JPH07105991A - Oxygen enriched film for battery - Google Patents

Oxygen enriched film for battery

Info

Publication number
JPH07105991A
JPH07105991A JP5247852A JP24785293A JPH07105991A JP H07105991 A JPH07105991 A JP H07105991A JP 5247852 A JP5247852 A JP 5247852A JP 24785293 A JP24785293 A JP 24785293A JP H07105991 A JPH07105991 A JP H07105991A
Authority
JP
Japan
Prior art keywords
oxygen
film
battery
polydimethylsiloxane
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5247852A
Other languages
Japanese (ja)
Inventor
Shigeto Noya
重人 野矢
Masaya Okochi
正也 大河内
Masahiko Ogawa
昌彦 小川
Nobuo Eda
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5247852A priority Critical patent/JPH07105991A/en
Publication of JPH07105991A publication Critical patent/JPH07105991A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To provide an oxygen enriched film for a battery equipped with a gas diffusion electrode using oxygen as active material, wherein the film excels in the storage characteristic, performance in long-time service, etc. CONSTITUTION:A fluorinated resin soluble in a solvent is applied to a composite film pepared by applying a polydimethylsiloxane type resin to a porous highpolymer film, and thereby an oxygen enriched film is obtained in which penetration of water vapor is suppressed and which takes in the oxygen selectively. The resultant battery is equipped with a satisfactory discharge performance in a wide discharge condition from low load to high load and with excellent storage characteristics and also the performance in long-time service.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸素を活物質に用いる
ガス拡散電極を備えた電池の酸素富化膜に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen-enriched membrane for a battery having a gas diffusion electrode using oxygen as an active material.

【0002】[0002]

【従来の技術】ガス拡散電極を備え、酸素を活物質とす
る電池としては、空気電池、燃料電池等がある。電解質
には、アルカリ性、中性、酸性の電解質かまたは固体電
解質が使用される。
2. Description of the Related Art Batteries having a gas diffusion electrode and using oxygen as an active material include air batteries and fuel cells. As the electrolyte, an alkaline, neutral or acidic electrolyte or a solid electrolyte is used.

【0003】特に、溶液を電解質として使用する電池に
おいては、ガス拡散電極(酸素極)より、内部の電解液
の蒸気圧に応じて水蒸気の出入りがあり、電池内電解液
の濃度変化、体積変化が起こり、これが電池諸特性に影
響を与えていた。
Particularly, in a battery using a solution as an electrolyte, water vapor flows in and out of a gas diffusion electrode (oxygen electrode) in accordance with the vapor pressure of the electrolytic solution in the battery, which causes a change in concentration and a change in volume of the electrolytic solution in the battery. Occurred, which affected various battery characteristics.

【0004】ボタン形空気亜鉛電池を例にとり、図2を
用いてその状況を説明する。図中、1は酸素極(空気
極)、2はガスの拡散性はあるが、液体は阻止するポリ
テトラフルオロエチレン(PTFE)製多孔性膜(撥水
膜)である。3は外部からの空気取り入れ孔、4は酸素
極の支持と空気の拡散を行う多孔膜(拡散紙)、5、6
はセパレ−タ、7は水酸化カリウム水溶液と汞化亜鉛粉
末との混合体からなる負極亜鉛である。
A button type zinc-air battery will be described as an example with reference to FIG. In the figure, 1 is an oxygen electrode (air electrode), 2 is a polytetrafluoroethylene (PTFE) porous film (water repellent film) which has gas diffusibility but prevents liquid. 3 is an air intake hole from the outside, 4 is a porous membrane (diffusion paper) for supporting an oxygen electrode and diffusing air, 5, 6
Is a separator, and 7 is a negative electrode zinc made of a mixture of an aqueous potassium hydroxide solution and zinc hydride powder.

【0005】一般にアルカリ電解液には水酸化カリウム
水溶液を使用し、その濃度は30〜35%である。この
ため、相対湿度が47〜59%より高いと、外部の湿気
を取り込み電解液濃度の低下と体積膨張とが起こり、放
電性能の低下、電解液の漏液を生じていた。
Generally, an aqueous potassium hydroxide solution is used as the alkaline electrolyte, and its concentration is 30 to 35%. For this reason, when the relative humidity is higher than 47 to 59%, external humidity is taken in, the concentration of the electrolytic solution is reduced, and the volume is expanded, so that the discharge performance is reduced and the electrolytic solution leaks.

【0006】一方、、相対湿度が前記以下の場合には電
解液の蒸発が起こり、内部抵抗の増大や放電性能の低下
をもたらしていた。
On the other hand, when the relative humidity is less than the above, evaporation of the electrolytic solution occurs, causing an increase in internal resistance and a decrease in discharge performance.

