷試験の放電容
量とほぼ等しい容量が得られている。これらの傾向は試
験雰囲気か高湿度1低湿度、いずれの場合とも同様であ
る。このことは、実施例の場合、複合膜の水分の透過阻
止効果が充分に発揮されていることを示している。
On the other hand, in the case of low-load discharge, the discharge period is long, and in addition, when the outside air is high or low humidity, it is necessary to obtain battery characteristics that are superior to moisture and carbon dioxide gas, especially moisture permeation prevention, rather than oxygen supply rate. becomes important. The comparative example battery, which does not have a mechanism to prevent the permeation of moisture and carbon dioxide gas, has a voltage drop during discharge due to depletion of moisture or, conversely, blockage of the air holes due to leakage caused by excessive intake of moisture. The capacity obtained is only a portion of the discharge capacity obtained in the load test. It goes without saying that leakage during discharge is a fatal problem in practical terms. On the other hand, the Examples showed extremely excellent performance, and a capacity almost equal to the discharge capacity in the high load test was obtained. These trends are the same regardless of whether the test atmosphere is high humidity or low humidity. This shows that in the case of the example, the moisture permeation blocking effect of the composite membrane was sufficiently exhibited.

以上を総合して、微多孔質膜上の表面にフッ素含有ポリ
グルタメート膜を形成した複合膜およびさらにフッ素含
有ポリグルタメート膜とポリトリメチルシリルプロピン
との混合膜を用いた試作電池は、高負荷特性、低負荷特
性ともに優れ、外部雰囲気の変化も良好である。特に耐
アルカリ性の微多孔質膜を支持体に用いた場合に、優れ
た電池を提供できることが結論できる。さらに実施例に
示した複合膜を支持する微多孔質膜は、他のアルカリ性
を有する微多孔膜、例えばナイロン製微多孔膜でも同様
の効果が得られる。また、実施例では支持体が微多孔膜
とポリプロピレン製の不織布と一体化した複合層とした
場合を説明したが、前記不織布がポリエチレン、ナイロ
ン等の他のMyルカリ性のある素材であれば同様の効果
が得られる。
In summary, the prototype battery using a composite membrane in which a fluorine-containing polyglutamate film is formed on the surface of a microporous membrane and a mixed membrane of a fluorine-containing polyglutamate film and polytrimethylsilylpropyne has high load characteristics, It has excellent low load characteristics and changes in external atmosphere well. It can be concluded that an excellent battery can be provided especially when an alkali-resistant microporous membrane is used as a support. Furthermore, the same effect can be obtained with the microporous membrane supporting the composite membrane shown in the Examples with other alkaline microporous membranes, such as microporous nylon membranes. In addition, in the examples, a case where the support is a composite layer in which a microporous membrane and a nonwoven fabric made of polypropylene are integrated is explained, but the same applies if the nonwoven fabric is made of other Mylkali properties such as polyethylene or nylon. The effect of this can be obtained.

なお、いずれの実施例の場合でも複合膜の薄膜側を空気
取り入れ孔側に当接させた場合でもほぼ同一の結果とな
ることを確認している。
In addition, in any of the examples, it has been confirmed that almost the same results are obtained even when the thin film side of the composite membrane is brought into contact with the air intake hole side.

また、上記実施例では本発明の複合膜を電池容器との間
に空気拡散用の多孔体を介して設置したが、本発明の複
合膜は微多孔膜、場合によってはさらに不織布を一体化
した支持体より構成されており、前記空気拡散用の多孔
体を除いても電池特性の差異はない。但し、複合膜の強
度が充分でなく複合膜が空気取り入れ孔側に変形するよ
うな場合には、多孔体を設置することにより複合膜が安
定形状を保つ。さらに、上記実施例では本発明の複合膜
を酸素極との間に酸素極を支持する多孔膜を介して設置
したが、酸素極の強度が充分であれば前記多孔膜は不用
であり、除いても電池特性は変わらない。また塩化アン
モニウム、塩化亜鉛などの中性環の水溶液を電解液に用
いた空気電池に対しても、実施例で示したアルカリ性の
電解液に用いた電池と同様の効果があることも確認して
おり、実施例と同様の理由で本発明の詳細な説明できる
In addition, in the above examples, the composite membrane of the present invention was installed between the battery container and the porous body for air diffusion, but the composite membrane of the present invention is a microporous membrane, and in some cases, a nonwoven fabric is further integrated into the composite membrane of the present invention. The battery is composed of a support body, and there is no difference in battery characteristics even if the porous body for air diffusion is removed. However, if the strength of the composite membrane is insufficient and the composite membrane deforms toward the air intake hole, the composite membrane maintains a stable shape by installing a porous body. Furthermore, in the above example, the composite membrane of the present invention was installed between the oxygen electrode and the porous membrane that supported the oxygen electrode, but if the oxygen electrode had sufficient strength, the porous membrane was unnecessary and could be removed. However, the battery characteristics remain unchanged. We also confirmed that an air battery using an aqueous solution of neutral rings such as ammonium chloride or zinc chloride as the electrolyte has the same effect as the battery using an alkaline electrolyte shown in the example. Therefore, the present invention can be explained in detail for the same reason as the examples.