【0007】したがって、環境雰囲気によって著しい影
響を受けやすいため長期保存後の特性に問題があり、空
気電池や燃料電池はある特定の分野用に設計されるにと
どまり、汎用化を図る上で大きな課題を有していた。な
お、図中8は負極容器、9は絶縁ガスケット、10は正
極容器である。
Therefore, there is a problem in the characteristics after long-term storage because it is easily affected by the environmental atmosphere, and the air battery and the fuel cell are designed only for a specific field, and a major problem in generalization. Had. In the figure, 8 is a negative electrode container, 9 is an insulating gasket, and 10 is a positive electrode container.

【0008】これらの課題を改善するため、従来より種
々の対策が検討されてきた。例えば、空気取り入れ孔周
辺の一部に電解液と反応する物質を挿入し、電池外部へ
の電解液漏出を防止する。あるいは紙または高分子材料
よりなる不織布等の電解液吸収材を設けて、電池外部へ
の電解液漏出を防止する。さらには空気取り入れ孔を極
端に小さくして酸素の供給量を制限してまでも、水蒸気
や炭酸ガスの電池内部への侵入を防止する等の提案がな
されている。しかし、いずれの方法も漏液防止や放電性
能、特に長期間での性能に大きな課題を残していた。こ
れらの主要原因は空気中の水蒸気の電池内への侵入によ
る電解液の希釈と体積膨張、及び炭酸ガスの侵入による
炭酸塩の生成に基づく放電反応の阻害と空気流通経路の
閉塞によるもので、外気が低湿の場合には逆に電解液中
の水分の蒸発が性能低下の原因となっていた。この原因
を取り除くため、近年では、水蒸気や炭酸ガスの透過を
抑制し、選択的に酸素を優先して透過する膜を介して空
気を酸素極に供給する方法、例えばポリシロキサン系の
無孔性の均質な薄膜(例えば、特開昭59−31556
6号公報、特開平1−267970号公報)や金属酸化
物、あるいは金属原子を含有する有機化合物の薄膜と適
宜な多孔質膜とを一体化させた膜とを用いる方法(例え
ば、特開昭59−98706号公報、特開昭59−99
684号公報)が提案されていた。
In order to improve these problems, various countermeasures have been conventionally studied. For example, a substance that reacts with the electrolytic solution is inserted into a part of the periphery of the air intake hole to prevent the electrolytic solution from leaking to the outside of the battery. Alternatively, an electrolytic solution absorbent such as paper or a non-woven fabric made of a polymer material is provided to prevent leakage of the electrolytic solution to the outside of the battery. Further, it has been proposed to prevent water vapor and carbon dioxide gas from entering the inside of the battery even if the air intake hole is made extremely small to limit the supply amount of oxygen. However, all of the methods still have major problems in prevention of leakage and discharge performance, especially in long-term performance. The main causes of these are the dilution and volume expansion of the electrolytic solution due to the entry of water vapor into the battery, and the inhibition of the discharge reaction due to the formation of carbonate due to the entry of carbon dioxide gas and the blockage of the air flow path. On the contrary, when the outside air is low in humidity, the evaporation of water in the electrolytic solution causes the deterioration of the performance. In order to eliminate this cause, in recent years, a method of suppressing the permeation of water vapor or carbon dioxide and supplying air to the oxygen electrode through a membrane that preferentially permeates oxygen, for example, a polysiloxane-based non-porous material Homogeneous thin film (see, for example, JP-A-59-31556).
No. 6, JP-A-1-267970) or a method using a film in which a thin film of a metal oxide or an organic compound containing a metal atom and an appropriate porous film are integrated with each other (for example, JP-A No. SHO-KAI). 59-98706, JP-A-59-99.
No. 684) was proposed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、現在ま
でのところ、十分に有効な酸素ガス選択透過性が得られ
ないことや水蒸気、炭酸ガスの透過阻止能が十分でない
ことから、満足な放電性能が得られず、長期の使用や貯
蔵に耐えられないという技術課題をもっていた。
However, to date, satisfactory discharge performance has not been obtained because sufficient effective oxygen gas selective permeability cannot be obtained and the ability to prevent permeation of water vapor and carbon dioxide gas is insufficient. There was a technical problem that it could not be obtained and could not withstand long-term use and storage.

【0010】一般にフッ素系高分子は酸素との親和性お
よび撥水性に富み、しかも一般の高分子のなかでも耐ア
ルカリ性に優れていることが知られているが、フッ素系
高分子は化学的に安定なため溶剤に不溶で、塗布法やス
ピンコ−タ法などの薄膜形成には適していなかった。
Fluorine-based polymers are generally known to have a high affinity for oxygen and water repellency, and also have excellent alkali resistance among general polymers. Since it was stable, it was insoluble in a solvent and was not suitable for thin film formation such as coating and spin coating.

【0011】近年、溶剤に可溶なフッ素樹脂が開発され
(環状エ−テルとパ−フルオロ−2,2−ジメチル−
1,3−ジオキソ−ルとの共重合体(旭硝子(株)製、商
品名:サイトップ)、または、パ−フルオロビニルアリ
ルエ−テルの環化共重合体(三井デュポンフロロケミカ
ル(株)製、商品名:テフロンAF)、薄膜化が可能な点
から半導体用の保護膜などに応用されるようになってき
ている。この溶剤に可溶なフッ素樹脂をポリオレフィ
ン、フッ素樹脂やポリスルホンを主成分とする多孔性高
分子膜に塗布することにより、酸素を活物質に用いるガ
ス拡散電極を備えた電池に適した膜が得られることが提
案されている(特開平3−225513号公報)。
In recent years, fluororesins soluble in solvents have been developed (cyclic ether and perfluoro-2,2-dimethyl-
Copolymer with 1,3-dioxole (manufactured by Asahi Glass Co., Ltd., trade name: Cytop), or cyclized copolymer of perfluorovinyl allyl ether (Mitsui DuPont Fluorochemical Co., Ltd.) The product is being applied to a protective film for semiconductors because it can be thinned. By applying this solvent-soluble fluororesin to a porous polymer film containing polyolefin, fluororesin or polysulfone as a main component, a film suitable for a battery equipped with a gas diffusion electrode using oxygen as an active material is obtained. It has been proposed (Japanese Patent Laid-Open No. 3-225513).

【0012】この場合には、多孔性高分子膜とフッ素樹
脂との親和性が小さいためフッ素樹脂が不均一に凝集
し、特に塗布量が少ない場合、多孔性高分子膜の膜表面
全体を均一に覆うことが難しいという問題点があった。
このため、多孔性高分子膜表面全体がフッ素樹脂で覆わ
れた膜を安定して作るには、フッ素樹脂の塗布量をある
程度多くする必要があるが、このようにすると酸素透過
速度をより向上させることが困難である。
In this case, since the affinity between the porous polymer film and the fluororesin is small, the fluororesin aggregates unevenly, and especially when the coating amount is small, the entire surface of the porous polymer film is uniform. There was a problem that it was difficult to cover.
For this reason, it is necessary to increase the amount of fluororesin applied to some extent in order to stably form a film in which the entire surface of the porous polymer film is covered with fluororesin. However, this makes it possible to further improve the oxygen permeation rate. It is difficult to let

【0013】そこで本発明は上記の電池の貯蔵性、長期
使用における性能を改善するとともに低負荷から高負荷
に至る放電条件で満足な放電性能を得るために、大気中
の酸素ガスを選択的に電池内に取り入れ、大気中の水蒸
気及び炭酸ガスの電池内への侵入を長期にわたり防止す
る有効な酸素富化膜を提供することを目的とするもので
ある。
Therefore, in order to obtain satisfactory discharge performance under low-load to high-load discharge conditions, the present invention selectively improves oxygen gas in the atmosphere in order to improve the storability of the battery and the performance during long-term use. It is an object of the present invention to provide an effective oxygen-enriched film which is incorporated in a battery and prevents invasion of water vapor and carbon dioxide gas in the air into the battery for a long period of time.

【0014】[0014]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の酸素富化膜は、多孔性高分子膜にポリジメ
チルシロキサン系樹脂を塗布した複合膜上に溶剤に可溶
なフッ素樹脂を塗布したものである。
In order to achieve the above object, the oxygen-enriched membrane of the present invention comprises a porous polymer membrane coated with a polydimethylsiloxane resin on a composite membrane and fluorine soluble in a solvent. Resin is applied.

【0015】本発明では、気体透過性の大きなポリジメ
チルシロキサン系樹脂を多孔性高分子膜に塗布し、その
上に酸素親和性、撥水性、耐アルカリ性に優れている溶
剤に可溶なフッ素樹脂を塗布することにより電池用とし
て必要な酸素透過性が得られることや膜の気体透過性の
ばらつきを少なく、安定した膜特性を得ることができる
ことに着目し、鋭意検討を重ね完成したものである。
In the present invention, a polydimethylsiloxane resin having a large gas permeability is applied to a porous polymer film, and a fluororesin which is excellent in oxygen affinity, water repellency and alkali resistance and which is soluble in a solvent is applied thereon. It has been completed through intensive studies, focusing on the fact that by applying the above, the oxygen permeability required for batteries can be obtained and the variation in gas permeability of the membrane can be reduced, and stable membrane characteristics can be obtained. .