発明の効果 以上の説明で明らかなように、本発明による酸素ガス拡
散電極によれば、中性もしくはアルカリ性の水溶液を電
解液とする電池の高負荷から低負荷にわたる優れた実用
性能と、優れた耐漏液性長期貯蔵性を具備させることが
できるという効果が得られる。
Effects of the Invention As is clear from the above explanation, the oxygen gas diffusion electrode according to the present invention has excellent practical performance over a range from high load to low load for batteries using a neutral or alkaline aqueous solution as the electrolyte, and excellent performance. The effect of providing leakage resistance and long-term storage properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

f−馴製捲 l・・・・・・酸素極(空気極)、2・・・・・・撥水
膜、3・・・・・・空気取り入れ孔、4・・・・・・多
孔膜、5,6・・・・・・セパレータ、7・・・・・・
負極亜鉛、8・・・・・・負極容器、9・・・・・・絶
縁ガスケット、1o・・・・・・正極容器、11・・・
・・・複合膜。
f - Conditioned winding l...Oxygen electrode (air electrode), 2...Water repellent membrane, 3...Air intake hole, 4...Porous membrane , 5, 6... separator, 7...
Negative electrode zinc, 8... Negative electrode container, 9... Insulating gasket, 1o... Positive electrode container, 11...
...Composite membrane.

Claims (2)

【特許請求の範囲】[Claims] (1)酸素を活物質とするガス拡散電極と、外気に通じ
る空気取り入れ孔を有する電池容器を備え、前記ガス拡
散電極の空気取り入れ側と前記電池容器の内面との間に
フッ素含有ポリグルタメート膜を設けたことを特徴とす
る電池。
(1) A gas diffusion electrode containing oxygen as an active material and a battery container having an air intake hole communicating with the outside air, with a fluorine-containing polyglutamate film between the air intake side of the gas diffusion electrode and the inner surface of the battery container. A battery characterized by being provided with.
(2)酸素を活物質とするガス拡散電極と、外気に通じ
る空気取り入れ孔を有する電池容器を備え、前記ガス拡
散電極の空気取り入れ側と前記電池容器の内面との間に
フッ素含有ポリグルタメートとポリトリメチルシリルプ
ロピンとの混合膜を設けたことを特徴とする電池。
(2) A battery container having a gas diffusion electrode containing oxygen as an active material and an air intake hole communicating with the outside air, and a fluorine-containing polyglutamate is provided between the air intake side of the gas diffusion electrode and the inner surface of the battery container. A battery characterized by having a mixed membrane with polytrimethylsilylpropyne.
JP10198790A 1990-04-18 1990-04-18 Battery Pending JPH042067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10198790A JPH042067A (en) 1990-04-18 1990-04-18 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10198790A JPH042067A (en) 1990-04-18 1990-04-18 Battery

Publications (1)

Publication Number Publication Date
JPH042067A true JPH042067A (en) 1992-01-07

Family

ID=14315193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10198790A Pending JPH042067A (en) 1990-04-18 1990-04-18 Battery

Country Status (1)

Country Link
JP (1) JPH042067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058418A1 (en) * 1997-06-17 1998-12-23 Aer Energy Resources, Inc. Membrane for selective transport of oxygen over water vapor and metal-air electrochemical cell including said membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058418A1 (en) * 1997-06-17 1998-12-23 Aer Energy Resources, Inc. Membrane for selective transport of oxygen over water vapor and metal-air electrochemical cell including said membrane
US5985475A (en) * 1997-06-17 1999-11-16 Aer Energy Resources, Inc. Membrane for selective transport of oxygen over water vapor and metal-air electrochemical cell including said membrane
JP2002503151A (en) * 1997-06-17 2002-01-29 エア エナジー リソースィズ インコーポレイテッド A membrane for selectively transporting oxygen in preference to water vapor and a metal-air electrochemical cell provided with the membrane

Similar Documents

Publication Publication Date Title
JPH0417259A (en) Battery
JP2782837B2 (en) Battery
JPH07105991A (en) Oxygen enriched film for battery
JPH042067A (en) Battery
JP2817343B2 (en) Battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JPH04312771A (en) Air battery
JP2822485B2 (en) Battery
JPH09274936A (en) Air cell
JP2743574B2 (en) Battery
JP2757383B2 (en) Battery
JP2782911B2 (en) Battery
JPH04162374A (en) Battery
JP2778078B2 (en) Battery
JPH01267971A (en) Battery
JPH01267974A (en) Battery
JPH01267972A (en) Battery
JP2734057B2 (en) Battery manufacturing method
JPH05205784A (en) Oxygen permeable composite film and battery employing said composite film
JPH03108258A (en) Battery
JPH0475253A (en) Manufacture of battery
JPH01267973A (en) Battery
JPH0287459A (en) Battery
JPH01195678A (en) Cell
JP2817341B2 (en) Battery