【0016】さらには、フッ素樹脂を塗布することによ
り膜の酸素富化機能をさらに向上させることができ、ま
た、耐アルカリ性の多孔性高分子膜とフッ素樹脂との間
に耐アルカリ性のないポリジメチルシロキサン系樹脂を
置いたサンドウィッチ型構造とすることにより、得られ
る膜に耐アルカリ性を与えることとなる。
Furthermore, by coating the fluororesin, the oxygen-enriching function of the film can be further improved, and polydimethyl which has no alkali resistance between the alkali-resistant porous polymer film and the fluororesin. A sandwich type structure in which a siloxane-based resin is placed provides the obtained film with alkali resistance.

【0017】[0017]

【作用】この構成により酸素富化膜は、電池用としての
良好な酸素透過速度と、水蒸気や炭酸ガスを大気から遮
断する効果をともに満足することとなる。
With this structure, the oxygen-enriched film satisfies both the favorable oxygen permeation rate for batteries and the effect of blocking water vapor and carbon dioxide from the atmosphere.

【0018】[0018]

【実施例】以下に本発明の一実施例を示す。EXAMPLE An example of the present invention will be described below.

【0019】ポリプロピレン製多孔性高分子膜のみを用
いたものを実施例1とし、このポリプロピレン製多孔性
高分子膜(25cm2)に、ポリジメチルシロキサン系
樹脂としてポリジメチルシロキサン(信越化学工業(株)
製、商品名:一液型シリコーン樹脂(KE−45)、溶
媒:トルエン、含量40〜50%)を塗布し、乾燥させ
た膜を実施例2とする。
Example 1 uses only a polypropylene-made porous polymer film, and this polypropylene-made porous polymer film (25 cm 2 ) contains polydimethylsiloxane as a polydimethylsiloxane resin (Shin-Etsu Chemical Co., Ltd. )
Example 2 is a film manufactured by applying a one-pack type silicone resin (KE-45), a solvent: toluene, and a content of 40 to 50%, and drying the product.

【0020】そして、上記実施例2において、一液型シ
リコーン溶液をトルエン溶媒で2分の1、3分の1、1
0分の1、20分の1、25分の1、40分の1希釈し
た溶液を塗布し、乾燥させたものを実施例3、4、5、
6、7、8とする。
Then, in the above-mentioned Example 2, the one-pack type silicone solution was diluted with a toluene solvent in a ratio of 1/2, 1/3, 1
The solutions diluted with 1/0, 1/20, 1/25, and 1/40 were applied and dried, and the solutions were used in Examples 3, 4, 5,
6, 7, and 8.

【0021】また、上記実施例8で多孔性高分子膜にポ
リスルホン製多孔性高分子膜を用いたものを実施例9と
する。
Further, Example 9 uses the porous polymer film made of polysulfone as the porous polymer film in Example 8 above.

【0022】さらに、ポリジメチルシロキサン−ポリヒ
ドロキシスチレン架橋型共重合体およびポリオルガノシ
ロキサン共重合体をポリテトラフルオロエチレン製多孔
性高分子膜に塗布したものを、それぞれ実施例10およ
び11とする。
Further, Examples 10 and 11 are obtained by coating a polydimethylsiloxane-polyhydroxystyrene cross-linking copolymer and a polyorganosiloxane copolymer on a polytetrafluoroethylene porous polymer membrane, respectively.

【0023】また、上記実施例8で得られた複合膜(2
5cm2)に、溶剤に可溶なフッ素樹脂(商品名:サイ
トップ、旭硝子(株)製)のパーフルオロ溶液(5重量
%)をパーフルオロ溶媒で2分の1希釈した溶液0.5
mlを塗布し、スピンコーターにて毎分1000回転の
条件で薄膜コーティングした膜を実施例12とする。
In addition, the composite membrane (2
A solution of a perfluoro solution (5% by weight) of a solvent-soluble fluororesin (trade name: Cytop, manufactured by Asahi Glass Co., Ltd.) in 5 cm 2 ) is diluted with a perfluoro solvent by a factor of 2 to 0.5.
Example 12 is a film in which ml was applied and a thin film was coated with a spin coater at 1000 rpm.

【0024】上記実施例12において、溶剤に可溶なフ
ッ素樹脂のパーフルオロ溶液をパーフルオロ溶媒で4分
の1、8分の1、16分の1、32分の1、64分の1
希釈した溶液をコーティングした膜を実施例13、1
4、15、16、17とする。
In Example 12, the solvent-soluble perfluoro solution of the fluororesin was diluted with the perfluoro solvent to be 1/4, 1/8, 16/32, 1/64.
The membranes coated with the diluted solution were tested in Examples 13, 1
4, 15, 16, and 17.

【0025】さらに、上記実施例9、10、11で得ら
れた複合膜(25cm2)に、溶剤に可溶なフッ素樹脂
(商品名:サイトップ、旭硝子(株)製)のパーフルオロ
溶液(5重量%)をパーフルオロ溶媒で16分の1希釈
した溶液0.5mlを塗布し、スピンコーターにて毎分
1000回転の条件で薄膜コーティングした膜を実施例
18、19、20とする。
Furthermore, a perfluoro solution of a solvent-soluble fluororesin (trade name: Cytop, manufactured by Asahi Glass Co., Ltd.) was added to the composite membranes (25 cm 2 ) obtained in Examples 9, 10 and 11 above. 0.5 ml of a solution obtained by diluting 5% by weight) with a perfluoro solvent by a factor of 16 was applied, and a thin film was coated with a spin coater at 1,000 rpm, and thus, the films were formed as Examples 18, 19, and 20.

【0026】以上の実施例1〜20までの20種類の膜
の酸素及び窒素透過速度を差圧式ガス透過率測定装置
(柳本製作所(株)製、GTR−10XD)を用いて測定
し、水蒸気の透過速度をJIS−Z0208に準じたカ
ップ法により測定した。
The oxygen and nitrogen permeation rates of the above 20 kinds of membranes of Examples 1 to 20 were measured using a differential pressure type gas permeation rate measuring device (GTR-10XD manufactured by Yanagimoto Seisakusho Co., Ltd.), The permeation rate was measured by the cup method according to JIS-Z0208.

【0027】以上の結果を(表1)及び(表2)に示し
た。なお、表中の分離比は(酸素の透過速度)/(窒素
の透過速度)であり、窒素に対する酸素の選択透過性を
示すものである。
The above results are shown in (Table 1) and (Table 2). The separation ratio in the table is (oxygen permeation rate) / (nitrogen permeation rate), which indicates the selective permeability of oxygen to nitrogen.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】(表1)の実施例1〜8と(表2)の実施
例12〜17とを比較すると本発明の効果が説明でき
る。まず、実施例1のポリプロピレン製多孔性高分子膜
のみでは電池の高率放電に必要な酸素の透過速度を十分
に満たしているが、同時に水蒸気の透過速度も大きく、
水蒸気を大気から遮断しているとはいえない。実施例2
〜8のポリジメチルシロキサンを塗布した複合膜では、
溶液の濃度を変えてポリジメチルシロキサンの厚みを変
化させ、高率放電に必要な範囲内で酸素の透過速度を変
化させることができるが、ポリジメチルシロキサンの親
水性により水蒸気の遮断効果にも限界がある。一方、本
発明の実施例12〜17では高撥水性のフッ素樹脂を塗
布することにより、実施例8よりも水蒸気の透過を抑制
することができる。
The effects of the present invention can be explained by comparing Examples 1 to 8 in (Table 1) and Examples 12 to 17 in (Table 2). First, the polypropylene porous polymer film of Example 1 alone sufficiently satisfies the oxygen permeation rate required for high-rate discharge of the battery, but at the same time, the water vapor permeation rate is high.
It cannot be said that water vapor is blocked from the atmosphere. Example 2
In the composite film coated with polydimethylsiloxane of ~ 8,
It is possible to change the concentration of the solution to change the thickness of polydimethylsiloxane and change the oxygen permeation rate within the range required for high rate discharge, but the hydrophilicity of polydimethylsiloxane also limits the water vapor blocking effect. There is. On the other hand, in Examples 12 to 17 of the present invention, the permeation of water vapor can be suppressed more than in Example 8 by applying the highly water-repellent fluororesin.

【0031】さらに、実施例12〜17の各々の実施例
について、同一条件で複数の酸素富化膜を製膜し、その
気体透過特性を調べることにより特性のばらつきが少な
く、安定した膜特性を得ることができることを確認して
いる。
Further, in each of Examples 12 to 17, a plurality of oxygen-enriched membranes were formed under the same conditions, and the gas permeation characteristics thereof were examined to obtain stable membrane characteristics with little variation in characteristics. Make sure you can get.

【0032】なお、実施例12〜17では多孔性高分子
膜にポリオレフィン系多孔性高分子膜を用いた場合につ
いて示したが、フッ素樹脂系またはポリスルホン系多孔
性高分子膜を用いた場合でも、本発明の効果は変わらな
いことを確認している。また、ポリジメチルシロキサン
系樹脂にポリジメチルシロキサン−ポリヒドロキシスチ
レン架橋型共重合体またはポリオルガノシロキサン共重
合体を用いた場合でも、本発明の効果は変わらないこと
を確認している。
In Examples 12 to 17, the case where a polyolefin-based porous polymer film is used as the porous polymer film is shown, but even when a fluororesin-based or polysulfone-based porous polymer film is used, It has been confirmed that the effects of the present invention do not change. It was also confirmed that the effect of the present invention does not change even when a polydimethylsiloxane-polyhydroxystyrene cross-linking copolymer or a polyorganosiloxane copolymer is used as the polydimethylsiloxane resin.

【0033】以上のように本実施例によれば、多孔性高
分子膜にポリジメチルシロキサン系樹脂を塗布した複合
膜上に溶剤に可溶なフッ素樹脂を塗布した複合膜を作製
することにより、電池用としての酸素透過性能と同時
に、水蒸気を大気から遮断する効果もともに有する膜を
得ることができる。
As described above, according to the present embodiment, a composite film in which a solvent-soluble fluororesin is applied on a composite film obtained by applying a polydimethylsiloxane resin to a porous polymer film, It is possible to obtain a film having not only the oxygen permeability for a battery but also the effect of blocking water vapor from the atmosphere.

【0034】前記(表1)および(表2)の分離比を比
較すれば、溶剤に可溶なフッ素樹脂を塗布することによ
り分離比が1.9〜2.0から3.1〜3.5に向上す
ることが明らかであるが、さらに、本発明の酸素富化の
効果を確認するために、実施例2〜8及び実施例12〜
17で作成した膜について空気極を用いた単極(カソー
ド)分極測定試験を行い、膜の窒素透過速度と酸素の限
界電流密度との関係を調べた。
Comparing the separation ratios of (Table 1) and (Table 2), the separation ratios of 1.9 to 2.0 to 3.1 to 3. It is clear that the value of the oxygen is increased to 5, but in order to confirm the effect of oxygen enrichment of the present invention, Examples 2 to 8 and Example 12 to
The film prepared in 17 was subjected to a unipolar (cathode) polarization measurement test using an air electrode, and the relationship between the nitrogen permeation rate of the film and the limiting current density of oxygen was investigated.

【0035】以上の結果を図1に示した。なお、図中の
数字は実施例の番号を示している。図1において、同程
度の窒素透過速度を有する膜で比較すると(例えば実施
例5と実施例15または16)、得られた酸素の限界電
流密度は本発明の溶剤に可溶なフッ素樹脂をコーティン
グした膜(実施例15と16)の方がポリジメチルシロ
キサンを塗布した膜(実施例5)よりも大きい結果が得
られた。このことは、カソード分極により空気極で消費
された酸素の量に対応して気体が膜を透過してくるので
あるから、酸素富化(酸素と窒素の分離)効果の大きな
膜ほど限界電流が大きくなり、実施例12〜17の場
合、フッ素樹脂をコーティングする効果が十分に発揮さ
れていることを示している。
The above results are shown in FIG. The numbers in the figure indicate the numbers of the examples. In FIG. 1, when comparing films having similar nitrogen permeation rates (for example, Example 5 and Example 15 or 16), the limiting current density of the obtained oxygen was coated with the solvent-soluble fluororesin of the present invention. The obtained films (Examples 15 and 16) gave larger results than the films coated with polydimethylsiloxane (Example 5). This means that the gas permeates the membrane in accordance with the amount of oxygen consumed at the air electrode due to cathodic polarization. Therefore, the membrane with a greater effect of oxygen enrichment (separation of oxygen and nitrogen) has a limiting current. In the case of Examples 12 to 17, it is shown that the effect of coating the fluororesin is sufficiently exhibited.

【0036】以上を総合して、多孔性高分子膜にポリジ
メチルシロキサン系樹脂を塗布した複合膜上に溶剤に可
溶なフッ素樹脂を塗布した酸素富化膜は、電池の低負荷
から高負荷に至る放電条件で満足な放電性能を得るため
に大気中の酸素ガスを選択的に取り入れ、また大気中の
水蒸気及び炭酸ガスの電池内への侵入を長期にわたり防
止する優れた膜であることが結論できる。
In summary, the oxygen-enriched film obtained by coating the solvent-soluble fluororesin on the composite film obtained by coating the porous polymer film with the polydimethylsiloxane resin is used for the battery from low load to high load. It is an excellent film that selectively takes in oxygen gas in the atmosphere in order to obtain satisfactory discharge performance under the discharge conditions up to, and prevents vapor and carbon dioxide gas in the atmosphere from entering the battery for a long time. I can conclude.

【0037】[0037]

【発明の効果】以上のように本発明は、多孔性高分子膜
にポリジメチルシロキサン系樹脂を塗布した複合膜上に
溶剤に可溶なフッ素樹脂を塗布することにより、電池用
としての酸素透過能と同時に、水蒸気を大気から遮断す
る効果もともに有する優れた酸素富化膜を実現できるも
のである。以上の説明で明らかなように、本発明による
酸素富化膜によれば、電池の高負荷から低負荷にわたる
広い範囲で優れた実用性能と、優れた耐漏液性、長期貯
蔵性を具備させることができるという効果が得られる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a solvent-soluble fluororesin is applied onto a composite film obtained by applying a polydimethylsiloxane-based resin to a porous polymer film so that oxygen permeation for a battery At the same time, it is possible to realize an excellent oxygen-enriched film that has the effect of blocking water vapor from the atmosphere at the same time. As is clear from the above description, the oxygen-enriched membrane according to the present invention has excellent practical performance in a wide range from high load to low load of the battery, excellent liquid leakage resistance, and long-term storability. The effect of being able to do is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】膜の窒素透過速度と限界電量密度との関係図FIG. 1 is a diagram showing the relationship between the nitrogen permeation rate of a membrane and the limiting charge density.

【図2】一般的なボタン形空気亜鉛電池の半断面図FIG. 2 is a half sectional view of a general button type zinc-air battery.

【符号の説明】[Explanation of symbols]

1 酸素極(空気極) 2 PTFE製多孔性膜(撥水膜) 3 空気取り入れ孔 4 多孔膜(拡散紙) 5 セパレータ 6 セパレータ 7 負極亜鉛 8 負極容器 9 絶縁ガスケット 10 正極容器 1 Oxygen electrode (air electrode) 2 PTFE porous film (water repellent film) 3 Air intake hole 4 Porous film (diffusion paper) 5 Separator 6 Separator 7 Negative electrode zinc 8 Negative electrode container 9 Insulation gasket 10 Positive electrode container

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江田 信夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuo Eda 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】多孔性高分子膜にポリジメチルシロキサン
系樹脂を塗布した複合膜上に、溶剤に可溶なフッ素樹脂
を塗布したことを特徴とする電池用酸素富化膜。
1. An oxygen-enriched membrane for a battery, characterized in that a solvent-soluble fluororesin is coated on a composite membrane prepared by coating a porous polymer membrane with a polydimethylsiloxane resin.
【請求項2】前記溶剤に可溶なフッ素樹脂がパ−フルオ
ロビニルアリルエ−テルの環化共重合体、または環状エ
−テルとパ−フルオロ−2,2−ジメチル−1,3−ジ
オキソ−ルとの共重合体である請求項1記載の電池用酸
素富化膜。
2. The solvent-soluble fluororesin is a perfluorovinylallyl ether cyclized copolymer, or a cyclic ether and perfluoro-2,2-dimethyl-1,3-dioxo. The oxygen-enriched film for a battery according to claim 1, which is a copolymer with a phenol.
【請求項3】前記多孔性高分子膜がポリオレフィン、ポ
リテトラフルオロエチレン、ポリスルホンのいずれかを
主成分とする請求項1記載の電池用酸素富化膜。
3. The oxygen-enriched membrane for a battery according to claim 1, wherein the porous polymer membrane contains polyolefin, polytetrafluoroethylene, or polysulfone as a main component.
【請求項4】前記ポリジメチルシロキサン系樹脂が、ポ
リジメチルシロキサン、ポリジメチルシロキサン−ポリ
ヒドロキシスチレン架橋型共重合体、ポリオルガノシロ
キサン共重合体のいずれかを主成分とする請求項1記載
の電池用酸素富化膜。
4. The battery according to claim 1, wherein the polydimethylsiloxane-based resin contains, as a main component, any one of polydimethylsiloxane, a polydimethylsiloxane-polyhydroxystyrene cross-linked copolymer, and a polyorganosiloxane copolymer. Oxygen enriched membrane for.
JP5247852A 1993-10-04 1993-10-04 Oxygen enriched film for battery Pending JPH07105991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5247852A JPH07105991A (en) 1993-10-04 1993-10-04 Oxygen enriched film for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5247852A JPH07105991A (en) 1993-10-04 1993-10-04 Oxygen enriched film for battery

Publications (1)

Publication Number Publication Date
JPH07105991A true JPH07105991A (en) 1995-04-21

Family

ID=17169616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5247852A Pending JPH07105991A (en) 1993-10-04 1993-10-04 Oxygen enriched film for battery

Country Status (1)

Country Link
JP (1) JPH07105991A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844681A3 (en) * 1996-11-22 1998-11-18 Iskra Industry Co., Ltd. Porous membrane with low steam permeability
WO1998058418A1 (en) * 1997-06-17 1998-12-23 Aer Energy Resources, Inc. Membrane for selective transport of oxygen over water vapor and metal-air electrochemical cell including said membrane
JP2008010432A (en) * 2007-09-03 2008-01-17 Toyota Motor Corp Fuel cell
JP2008030695A (en) * 2006-07-31 2008-02-14 Denso Corp Vehicular air-conditioning system
JP2008538533A (en) * 2005-04-22 2008-10-30 プラクスエア・テクノロジー・インコーポレイテッド Gas stream purification method
US8057960B2 (en) 2009-04-28 2011-11-15 Panasonic Corporation Electrode for fuel cells and method for manufacturing the same, and fuel cell using the same
US9059483B2 (en) 2011-07-06 2015-06-16 Ngk Insulators, Ltd. Selective oxygen-permeable substrate, positive electrode for metal-air battery, metal-air battery, and selective oxygen-permeable membrane
US9362581B2 (en) 2011-10-28 2016-06-07 Ngk Insulators, Ltd. Metal-air battery system including CO2 selective absorber and operating method therefor
EP3276727A1 (en) * 2016-07-27 2018-01-31 Honeywell International Inc. Fuel cell having oxygen selective membrane

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844681A3 (en) * 1996-11-22 1998-11-18 Iskra Industry Co., Ltd. Porous membrane with low steam permeability
US6010628A (en) * 1996-11-22 2000-01-04 Iskra Industry Co., Ltd. Porous membrane with low steam permeability
WO1998058418A1 (en) * 1997-06-17 1998-12-23 Aer Energy Resources, Inc. Membrane for selective transport of oxygen over water vapor and metal-air electrochemical cell including said membrane
US5985475A (en) * 1997-06-17 1999-11-16 Aer Energy Resources, Inc. Membrane for selective transport of oxygen over water vapor and metal-air electrochemical cell including said membrane
JP2002503151A (en) * 1997-06-17 2002-01-29 エア エナジー リソースィズ インコーポレイテッド A membrane for selectively transporting oxygen in preference to water vapor and a metal-air electrochemical cell provided with the membrane
JP2008538533A (en) * 2005-04-22 2008-10-30 プラクスエア・テクノロジー・インコーポレイテッド Gas stream purification method
JP2008030695A (en) * 2006-07-31 2008-02-14 Denso Corp Vehicular air-conditioning system
JP4682950B2 (en) * 2006-07-31 2011-05-11 株式会社デンソー Vehicle air conditioning system
JP2008010432A (en) * 2007-09-03 2008-01-17 Toyota Motor Corp Fuel cell
US8057960B2 (en) 2009-04-28 2011-11-15 Panasonic Corporation Electrode for fuel cells and method for manufacturing the same, and fuel cell using the same
US9059483B2 (en) 2011-07-06 2015-06-16 Ngk Insulators, Ltd. Selective oxygen-permeable substrate, positive electrode for metal-air battery, metal-air battery, and selective oxygen-permeable membrane
US9362581B2 (en) 2011-10-28 2016-06-07 Ngk Insulators, Ltd. Metal-air battery system including CO2 selective absorber and operating method therefor
EP3276727A1 (en) * 2016-07-27 2018-01-31 Honeywell International Inc. Fuel cell having oxygen selective membrane
CN107666002A (en) * 2016-07-27 2018-02-06 霍尼韦尔国际公司 Fuel cell with oxygen selective film
US10320007B2 (en) 2016-07-27 2019-06-11 Honeywell International Inc. Fuel cell having oxygen selective membrane

Similar Documents

Publication Publication Date Title
JP2008533663A (en) Air cell with improved leakage resistance
JPH07105991A (en) Oxygen enriched film for battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JPH0417259A (en) Battery
JPH09274936A (en) Air cell
JPH05205786A (en) Oxygen permeable compound membrane and battery using said compound membrane
JPH05326037A (en) Battery
JP2782837B2 (en) Battery
JPH05200928A (en) Oxygen-permeable composite membrane and battery using the same
JPH05205785A (en) Oxygen permeable composite film and battery employing said composite film
JP2778078B2 (en) Battery
JPH04312771A (en) Air battery
JP2817343B2 (en) Battery
JP2757383B2 (en) Battery
JPH04162374A (en) Battery
JP2743574B2 (en) Battery
JPH02216756A (en) Manufacture of battery
JPS6261275A (en) Air cell
JPH042067A (en) Battery
JP2817341B2 (en) Battery
JPH05198318A (en) Air battery
JP2822485B2 (en) Battery
JPH01195678A (en) Cell
JPH01267974A (en) Battery
JPH0287459A (en) Battery